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Edit distance-based kernel functions for structural pattern classification
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Abstract

A common approach in structural pattern classification is to define a dissimilarity measure on patterns and apply a distance-based
nearest-neighbor classifier. In this paper, we introduce an alternative method for classification using kernel functions based on edit distance.
The proposed approach is applicable to both string and graph representations of patterns. By means of the kernel functions introduced in
this paper, string and graph classification can be performed in an implicit vector space using powerful statistical algorithms. The validity
of the kernel method cannot be established for edit distance in general. However, by evaluating theoretical criteria we show that the
kernel functions are nevertheless suitable for classification, and experiments on various string and graph datasets clearly demonstrate that
nearest-neighbor classifiers can be outperformed by support vector machines using the proposed kernel functions.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, a number of pattern recognition prob-
lems have successfully been addressed by string and graph
matching methods [1–3]. In particular, when the class char-
acteristics are mainly given in terms of structure, strings and
attributed graphs are often more adequate for pattern repre-
sentation than feature vectors. Exact matching procedures,
such as methods for graph isomorphism, maximum common
subgraph, or the longest common subsequence [4–6], are
one way to accomplish structural pattern matching. Although
these methods are often mathematically sound in their defi-
nition, they require the underlying pattern representation to
be very tolerant against noise. For pattern classification prob-
lems with non-compact and overlapping classes it is often
difficult to come up with such robust representations. It is
generally more convenient in such cases to address the clas-
sification problem with error-tolerant matching procedures.
A popular class of error-tolerant matching methods for both
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strings and graphs is based on the edit distance [7–9]. The
edit distance is a dissimilarity measure on patterns defined
in terms of structural distortions. It allows us to compute dis-
tances between strings and attributed graphs in an intuitive
manner. For the classification, however, one usually has to
rely on simple nearest-neighbor-based classifiers.

In order to overcome the limitations imposed by being
able to compute distances of patterns only, we propose to
apply kernel functions to structural patterns. Kernel meth-
ods have seen an increasing amount of interest in the pattern
recognition community in recent years [10–12]. On the one
hand, the theory of kernel methods is well studied and pro-
vides us with a number of convenient results applicable to
practical problems [13,14]. On the other hand, for statistical
patterns, kernel machines have been successful in outper-
forming other types of classifiers on standard datasets. Even
more relevant to the present paper is that they also allow
for an elegant extension of classic pattern recognition algo-
rithms to more complex problems and non-vectorial patterns.
In the context of the present paper, this means that kernel
functions allow us to apply powerful algorithms from statis-
tical pattern recognition to the domain of strings and graphs.
We are thus no longer constrained to nearest-neighbor clas-
sifiers for structural pattern recognition.
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With the rise of kernel machines in pattern recognition, a
number of structural kernels for strings and graphs have been
developed. A kernel for text categorization, for instance, en-
coding the number of occurrences of words in texts [15] has
been proposed. In another approach, a kernel on string and
graph data has been developed that basically describes struc-
tures by means of the substructures they contain [16,17].
Another class of kernel functions defined on graphs are
marginalized kernels [18,19], which are derived from ran-
dom walks on attributed graphs. Recently, a kernel function
based on the Schur–Hadamard inner product of attributed
graphs has successfully been applied to error-tolerant graph
matching [20]. These methods differ from our approach in
that they explicitly address the problem of matching string
and graph structures. In the proposed method, we leave the
structural matching to the error-tolerant edit distance algo-
rithm and use kernel machines to finally carry out the clas-
sification.

This paper is organized as follows. In Section 2, the con-
cept of string and graph edit distance is introduced. Section 3
briefly reviews kernel methods in the context of pattern
recognition, and in Section 4 the proposed kernel functions
are described. We then proceed by presenting the evalu-
ated datasets in Section 5 and give experimental results in
Section 6. In Section 7, we offer a few concluding remarks.
The present paper generalizes the method proposed in Ref.
[21] to strings and graphs and provides a more detailed
theoretical analysis and significantly extended experimental
results.

2. String and graph edit distance

A key step in structural pattern recognition is the repre-
sentation of patterns by a string or graph data structure. The
structural representation should provide for a description of
characteristic properties of patterns in view of the considered
classification task. The classification problem can then be
addressed in the corresponding string or graph space without
recourse to the original pattern space [1–3]. The process of
comparing strings or graphs is generally referred to as string
matching or graph matching. To perform such a structural
matching, various formalisms have been proposed, ranging
from exact matching to error-tolerant methods based on con-
tinuous optimization, quadratic programming, and spectral
decomposition of graph matrices [22–25]. One of the most
common dissimilarity measures for structural patterns, in the
context of classification, is based on the intuitive concept of
edit distance [7–9], which has successfully been applied to
various real-world problems such as handwritten text recog-
nition [26], shape recognition [27], and fingerprint verifica-
tion [28]. Edit distance requires the definition of a number
of structural edit operations that are used to model varia-
tions between patterns. The edit distance of two patterns
can then be derived from the best model of their structural
difference.

