
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 3, SEPTEMBER 1997 179

Design, Analysis, and Implementation
of a Telemedicine Remote Consultation
and Diagnosis Session Playback Using
Discrete Event System Specification

Pinkesh J. Shah,Student Member, IEEE,Ralph Martinez,Member, IEEE, and Bernard P. Zeigler,Fellow, IEEE

Abstract— Telemedicine remote consultation and diagnosis
(RCD) software is a complex and distributed system. RCD
allows physicians to collaborate on radiology or pathology cases
from distributed geographic locations. It is very important
to simplify design, construction, and maintenance of such a
system. Currently, object-oriented design methodology is used
to design and develop a software system in a modular fashion.
Object-oriented software is made of various objects that work
together. From the design of the software system, we get
information about object methods and inheritance. We also get
information about which objects are contained in a particular
object and which objects are used by another object. One
important element that the traditional object-oriented design
misses is time. We propose the use of discrete event system
specification (DEVS) in the design and analysis of a software
system, such as RCD. With DEVS, coupling between objects can
be specified explicitly and an object behavior can be shown in
time. We introduce DEVS, show the time-line analysis of Remote
Consultation and Diagnosis session playback using DEVS, and
then describe its implementation.

Index Terms—Discrete event systems, distributed informa-
tion systems, medical information systems, multimedia systems,
object-oriented methods, picture archiving and communication
systems, software design/development, telemedicine

I. INTRODUCTION

A DVANCES IN computer and communication technology
have made it possible to create a distributed telemedicine

system for remote consultation and diagnosis (RCD) [2], [6].
This system lets physicians from various geographic locations
collaborate on a particular radiology or pathology case. In
a consultation session, multiple media data, such as image,
text, annotation, and audio are exchanged. A consultation
session can be digitally recorded and played back at a later
time for education. The RCD system has been implemented
in the JAVA language [1]. The contemporary approach to
developing such a system is to use object-oriented analysis
and design methodology. Telemedicine RCD was designed and
developed using an object-oriented approach to system design
and programming. An object from an object-oriented design is

Manuscript received August 11, 1997; revised October 15, 1997.
The authors are with Electrical and Computer Engineering Department, Uni-

versity of Arizona, Tucson, AZ 85721 USA (e-mail: pinkesh@ece.arizona.edu;
martinez@ece.arizona.edu; zeigler@ece.arizona.edu).

Publisher Item Identifier S 1089-7771(97)09248-0.

usually implemented as a class in software, so we will use the
word object and class interchangeably. In the documentation
for the RCD, various class diagrams are provided. From these
class diagrams, we can get information about which class
is inherited from which class, what classes are used by a
particular class and what classes are contained in a particular
class. There is no time base involved in the description of
the objects. By looking at the design in the object-oriented
paradigm we have the following problems.

• One object is used by another, but in what way it is used
is not clear.

• By looking at the diagram, one cannot get any information
about the flow of events (method invocations) in time.

• No explicit coupling in terms of recognized input and
output is specified between objects.

• Hierarchy of classes is specified, but this hierarchy in-
volves only information about specialization. It does not
have elements of decomposition and coupling in it.

An object model in DEVS formalism operates on a time
basis [10]. Each object has a recognized set of input ports
and output ports through which it communicates with the
external environment. A system model can be constructed by
coupling its component objects in a hierarchical fashion. Time-
line analysis of an object model shows how an object behaves
in a system with respect to time. By this we mean that it is
possible to see the exact behavior of an object using a graph.
With the time-line analysis information, we know exactly how
an object will react to a discrete event.

Recorded RCD sessions can be played back using a JAVA-
enabled Web browser or using stand-alone RCD software. In
this paper, we describe the browser version of the RCD session
playback. We use time base in the analysis of the objects
that are developed for the RCD playback. Various events take
place and multimedia data is transferred across the network
during the playback, so a time-line analysis can give a lot
more information than otherwise available. In this paper, first
we describe the telemedicine RCD software and then we give a
brief introduction to DEVS. In Section IV, we show time-line
analysis of the objects involved in the RCD session playback.
Section V is devoted to the description of the implementation
of the playback.

