
Multithreading in the Kylin Operating System for High End Computing

Zhang Yingxing Wu Qingbo
School of Computer, National University of Defense Technology,

Changsha, Hunan, P.R.China
willy_young@hotmail.com, wqb123@263.net

Abstract
This paper presents the architectural and

implementation details of multithreading in kylin
operating system. This system provides a foundation for
efficient and flexible threads on both uniprocessor and
multiprocessor machines .The work is based on the
scheduler activations kernel interface proposed by
Anderson et al. [1] for user-level control of parallelism in
the presence of multiprogramming and multiprocessing .
Preliminary results on a SMP enterprise server
demonstrate that the implementation is very efficient.

1. Introduction

The need for high-end systems has led to new interest
in high-end computing research, development, and
procurement. The current trend in large-scale HEC
systems is to leverage operating systems developed for
other areas of computing. An informal survey of the most
powerful HEC systems currently deployed
(http://www.top500.org) reveals that all but a few of these
machines run commodity operating systems that were not
specifically designed for large scale, parallel computing
platforms. However, we note that the Sandia's ASCI/Red
and the Cray T3E have demonstrated the highest level of
scaling efficiency for several complex scientific
applications and that both of these platforms employed
specialized operating systems on their compute nodes. It
is therefore important that research in the development of
specialized operating systems be augmented by research
that seeks to consolidate key features of specialized
operating systems with main-stream, commodity
operating systems.

Kylin operating system is focused on high
performance, availability and security, and was funded by
a Chinese government-sponsored 863 High-Tech R&D
program. It has been organized in a hierarchy model,
including the basic kernel layer which is similar to Mach,
the system service layer which is similar to BSD and the
desktop environment which is similar to Windows. It has
been designed to comply with the UNIX standards and is

compatible with Linux binaries. In order to support
parallel applications efficiently, we have emphasized on
the multithreading mechanism.

The purpose of this paper is to describe the design and
implementation of multithreading in kylin. First , as
motivation , Section 2 describes traditional thread
implementations .In Section 3 we discuss the architectural
and implementation details of the multithreading in kylin.
Section 5 presents performance results and Section 6
concludes the paper.

2. Background and Related Work

Multithreading is a popular programming and
execution model that allows multiple threads to exist
within the context of a single process, sharing the
process’s resources but able to execute independently.
The threaded programming model provides developers
with a useful abstraction of concurrent execution.
Threading implementations typically have components in
both user and kernel space. It is possible to do everything
from the one side or the other, but each approach has
problems. With everything on the user side, all related
threads are part of one single process (which can only run
on one CPU at a time), and multi-processor systems are
underutilized. With everything on the kernel side, the
kernel scheduler must bear a heavy load. Approaches
have ranged from the 1:1 pure kernel thread model in
which each user thread has its own kernel thread, to the
M:1 model in which the kernel sees only one normal
process, with an arbitrary number of threads with which
to schedule in user space. The M:N model falls in
between, associating M user threads with each of N kernel
threads.

2.1 M:1 model (ala FreeBSD's libc r)

In M:1 model ,which is also called useland
threading ,userland threads are implemented entirely in an
application program, with no explicit support from the
kernel. In most cases, a threading library is linked in to

Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05)
0-7695-2486-9/05 $20.00 © 2005 IEEE

the application, though it is also possible to hand code
user threading within an application.

The libc_r use a combination of a timer signal
(SIGALARM for libc r) to allows the userland threads
scheduler (UTS) to run, and setjmp()/longjmp() calls to
switch between threads. For avoiding blocking in a
system call. ,libc_r converting potentially blocking system
calls to non-blocking. This works well in all cases except
for operations on so-called fast devices such as local
filesystems, where it is not possible to convert to a
non-blocking system call. libc r handles non-blocking and
incomplete system calls by converting file descriptors to
non-blocking, issuing I/O requests, then adding the
descriptors to a central poll()-based event loop.

Userland threads have the advantage of being very fast
in the simple case, though the complexities of call
conversion eats into this performance advantage for
applications that make many system calls.