More formally, let us assume that an alphabet V of sym-
bols is given. A string t over V is defined as an ordered
sequence of symbols from V of finite length, that is,

t = t1 . . . tn ∈ V ∗ =
∞⋃

i=0

V i where V 0 = {�} and n�0.

Here � is the empty string, V i is the set of strings of length
i over V and V ∗ denotes the set of all finite sequences of
symbols from V. Although a string alphabet may generally
contain symbols of any kind, it is often assumed in practice
that the underlying alphabet is either a finite set of symbolic
characters or a vector space of a fixed dimension. We con-
tinue by introducing the notion of edit operations to model
string distortions. A standard set of string edit operations
consists of an insertion operation � → q, inserting a sym-
bol q into a string, a deletion operation p → �, removing a
symbol p from a string, and a substitution operation p → q,
replacing symbol p in a string with symbol q. For certain
applications, of course, it is more appropriate to use more
complex edit operations, taking more than just one or two
symbols into account. By successively applying edit oper-
ations it is possible to transform any string into any other
string. A sequence of edit operations transforming string t
into t ′ is termed as edit path from t to t ′, and e(t, t ′) denotes
the set of all edit paths from t to t ′. To measure the impact
of an edit operation on the structure representing a pattern,
we define a function c that assigns a non-negative edit cost
c(w) ∈ R+ ∪ {0} to each edit operation w. The key idea is
that the strength of an edit operation is reflected in its cost,
such that low costs correspond to weak operations and high
costs to strong operations. The cost of an edit path can then
be determined by the sum of its individual edit operation
costs. To finally obtain a dissimilarity measure on strings,
we define the string edit distance d(t, t ′) of two strings t and
t ′, given edit cost function c, by the minimum cost required
to edit t into t ′,

d(t, t ′) = min
(w1,...,wk)

∈e(t,t ′)

k∑

i=1

c(wi).

Small edit distance values indicate that only a few weak
edit operations are needed to model the structural difference
of the two strings, while a high edit distance means that a
number of strong distortions of the underlying edit operation
model have to be applied to edit the first into the second
string.

For the case of graph matching, graph edit distance is
defined in analogy to string edit distance. Graph data struc-
tures allow for a more powerful representation than strings.
Graphs consist of nodes and (directed or undirected) edges
connecting two nodes. For attributed graphs, nodes and
edges may additionally be provided with attributes. While a
string can be seen as an ordered sequence of feature vectors
(represented by symbols), a graph can similarly be regarded
as a set of feature vectors (represented by nodes), augmented
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with attributed relations between them (represented by
edges). The string edit operation and edit path concepts
can directly be extended to the graph domain. The standard
set of graph edit operations consists of a node insertion,
a node deletion, a node substitution, an edge insertion, an
edge deletion, and an edge substitution operation. A node
substitution u → v, for instance, replaces node u in a graph
with node v, and an edge insertion � → (p, q) inserts an
edge connecting node p with node q into the graph under
consideration. Given an edit cost function, the graph edit
distance of two graphs is defined completely analogously
to the string edit distance, that is, by the minimum cost edit
path turning one graph into the other.

The string edit distance computation can be carried out by
means of an efficient dynamic programming algorithm [7].
The computational complexity of an edit distance computa-
tion of two strings is proportional to the product of the length
of the two strings. Hence also for large strings, the edit dis-
tance approach is generally feasible. For attributed graphs,
however, the computational complexity is exponential in the
number of nodes of the graphs. In practice, the graph edit
distance can therefore be computed for small graphs only,
typically with no more than about 10 nodes. In our experi-
ments, we resort to an approximate edit distance algorithm
that has proved both sufficiently accurate and computation-
ally efficient on a number of datasets [29].

3. Kernel methods in pattern recognition

In recent years, insights from statistical learning theory
[13,14] spawned the application of a whole range of novel
algorithms for various pattern recognition tasks. A key result
of statistical learning theory is that there exists an elegant
solution to the problem of transforming a pattern recogni-
tion problem from a low-dimensional to a high-dimensional
feature space. If two classes of patterns in a vector space
are linearly separable, it is always possible to find an opti-
mal separating hyperplane based on a training set. In cases
where the condition of linear separability is not satisfied,
Cover’s theorem [30] may serve as a motivation to transform
the data into another space before classification. The theo-
rem states that a complex pattern classification problem cast
non-linearly into a high-dimensional space is more likely to
be linearly separable than in the original low-dimensional
space. Fortunately for a large number of linear algorithms,
it is not necessary to explicitly carry out the possibly com-
putationally inefficient transformation.