1089–7771/97$10.00 1997 IEEE

180 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 3, SEPTEMBER 1997

II. REMOTE CONSULTATION AND DIAGNOSIS SOFTWARE

The remote consultation and diagnosis system [1] is a
collaborative telemedicine system for remote radiology and
pathology consultations. It allows physicians to access patient
information from distributed databases. Patient information
can be history, textual diagnosis, pathology images, radiology
images, and voice diagnosis. Physicians can do diagnosis alone
or can consult with other physicians by joining in a multiparty
consultation session.

When multiple physicians are in a session, they all see the
same patient information. All the images on the screen and its
layout are the same. Each physician has the ability to annotate
images using rectangle, circle, or free-hand annotations. When
an RCD session is going on, multimedia data consisting of
text, image, and annotation is exchanged to all the physicians’
workstations in real time. RCD is designed using object-
oriented design and analysis methodology and is implemented
in JAVA language. Playback of a RCD session is designed
using DEVS, which is the topic of this paper. RCD uses tool
kits for GUI, threads, I/O, image processing, and networking,
which are a part of the JAVA development kit [15].

RCD is a part of the Global Picture Archiving and Commu-
nication System (GPACS) [2], [6]. Physicians collaborating
in a session can be located anywhere using heterogeneous
machines. Communication among different places is achieved
using the Internet. To provide this kind of features, RCD has
six major components.

1) Client RCD used by physicians.
2) Communication server to support multiparty group RCD

consultation session.
3) Web Server to provide access to RCD from a Web

browser and to transport patient data.
4) Database Server to do management of patient data at

each site of the global network.
5) Record a multimedia RCD session.
6) Playback of recorded RCD session using a Web browser

or in stand-alone mode.

Playback of a previously recorded RCD session is an
important functionality of the RCD system. This functionality
allows digital recording of all the annotation commands and
audio during a consultation session. Later on, these recordings
can be retrieved and played in the RCD software or in a Web
browser. Various objects collaborate to make the playback
happen. Specially with real-time multimedia data, timing is
extremely important. RCD is a dynamic system, where various
discrete events occur at different times, and the RCD system
responds to those events. Some events, such as playback of
audio and annotation commands, occur at a fixed time interval;
other event, such as user interaction can occur at any time.

III. D ISCRETE EVENT SYSTEM SPECIFICATION (DEVS)

In DEVS, an object can be specified mathematically; it
is called a system. A system has time base, inputs, states,
outputs, and functions to determine output/state [9]. An object
model that cannot be decomposed any further is called an
atomic model. Input in a discrete event system can occur at an
arbitrary time. An event is a change in a variable value that

Fig. 1. Abstract atomic model.

occurs instantaneously. The DEVS formalism defines how to
generate new values for variables using the functions specified
in the model and at what time those values will take effect.
External events appear at the input port of an object model. The
model description should be able to respond to the occurrence
of an external event at its input port. Internal events arise
within the model, they change the model’s state and may create
an output. If an output is generated, it will appear as an event
at the output ports of the model which is then transmitted to
the other model components through the coupling definition.

An atomic model in DEVS formalism is defined by the
following structure:

Each of the above elements are defined as follows:

atomic model;
set of external input event types;
set of sequential states for a model
external event types generated as output;
internal transition function dictating state transitions,
due to internal events inside the model;
external transition function dictating state transitions,
due to external input events
output function generating external events as outputs;
time advance function indicating the time the system
is allowed to stay in a state if no external event occurs.

Fig. 1 shows an abstract atomic model, which has the
following information associated with it.

• Set of input ports through which external events outside
of the model are received.

• Set of output ports through which events generated by the
model are sent as external events.