2.2 1:1 model (ala Linux's LinuxThreads)

The 1:1 model is confusingly referred to as
Process-based threading much of the time. Process-based
threads are threads that are based on some number of
processes that share their address space, and are scheduled
as normal processes by the kernel. LinuxThreads
implements process-based threading.

The Linux kernel uses the clone() function to create
new processes such that they share the address space of
the existing processes. Flags control parent/child resource
sharing, where resources range from everything (memory,
signal handlers, file descriptors, etc.) to nothing. While
the usual fork() inherits resources from the parent, it may
share nothing. Copy-on-write techniques ensure each
process gets its own copy as soon as either one tries to
modify a shared resource.

Programs can call the clone() function as a system call,
using it directly to produce multithreaded programs.
However, it is completely Linux-specific and
non-portable. Since there is no external standard, there is
no guarantee that its interface will be stable. Threading
library implementations do in fact use the clone() system
call, and it is the job of library maintainers to keep up
with kernel changes.

Process-based threading also has some inherent
performance and scalability issues that cannot be
overcome: Switching between threads is a very expensive
operation and Each thread (process) requires all the kernel
resources typically associated with a process.

2.3 M:N model (ala Solaris Multithreading)

The M:N model ,which is also called Multi-level
threading , is a hybrid of user-level and process-based
threading. The idea of multi-level threading is to achieve
the performance of userland threading and the SMP
scalability of process-based threading. Ideally, most
thread scheduling is done by a UTS to avoid the context
switch overhead of kernel calls, but multiple threads can
run concurrently by running on more than one process at
the same time.

In practice, multi-level threading' s main shortcoming
is its complexity. Just as Solaris uses LWPs to address the
POSIX compliance issues mentioned above for purely
process-based threading. And, in theory, LWPs are
light-weight, though Solaris's LWPs no longer generally
meet this criterion.

The overhead of the multi-level scheduling is also
worse than excepted.

2.4 Scheduler Activations

The scheduler activations (SAs) as presented in
Scheduler Activations: Effective Kernel Support for the
User-Level Management of Parallelism[1], and is meant
only as a basis for the more complete treatment of
multithreading in kylin .

SAs differ from multi-level scheduling in that
additional kernel facilities are added in order to provide
the UTS with exactly the information and support it needs
in order to control scheduling. Simply put, SAs allow the
kernel and the UTS to do their jobs without any guess
work as to what the other is doing.

A process that is using SAs does not have a kernel
stack or PCB. Instead, every time a process is run, a SA is
created that contains a kernel stack and thread control
block (TCB), and the process runs in the context of the
SA. When the SA is preempted or blocked, machine state
is stored in the SA's TCB, and the kernel stack is
optionally used for completion of a pending system call.

3 Multithreading in Kylin

3.1 Kylin threads Architecture

The multithreading mechanism in kylin implemented
in M:N model strives to merge the advantages of userland
and process based threading while avoiding the
disadvantages of both approaches .The following figure
shows the architecture:

Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05)
0-7695-2486-9/05 $20.00 © 2005 IEEE

Figure 1. The architecture of multithreading in kylin

At the user-level, kylin provides USE structures
which serve as an implicit indication of the kernel
processor allocation to the user-level threads library.
USEs are mapped one-to-one to kernel threads, which are
the actual kernel entities for multithreading the same
address space. The user-level library can obtain the handle
of a kernel thread indirectly, by scheduling a user-level
thread onto a USE.

In the kernel, each process has several KSE structures
which serve as virtual processors. The kernel thread will
be put into scheduling queue, when it has been bound to a
KSE in the same process. In this way ,one process’
maximum degree of parallelism is associated with the
number of the KSE.

3.2 Kylin Multithreading Implementation

In this section , we discuss the implementation details
of multithreading in kylin . Section 3.2.1 discusses the
implementation of Userland-scheduled entities and
Kernel- scheduled entities further in detail. Section 3.2.2
describes the communication mechanism between kernel
and userland. Section 3.2.3 describes the implementation
of UTS .