• Set of state variables and parameters. Variables are values
that changes often, parameters are values that are set
occasionally. Three variables are usually present:

phase: The current state of the model;phase
sigma: Specifies how much time the model stays in the

current phase if no external events occur at the input ports
of this model;sigma

elapsed time : The time passed in the currentphase;

• The time advance function that controls the timing of
internal transitions. The time advance function returns a
value that tells how much time should pass from the last
event for this model for the next internal transition to
occur if there are no external events. Value returned by
the time advance function can be anywhere from 0 to

SHAH et al.: TELEMEDICINE REMOTE CONSULTATION AND DIAGNOSIS SESSION PLAYBACK 181

Fig. 2. Time-line analysis of simple processor.

on the real axis. Its value depends only on the current
state. Mathematically it is described as:

• The internal transition function that causes a system to
change its state internally after units of
time has elapsed, provided no external event has been
received during When an internal transition occurs,
elapsed time is set to zero because you just entered a new
state and you haven’t spent any time in that state yet.
Mathematically it is described as:

• The external transition function that specifies how a
system changes state when an input is received at its
input port. This puts the system into a newphaseand
sigma, scheduling it for the next internal transition. The
next state is computed by using the value of the current
state of the system, time elapsed in the current state, input
port, and the value of the external event. More formally,
when an event is received by the system which has
been in the state for an elapsed time
it will go into another state instantaneously. Also,
because thephaseis changed, elapsed time is initialized
to 0. Mathematically it is described as:

• The output function that generates an external output at
particular ports of the model. Output is generated just
before an internal transition takes place. Mathematically
it is described as: .

A. Time-Line Analysis

Fig. 2 shows the behavior of a simple processor by using the
time-line analysis. The axis has job (external input event),
phase, sigma, output, and elapsed time. Theaxis is a time
line. Now we consider two scenarios.

• When job J1 comes in from the outside on port “in,” the
processor is passive, so it gets busy and starts processing.
This can be seen by the change in phase to “busy” and
value of sigma equal to processing_time. After sigma time
units have elapsed, phase goes back to “passive,” elapsed
time to 0, sigma to “infinity,” and an output is generated
on port “out.”

• When job J2 arrives, the processor is passive; it gets
busy processing the job. Now job J3 arrives at port
“in” before the processor is finished with job J2. So
“continue” is executed. The effect of this is to reduce

TABLE I
WEBSERVER OBJECT EVENTS AND PHASES

sigma by elapsed time, reset elapsed time, and keep phase
unchanged. After the new sigma time units have elapsed,
the output is generated from job J2 and the processor
becomes “passive” again. J3 is ignored.

By doing the analysis with the time element involved in it,
it is possible to see the exact behavior of an object in time.

B. Coupled Models

A coupled model tells how several atomic models can be
connected to create a new model. This new coupled model
can later be used as a component of another coupled model,
thus allowing hierarchical construction of models. A coupled
model has a set of input ports through which external events
are received and a set of output ports through which external
events are sent out. An external input coupling specifies how
input ports of the coupled model are connected to the input
port of its components. An external output coupling specifies
how the output ports of its components are connected to the
coupled model output ports. An internal coupling specifies
coupling between its components. It tells how the output ports
of a component model are connected to the input ports of
other component models. A multicomponent coupled model
can be expressed as an equivalent basic model that can be
used as a component in another coupled model. This shows
that the formalism is closed under coupling, as required for
hierarchical model construction.

IV. A NALYSIS AND DESIGN OFRCD SESSIONPLAYBACK

A. Time-Line Analysis

During a playback, image, annotation, and audio of a
consultation session is presented to a user synchronized in
time. In this section, we show, using a time line, the behavior
of the objects (which are atomic models) that are involved in
the playback.

1) WebServer:This object receives requests for informa-
tion. It waits for requests; when requests are received they
are serviced. Table I shows the numbers for different external
input events, phases, and outputs, which are used to describe
the behavior of this object.

Fig. 3 shows that, initially, the WebServer is passive when
waiting for a client request. When a request is received (event
0), it goes to the Sending phase. At the end of the Sending
phase, it sends data to the output port (output 0). When it is
in the Sending state (phase 1) and more events occur, they are
buffered. So after the end of phase 1, it goes back to phase
1 to finish the pending requests. When no requests are left, it
becomes passive.

2) RcdPlayback:This object is the main playback object.
It tells the RCD and Control object to display themselves.

182 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 3, SEPTEMBER 1997

Fig. 3. Time-line analysis of WebServer.

Fig. 4. Time-line analysis of RcdPlayback.

Fig. 5. Time-line analysis of Control.

When it receives user selection at its input, it passes it to the
output port. Table II shows the numbers for different external
input events, phases, and outputs, which are used to describe
the behavior of this object.

At initialization, as shown in Fig. 4, this object is in the
Display phase. At the end of sigma for the Display phase,
it outputs event 0 and 1, which tells the Control and RCD
object to display themselves; then it becomes passive. When
user_selection (event 0) is received, it goes to phase 2; at
the end of that phase, it outputs user_selection (output 2).
While in phase 2, if more user_selections are received, they
are buffered, and this object continues to stay in phase 2 and
generates outputs (event 2). When no buffered events are left,
it becomes passive.

3) Control: This object displays listboxes for a case selec-
tion. User clicks on the Graphical User Interface are sent out
to the output port. Table III shows the numbers for different

TABLE II
RCDPLAYBACK OBJECT EVENTS AND PHASES

TABLE III
CONTROL OBJECT EVENTS AND PHASES

TABLE IV
AUDIOCLIP OBJECT EVENTS AND PHASES

external input events, phases, and outputs, which are used to
describe the behavior of this object. Fig. 5 shows the time-line
analysis for Control.

Initially, Control is in the Passive phase. When it is told
to display itself (event 1), it processes the event in the phase
Show_GUI. The output is to show its GUI components on the
screen (output 0). It becomes passive after that. When a user
clicks (event 0) on a GUI component, it is processed in the
phase User_click and the output generated is sent out. When
multiple events 0 occur while in the User_click state (phase
2), they are buffered and processed sequentially until none are
left. As can be seen in the analysis, when Control is done with
phase 2, it goes back to phase 2 to process the saved requests.
After that it becomes passive.

4) AudioClip: This object reads a particular audio file and
continuously generates audio packets until either it is told to
stop or the end of file is reached. Table IV shows the numbers
for different external input events, phases, and outputs, which
are used to describe the behavior of this object. Fig. 6 shows
the time-line analysis for AudioClip.

AudioClip is initialized in the Passive phase. When the
external event 2, Load_file is received, it goes to phase 1
(Load_file) and reads the file. After that it becomes passive
again. When Start is received (event 0), it goes to phase
Playing and outputs audio packets (output 0) at a continuous
interval of time. It stays in phase Playing until Stop (event 1)
is received. It becomes passive (phase 0) after receiving Stop
(event 1). While it is in phase Playing (phase 2) and Stop
(event 1) is received at the input, if elapsed_time is not equal

SHAH et al.: TELEMEDICINE REMOTE CONSULTATION AND DIAGNOSIS SESSION PLAYBACK 183

Fig. 6. Time-line analysis of AudioClip.

Fig. 7. Time-line analysis of RCD, External event stop received.

Fig. 8. Time-line analysis of ImageFrame.

to sigma, the output packet is not created and it goes to the
Passive phase.

5) RCD: This object receives output from the RcdPlayback
object as its input events and responds by sending output
to AudioClip, WebServer, and Network object. It reads the
saved playback file over a data network and tells other objects
to display the recorded information (image, annotation, and
audio) so that the presentation is synchronized for all the
media. Table V shows the numbers for different external input
events, phases, and outputs, which are used to describe the
behavior of this object.

In Fig. 7, RCD starts in the Passive phase. A state variable
is kept to indicate whether audio is playing or not. When the
external event 0 asking to play a file is received, it goes into the
phase Reading_file (phase 2). After the file is read, a request
is sent to the WebServer for multimedia data, and it changes
to phase Playing in the internal transition function. At the end
of the first Playing phase, start audio (output 0) is created.
If an audio is already playing, it is stopped automatically by

Fig. 9. Time-line analysis of Network.