3.2.1 Userland-scheduled entities and
Kernel-scheduled entities

Userland-scheduled entities(USEs) and Kernel-
scheduled entities (KSEs) are based in concept on
scheduler activations, which are treated in detail in the SA
paper [1] .The Figure.1 shows how kernel thread and

user-level thread interact by using USEs and KSEs.
KSEs are used in the kernel in the scheduler queues,

and as a general handle. Given a pointer to a KSE, it is
possible to access its associated process, kernel thread and
the thread’s USE instances. A USE is simply the
user-level representatives of kernel threads , It is possible
to access the structure named use_thr_mailbox which
contains the state of a suspended thread of execution, by
giving a pointer to the thread’s USE . When a running
thread is blocked, the execution state is saved in the
use_thr_mailbox so that when it is possible to continue
execution, the thread can be re-attached to a KSE and
continued. When a thread is preempted, the execution
state is saved in a use_thr_mailbox so that an userland
state can be handed to the UTS. When the UTS loads the
context and starts executing the thread, it also sets its
curthread pointer to the thread's mailbox. This allows the
kernel (who knows where the KSE mailbox is) to know
where to store the return context for the thread should it
become required.

KSEs are only evident within the kernel. The interface
with userland only deals with USEs. KSEs themselves are
irrelevant to userland because they serve essentially as an
anonymous handle that binds the various kernel structures
together.

 All the processes start out with one kernel
thread ,one USE and one KSE, and its concurrency level
is one. Programs can create new user-level threads and
kernel threads by using POSIX interface . As new kernel
threads are created, the count of USE will increase to keep
bijection to the kernel thread ,and the count of KSE can
be adjusted by calling kse_create syscall ,up to the
maximum number of CPUs available for the process.

kth kth

USE USE USE

USE

USE

KSE KSE

kth kth

USEUSE

KSE

kth kth kth

KSE KSE

userland

kernel

user-level thread

kernel-thread

cpu cpu

kth

KSE

kth

KSE

kth

KSE

kth

KSE

kth

KSE

scheduling

queue

physical

CPUS

Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05)
0-7695-2486-9/05 $20.00 © 2005 IEEE

3.2.2 Communication Mechanism

Kylin operating system use upcall mechanism to
notify the kernel event to userland thread scheduler ,
which is also evolve from the SA paper in concept .

 At the time upcalls are activated via a system call,
program flow changes radically to run userland threads
scheduler .

There are three types of kernel events will cause the
program to receive upcalls from the kernel : a process’s
degree of parallelism increases and the process adds a
new KSE, current thread enters kernel and blocks , current
thread wants to return userland when there are completed
thread in the same process.

 After the kse_create() syscall is called, a new KSE
structure and a new upcall structure are created. The
upcall has been given a pointer to a mailbox in userland,
as well as the addresses of a userland stack and function,
that it can use to perform upcalls should it need to . In
kylin operating system ,the function is always the UTS.
Then kernel bind the upcall structure up with the standby
thread which attaches to current thread , and put the
standby thread into scheduling queue. When the standby
thread has been scheduled on CPU , it will call the
function supplied on the given stack ,which is always the
UTS.

If the thread enters the kernel and blocks, it will be
disconnected from the KSE and a new thread attached.
The standby thread of the blocked thread will be bound up
with a upcall structure ,then enters the UTS, which
realizes that the thread has blocked and looks for more
work to do. After the UTS find another runnable thread if
the new thread in turn enters that kernel, then there is a
chance that the previous syscall for the other thread has
completed. If so , the final return context for the original
thread will have been written into its mailbox context area.
The thread will have been released, so that userland
thread which becomes the completed thread now is only
in userland again . In this way , UTS will be invoked as
quickly as possible when thread blocks.

 When current thread wants to return userland and
there are completed threads in the same process , kylin
turn it into the upcall instead of releasing it . But before to
do, kylin will put the completed threads into the
scheduling queue of userland , then the UTS can follow
this queue to decide which thread to run next .

3.2.3 Userland thread scheduler and kernel
scheduler

The KSE-based UTS is actually simpler than is
possible for a userland-only threads implementation,
mainly because there is no need to perform call

conversion. The following is a simply representation of
the core UTS logic :

1. Find the highest priority thread in the process .
Optionally heuristically try to improve cache locality by
running a thread that may still be partially warm in the
processor cache.