TABLE V
RCD OBJECT EVENTS AND PHASES

TABLE VI
IMAGEFRAME OBJECT EVENTS AND PHASES

checking the state variable so that the new one can be played.
Sigma for phase Playing is based on the time that is read from
the recorded file. This Sigma represents gaps between different
annotations. At different times, the duration for phase 1 is
different; at the end of each duration, annotation (output 1)
is sent out. When Stop (event 1) is received while in Playing
phase, RCD simply goes to phase Passive.

6) ImageFrame:This object is responsible for displaying
the diagnostic images on the screen. It also receives an-
notation commands and displays them appropriately on the
image. Table VI shows the numbers for different external input
events, phases, and outputs, which are used to describe the
behavior of this object. Fig. 8 shows the time-line analysis for
the ImageFrame.

When this object receives the Draw_image event (event 0)
at its input, it changes phase to the Get_image and retrieves a
big image and draws it on the screen (output 0). If it receives
another event 0, while in phase 1, it starts again in phase 1
with a new request for the required time, and the old request
is lost. After the image is drawn on the screen (output 0),
it becomes passive. When the Draw_annotation command is
received, it processes it in phase 2, and draws the annotation
on the screen (output 1) and becomes passive.

7) Network: This object deals with sending and receiving
information over a data network. In playback, it receives infor-
mation from the RCD object and sends it to the ImageFrame
object. The information transferred are control and annotation

184 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 3, SEPTEMBER 1997

Fig. 10. Coupled model for Playback.

TABLE VII
NETWORK OBJECT EVENTS AND PHASES

commands. Table VII shows the numbers for different external
input events, phases, and outputs, which are used to describe
the behavior of this object. Fig. 9 shows the time-line analysis
for the Network.

Initially, this object is in the Passive state. When an event
to send the information is received at its input port, it goes to
phase Sending and outputs the information (output 0). When
it is in either the Sending or Receiving state (phase 1 or 2) and
receives more events to send or receive information (event 0
or 1), they are all buffered in a queue and it stays in the same
phase. At the end of phase 2, it generates output 1 and stays
in phase 2 to process more buffered requests. When done with
all the requests, it goes to (phase 0) the Passive phase. Queued
requests are checked in the internal transition function. If the
queue to send or receive is not empty, it continues in phase 1
or 2, otherwise it becomes passive.

B. Coupled Model for RCD Playback

As explained in Section III-B, we can make a coupled
model from atomic models to construct the total system.
Fig. 10 shows the RCD playback coupled model. Notation
“Playback,userin Control,usel” means that events from the
userin port of Playback model goes to the usel port of Control.
In Fig. 10, an arrow going into a model and out of a model
means input and output port, respectively.

All the external and internal couplings are as follows.

External input coupling :
Playback,userin Control,usel
External output coupling:
AudioClip,aout Playback,spk
ImageFrame,disp Playback,display
Control,gui Playback,display
Internal coupling :
Control,userout RcdPlayback,userin
RcdPlayback,userch RCD,us
RCD,userreq WebServer,dreq
RCD,audio AudioClip,actl
RCD,annot Network,annotin
WebServer,Image ImageFrame,Image
WebServer,annot RCD,annot
WebServer,audio AudioClip,ain
Network,annotout ImageFrame,annot
AudioClip,areq WebServer,areq
RcdPlayback,dis Control,dis

V. IMPLEMENTATION

Each DEVS atomic and coupled model is implemented as a
class. Incoming events can be thought of as a method invoked
on a class; the return value of a method can be considered as
an output from an object. State variables of an object are class
variables. Atomic model classes are contained in a coupled
model class to create the total system.

A. Overall System Architecture

Fig. 11 shows the overall architecture of the playback
system. The overall architecture consists of a Web browser
as a client and a HTTP server running across a local or wide
area network. A request from a client is fulfilled by the server
by sending the appropriate data. JAVA applet and classes are

SHAH et al.: TELEMEDICINE REMOTE CONSULTATION AND DIAGNOSIS SESSION PLAYBACK 185

Fig. 11. Overall system architecture.

Fig. 12. Playback selection control flow.

downloaded from the server and then executed in the browser.
Because all the processing is done locally in the user’s machine
after byte codes are downloaded, this architecture is scaleable.
After the applet is displayed, the control flow for viewing the
playback cases is shown in Fig. 12.

When a case is selected, information about that case is re-
trieved from the server. After information is retrieved, images
are displayed and a playback session starts. The Stop button
can be pressed to stop the currently playing case. If nothing
is pressed, the case is played until it finishes. When a new
case is selected before the current playing case is finished,
the currently playing case is stopped. Then a request for
information about the new case is sent to the server. When
data is received about the new case, playback is started on
the new case.

B. Data Flow for Playback

Fig. 13 shows how different media and data types flow
into the whole system. Data types involved are control data,
case selection data, annotation data, audio, images, and image
movement data. When a case is selected, control information
about the case selection is sent to the server. The server
responds by looking up the data for that particular case and
then by sending the data back. The following is a description
of how the various data types are handled by different classes
of the software.

• Audio: It goes from the server to AudioClip over the data
network. AudioClip plays the audio. Audio is controlled
from the RCD class.

• Images: Once a request is sent, the RCD delegates work
to retrieve images to the ImageFrame class, which is
responsible for local display of images on the client
side. Image traffic goes from the server through the data
network and directly to the ImageFrame class.

• Control and Annotation: These data travels from the
server through the data network to the RCD and then to
the Network class. From the Network class, it pipelines
to the ImageFrame class as shown in Fig. 13.

The ImageFrame class responds to image movement, anno-
tation, and other control commands that it receives from the
Network class. By transferring image directly to the class that
deals with it, a lot of unnecessary data movement inside the
client is avoided. Due to the large memory requirements of the
images, this design reduces overhead by avoiding unnecessary
copying of data within the client and makes the client system
more efficient.

C. Multimedia Synchronization in RCD Playback

RCD playback involves different types of data. During
playback, synchronization among these data types is essential
to provide real-life playback experience [4]. In playback, we
are dealing with two types of data. The first one is control and
annotation data and the second is voice. Voice is recorded in
a -law format. Audio is isochronous data because it requires
a constant data rate. Once you play one packet of audio, the
other has to be played after a fixed amount of time determined
by the sampling rate. All these data need is to be accessed
from the WebServer, as shown in Fig. 13, through the data
network. Since we are using TCP/IP Internet to transfer our
data, there is no guaranteed quality of service (QoS) available
for our data. Thus, we have to deal with the network delay
and network jitter in the playback system.

In playback, network delay can be dealt with by delaying the
start of the playback. This is the scheme used in our playback.
Network jitter can be dealt with by buffering some packets so
that if some packets are delayed more, there are still packets to
play from the buffer before the next packet arrives. Annotation
data and voice is saved in separate files, so they are retrieved
separately. They also have a separate travel path, as shown in
Fig. 13. Synchronization is done at the client site so that you
don’t have to worry about different delays and jitter in audio
and annotation commands. Three different classes running in
different threads interact to do synchronization. The RCD class
receives image annotation commands over the network from
server. A pipeline is created between the RCD class and the
Network class. The Network class thread waits for annotation
commands from the pipeline, and when it receives it, it calls
appropriate methods of the ImageFrame class.

The annotation file that RCD receives contains the time-
stamp information. This information is relative to the begin-
ning of the session. Both voice and image annotation refers to
the same starting point. When voice and annotation are started
together in different threads, the RCD thread checks the time-
stamp information for annotation from the starting point. It
sleeps for whatever time is required to synchronize annotation
command to voice; then it sends commands to the Network

186 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 3, SEPTEMBER 1997

Fig. 13. Multimedia data flow between objects.