2. Set a timer that will indicate the end of the
scheduling quantum.

3. Run the thread.
The UTS always has the information it needs to make

fully informed scheduling decisions, but there are some
circumstances that can cause temporary scheduling
inversions, where a thread may continue to run to the end
of its quantum despite there being a higher priority
runnable thread . This can happen when:

1. A new thread is created that has a lower priority
than its creator, but a higher priority than a thread that is
concurrently running on another processor.

2. A running thread(labeled as A) is preempted by the
kernel, and the upcall notification causes preemption of
another thread(labeled as B) , which is higher priority
than thread A , though thread C is also running on another
processor and has a lower priority than both A and B. In
this case, A will be scheduled and C will continue to run,
even though thread B is higher priority than C .

 Kylin don’t resolve this problem for the two reasons:
1. Solutions to this problem require additional system

calls in which the UTS explicitly asks the kernel to
preempt KSEs. This is expensive.

2. Temporary inversions are logically equivalent to the
race condition where the UTS determines that a thread
should be preempted in favor of scheduling another thread,
while the thread races to complete its quantum. It is not
important whether the UTS or the thread wins the race.

Two chief characteristics of the kernel scheduler are
mandatory in order to support KSEs :

1. The pairs of thread and KSE are are placed in the
scheduler queues, rather than processes. This enables
concurrent execution of KSEs that are associated with the
same process.

2. The state for blocked (incomplete) system calls is
stored in thread structures . This means that this queue
consists of thread rather than pairs. In other words, the
scheduler deals with pairs in some places, and threads
only in other places .

4 . Evaluation

In this section, we present performance evaluation
results of multithreading in kylin . The experiments were
conducted on LangChao NF420R server with four Intel
2.2G Hz P4 processors which support Hyper-Threading
technology and 1G DDR memory. By modifying BOIS
and kernel configuration ,we simulate UP and 8
processors SMP hardware environment.

Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05)
0-7695-2486-9/05 $20.00 © 2005 IEEE

 The evaluation is split in two parts . We evaluate the
performance of low-level primitives like thread creation
and context switching overhead first. Then ,we will
present preliminary results of our system on the
multiprogramming .

 The following Figure illustrates the cost of creating
and deleting a thread on the multithreading system in
kylin ,comparing with lib_r lthread library running on
FreeBSD and the linuxthread library which are also
supported by kylin .

0
0. 5

1
1. 5

2
2. 5

3

UP 4- SMP 8- SMP

l i nuxt hr ead

l i bc_r

kyt h

Figure 2. Cost of thread creation and delete

The LMbench benchmark forks a number of child
threads and then joins with them . The child thread
immediately returns . In each iteration the program
forks10 threads . This loop runs 100 times ,and then the
LMbench gets the average value of the cost .The figure is
drawn in logarithmic scale and show that the cost of
creating threads on kylin is much less than the costs of
performing the same opertations on linuxthread library ,
and is close to the cost on libc_r.

LinuxThreads implements process-based threading .
When the linuxthread library creats a new thread , a new
processes is created such that it shares the address space
of the existing process .So the cost of thread creation is
almost close to the cost of process creation .And all the
thread creations in the library will be controlled by one
thread named manage thread .There is another
performance bottleneck of this library. libc_r library
implements userland threading . Userland threads are
implemented entirely in an application program, with no
explicit support from the kernel. Its performance of thread
creation is certainly better than the performance of
linuxthread library.

 The kylin multithreading system implements M: N
model. When a process creates a new thread for the first
time , it will create several kernel threads once . The
default number is according to the degree of parallelism .
Then the process only creates userland thread after the
first time . The performance of this mechanism will be
close to the performance of userland threading when the
operate of creating thread is frequency . And with the
good garbage collection mechanism, our performance is
even better than the performance of libc_r library.

Figure 3,4and 5 show the cost of context switching on

different hardware . We use the LMbench which executes
several threads that pass the tokens in turns .The number
of threads is changed from 50 to 200 for simulating
different work load . There are also three implementations
compared, one with linuxthread library , one with libc_r
library and one with kyth library .