Fig. 14. RCD playback cases description page.

class through the pipeline. So, voice is played continuously,
and image annotations are shown at discrete times.

D. RCD Playback GUI

In this section, an actual view of the RCD playback screens
is shown. Fig. 14 shows the picture of the main web page
as it looks in the browser. This page has descriptions about

different cases. The link is provided from each description to
the web page with the applet that does the playback. An actual
display of a playback screen is shown in Fig. 15.

VI. RESULTS

We applied DEVS formalism to identify RCD playback
atomic models. In Section IV-A, DEVS time-line analysis is

SHAH et al.: TELEMEDICINE REMOTE CONSULTATION AND DIAGNOSIS SESSION PLAYBACK 187

Fig. 15. Playback of a case in a browser.

used to design and analyze the behavior of the models. We
used the DEVS coupled model specification to create a coupled
model of the RCD playback in Section IV-B. The RCD play-
back classes were implemented using the time-line analysis
and the coupled model information. The RCD coupled model
defined method invocations or output messages based on user,
recorded, or internal events. For example, when an annotation
event is received by RCD class, it knows how much time
to wait before sending the “Annotation_commands” output
to the Network class, so that the annotation is synchronized
with audio. As described in Section V, the RCD playback
JAVA applet was implemented using DEVS-based design and
analysis.

VII. SUMMARY AND CONCLUSION

RCD is an important part of a telemedicine system. You
can use it for local as well as remote diagnosis. By integrating
the multimedia playback part to the current RCD, we have
provided an important learning tool. Separate tutorials or
previous consultation sessions can be made available for
learning at anytime and any place where a computer and an
Internet connection is available. Using DEVS, we are able
to incorporate time in the design and analysis of distributed
multimedia system, such as RCD, which is not possible using
traditional object-oriented methodology. Time-line analysis
and a coupled model define how a system responds to an

188 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 3, SEPTEMBER 1997

event, and they also guide us in developing algorithms to
implement the system. Behavior of the system is fully known
before the implementation by using DEVS methodology. The
DEVS approach reduces implementation, testing, and debug
time in the software development cycle. The DEVS design
and analysis should be an important part of the development
process for distributed telemedicine systems like RCD.

REFERENCES

[1] Y. Yu, “Object oriented remote consultation and diagnosis in global
PACS using multi-threaded JAVA,” Ph.D. dissertation, University of
Arizona, Tucson, 1996.

[2] R. Martinez, J. Kim, J. Nam, and B. Sutaria, “Remote consultation and
diagnosis in a global PACS environment,”Proc. SPIE Medical Imaging
IV Conf., vol. 1899, pp. 296–307, 1993.

[3] R. Martinez, B. Sutaria, and F. Pardede, “A distributed file management
system for remote consultation and diagnosis in global PACS,”Proc.
SPIE Medical Imaging Conf., vol. 2165, Feb. 1994.

[4] R. Martinez, W. J. Chimiak, J. Kim, and F. Pardede, “Synchronized
voice and image annotation in remote consultation and diagnosis for the
global PACS,”Proc. SPIE Medical Imaging Conf., vol. 2165, pp. 9–20,
Feb. 1994.

[5] R. Martinez, W. J. Chimiak, J. Kim, and Y. Alsafadi, “The rural
and global medical informatics consortium and network for radiology
services,”J. Comput. Biol. Med., vol. 25, no. 2, pp. 85–106, Mar. 1995.

[6] R. Martinez et al., “Design of multimedia global PACS distributed
computing environment,” inProc. Twenty-Eighth Hawaii Int. Conf.
System Sciences, vol. 3, pp. 461–469, 1995.

[7] R. Martinez, Y. Alsafadi, and J. Kim, “OSF distributed computing
environment for multimedia telemedicine services in global PACS,”
Proc. SPIE Medical Imaging Conf.vol. 2435, 1995.

[8] R. Martinez and S. L. Hsieh, “Design of multimedia global PACS
CORBA environment,” inProc. IFIP/IEEE Int. Conf. Distributed Plat-
forms, 1996, pp. 201–212.