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6
wor k l oad

ti
me

l i bc_r (UP)
l i nuxt hr ead(UP)
kyt h(UP)

Figure 3. 50 threads

0

20

40

60

80

100

120

1 2 3 4 5 6
WORK LOAD

TI
ME

l i bc_r (4- SMP)
l i nuxt hr ead(4- SMP)
kyt h(4- SMP)

Figure 4. 100 threads

0

20

40

60

80

100

120

1 2 3 4 5 6
WORK LOAD

TI
ME

l i bc_r (8- SMP)
l i nuxt hr ead(8- SMP)
kyt h(8- SMP)

Figure 5. 200 threads

As the implement of userland threading ,the
performance of libc_r library gets very low with the heavy
load .The performance of process-based threading is
much higher than the former .

 The cost of kyth library is a bit higher than the other
two libraries at light work load, because the M:N thread
model increases more communication between kernel and
userland .The advantage of kyth is that its performance is
insensitive to work load ,its performance under heavy
work load is higher than libc_r library, and gets close to
linuxthread library.

 In the second part , we use SpecWeb benchmark to
test the performance of kyth thread library and

Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05)
0-7695-2486-9/05 $20.00 © 2005 IEEE

linuxthread thread library.Table.1 shows the result .

Table 1.
Multithreading menu w/o perl with perl
linuxpthread Bandwidth(b/s) 69393 17174.7
 Response time

(ms/op)
1743.2 7064.7

kyth Bandwidth(b/s) 176964 20723
 Response time

(ms/op)
678.5 5771

kyth’s speedup
ratio

Bandwidth +155.0% +20.7%

 Response time -61.1% -18.3%
remark 500 cons res.178,

res.179
res.191,
res.190

5. Conclusion

This paper has presented the implementation details of
multithreading in kylin operating system based on the
scheduler activations model . The goal of the
implementation was to provide fine-grain parallelization
and multiprogramming scalability at affordable runtime
costs. We implement a kernel mechanism that allows the
kernel and userland to support threaded processes and
communicate with each other effectively so that the
necessary information is available for both to do their jobs
efficiently and correctly. Measurements were taken that
demonstrate thread performance on our system. This
project continues to evolve, and the future goal is clear:
implementation of higher performance .

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy, “Scheduler Activations:
Effective Kernel Support for the User-Level Management of
Parallelism”, ACM Transactions on Computer Systems, Vol. 10,
No. 1, February 1992, Pages 53-79.

[2] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman, “The Design and Implimentation of the 4.4 BSD
Operating System”. Addison-Wesley, 1996.

[3] Paul Barton-Davis, Dylan McNamee, Raj Vaswani, and
Edward D. Lazowska, “Adding scheduler activations to Mach
3.0. Technical Report 3”, Department of Computer Science and
Engineering, University of Washington, August 1992.

[4]Brown and M. Seltzer, “Operating system benchmarking in
the wake of lmbench: A case study of the performance of
NetBSD on the Intel x86 architecture.”, Proceedings of the 1997
ACM SIGETRICS Conference on Measurement and Modeling
of Computer Systems, pages 214–224, 1997.

[5]Christopher Small and Margo Seltzer , “Scheduler activations
on BSD: Sharing thread management between kernel and
application. Technical Report 31”, Harvard University, 1995

[6]N. J. Williams , “An implementation of scheduler activations
on the netbsd operating system” , USENIX Annual Technical
Conference, 2002.

[7]T. Garfinkel , “Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools.” , Proceedings
of the Symposium on Network and Distributed Systems Security
(SNDSS), pages 163–176, February 2003.

[8]M.Haines, “On designing lightweight threads for substract
software ” , USENIX 1997 Annual Technical Conference .
Anaheim, CA ,pages 243-255 ,jan ,1997

[9] D. Craig, “An Integrated Kernel-Level and User-Level
Paradigm for Efficient Multiprogramming”, CSRD Technical
Report No. 1533, University of Illinois at Urbana-Champaign,
October 1998.

[10] Jason Evans, “Kernel-Scheduled Entities for FreeBSD”,
http://www.aims.net.au/chris/kse/docbook/

[11]W. Richard Sstevens ,Advanced Programming in the UNIX
Environment,Addison Wesley Publishing Company

[12] Steve Kleiman, Devang Shah, and Bart Smaalders,
Programming with Threads, SunSoft Press

Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05)
0-7695-2486-9/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