[9] B. P. Zeigler, Multifaceted Modeling and Discrete Event Simulation.
Orlando, FL: Academic, 1984.

[10] , Theory of Modeling and Simulation. Malabar, FL: Krieger,
1985.

[11] , Objects and Systems: Principled Design with Implementations
in C++/JAVA. New York: Springer-Verlag, 1997.

[12] G. Booch,Object-Oriented Analysis and Design with Applications, 2nd
ed. Reading, MA: Addison-Wesley, 1994.

[13] W. J. Chimiak, “The digital radiology environment,”IEEE J. Select.
Areas. Commun., vol. 10, pp. 1133–44, Sept. 1992.

[14] B. Meyer and J. Nerson,Object Oriented Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[15] See http://java.sun.com:80/products/jdk/1.0.2/api/.

Pinkesh J. Shah(S’97) received the B.S. degree
(summa cum laude) in electrical engineering from
the New Jersey Institute of Technology, Newark, in
1989 and the M.S. degree in electrical engineering
from Columbia University, New York, NY, in
1992. He is a Ph.D. candidate in the Electrical and
Computer Engineering Department at the University
of Arizona, Tucson.

He worked on various software engineering
projects from 1989 to 1994 at IBM. He worked on
telecommunications anti-fraud software and mobile

data health-care applications at Bellcore during summer 1995 and spring 1996.
His current research interests are distributed multimedia systems, telemedicine
systems, computer networking, and telecommunications.

Mr. Shah is a member of ACM, Tau Beta Pi, Eta Kappa Nu, and Omicron
Delta Kappa.

Ralph Martinez (M’84) is an Associate Professor
in the Electrical and Computer Engineering Depart-
ment with joint appointments in the Radiology and
Biomedical Engineering Departments, University of
Arizona, Tucson. He has been at the University
of Arizona since 1982. Before then, he spent 14
years in industry as a researcher in computer system
design and applications, specializing in distributed
processing architectures and Internet gateways for
computer networks. At the Naval Ocean Systems
Center (1974–1979), he was responsible for applica-

tions of new VLSI devices to naval systems. At General Dynamics Electronics
Division (1979–1982), he was the System Architect for the design of the
Global Positioning System, Phase II, and was branch head for an R&D group
in local area network protocol development and applications to new business
areas. Since joining the Electrical and Computer Engineering Department,
he has been involved in research in interoperable global information sys-
tems, internetworking, picture archiving and communications systems, and
multimedia telemedicine systems.

Bernard P. Zeigler (SM’87–F’94) received the B.
Eng. Phys. degree from McGill University, Mon-
treal, P.Q., Canada, in 1962, the M.S.E.E. degree
from the Massachusetts Institute of Technology,
Cambridge, in 1964, and the Ph. D. degree from
the University of Michigan, Ann Arbor, in 1968.

He is Professor of Electrical and Computer En-
gineering at the University of Arizona, Tucson.
He has published over 200 journal and conference
articles in modeling and simulation, knowledge-
based systems and high autonomy systems. He has

also published several books. He is currently heading a multidisciplinary team
to demonstrate an innovative approach to massively parallel simulation of
large scale ecosystem models within NSF’s HPCC Grand Challenge initiative.
He is also sponsored by Rome Laboratory to research the use of such high-
performance simulation technology in support of optimization and model
abstraction. In April 1996, he started as a co-principal investigator in a major
contract with the USAF Armstrong Lab Logistics Research Group to develop
a simulation-based, group collaborative, business reengineering environment.

Dr. Zeigler served on a National Research Council committee to suggest
directions for information technology in the 21st Century U.S. Army in 1995,
and is currently a member of an NRC committee given a similar task by the
U.S. Navy, focusing on modelling and simulation. He is currently editor-in-
chief of the Transactions of The Society for Computer Simulation. He was
elected as Fellow of the IEEE for his innovative work in discrete event
modeling theory.