Formally, let X denote the original pattern space and k :
X × X → R be a function mapping pairs of patterns to
real numbers. If the function k satisfies the condition of
positive definiteness [31], there exists a vector space H and
a mapping from X into H such that k acts as a dot product
in H [14]. That is, if we denote the mapping known to exist
by � : X → H, the function k can be regarded as a shortcut
for computing the dot product in H without requiring to

explicitly perform the transformation,

k(x, y) = 〈�(x), �(y)〉, (1)

where x, y ∈ X are the original patterns and 〈·, ·〉 : H ×
H → R stands for the dot product in H. Such functions k
are commonly called kernel functions. If an algorithm can be
formulated in terms of dot products of transformed vectors
〈�(x), �(y)〉 only, without recourse to the actual vectors
�(x) and �(y), then by means of Eq. (1) the computation
can directly be performed in the original pattern space X
using the kernel function k. If a different kernel function k′
is applied, we obtain a variant of the algorithm, the same
computation being carried out in a different implicit dot
product space.

It has been shown for numerous algorithms that kernel
functions can be applied in such a way. Using a maximum
margin separating hyperplane classifier with kernels even-
tually leads to support vector machines (SVMs) [11,14].
Mainly due to the work by Vapnik [13], learning and con-
vergence behavior and generalization properties of SVMs
are mathematically well founded and well known. A large
number of reported applications indicate that SVMs are able
to generalize well on unseen data and are not prone to over-
fitting. Other kernel methods include principal component
analysis [14], Fisher discriminant analysis [32], canonical
correlation analysis, Gaussian mixture modeling, perceptron
algorithms, and many others [10].

The kernel concept is not only applicable to vectorial pat-
terns, but also to structural patterns, where X represents the
space of strings or attributed graphs and the kernel function
is defined on pairs of strings or graphs. In both the vecto-
rial and the structural case, various positive-definite kernel
functions have been developed [16,18,33,34]. The kernel
function we propose in the present paper differs from these
kernels in that our aim is not to define a kernel function
performing the structural matching, but we rather leave the
string or graph matching task to the edit distance algorithm
and use the kernel function to carry out the classification
afterwards, based on pairwise edit distances of the objects
under consideration. Our main objective is to extend the
repository of structural classification tools based on edit
distance, which has been limited to classifiers of the nearest-
neighbor type in the past. The edit distance-based kernel
function we propose is described in the following section.

4. Edit distance-based kernel functions

Instead of defining a kernel function directly on strings
(or graphs), we assume that strings (graphs) are character-
ized only by their distance to other strings (graphs). That
is, after computing edit distances of strings (graphs), we do
not take the actual string (graph) structures any further into
account. The distance-based kernel function we propose is
therefore not only applicable to string and graph data, but
to all kinds of pattern representations for which distances
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can be defined. In the experiments presented in Section 6,
however, all distance matrices have been computed by means
of either string edit distance or the approximate graph edit
distance algorithm mentioned in Section 2.

Let X be the pattern space of strings or graphs and Xt ⊂
X denote a training set of patterns. For a fixed pattern x0 ∈
Xt , a basic kernel function kx0 : X × X → R can then be
defined by

k(x, x′) = kx0(x, x′) = 1
2 (d(x, x0)

2 + d(x0, x
′)2

− d(x, x′)2), (2)

where d(·, ·) is the (non-negative and symmetric) edit dis-
tance of two patterns. This kernel function can be under-
stood as a measure of the squared distance from pattern x to
x0 and from x0 to x′ in relation to the squared distance from
x to x′ directly. Provided the kernel is valid, there exists a
corresponding dot product space H where every string or
graph x ∈ X is represented by a unique vector �(x) ∈ H
and the dot product operation of vectors is equal to the ker-
nel function.

Given a dot product space, the Euclidean distance of vec-
tors in this space can be defined by the norm of the respec-
tive difference vector. In our case, we obtain for two vectors
�(x), �(x′) ∈ H

‖�(x) − �(x′)‖2
H = 〈�(x) − �(x′), �(x) − �(x′)〉

= 〈�(x), �(x)〉 + 〈�(x′), �(x′)〉
− 2〈�(x), �(x′)〉

= k(x, x) + k(x′, x′) − 2k(x, x′)
= d(x, x′)2 − 1

2 (d(x, x)2 + d(x′, x′)2)

= d(x, x′)2, (3)

using the bilinearity and symmetry of the dot product and
assuming symmetry of the edit distance. In other words, we
find that the Euclidean distance of vectors in H is equal
to the edit distance of the respective strings or graphs in
X. This implies, for example, that a kernel nearest-neighbor
classifier in H will behave exactly like a nearest-neighbor
classifier inX. Also, any kernel method evaluating Euclidean
distances in H will in fact evaluate edit distances of strings
or graphs. Similarly, the length of a vector �(x) in H turns
out to be equal to the edit distance of string or graph x to x0
in X,

‖�(x)‖2
H = 〈�(x), �(x)〉 = d(x, x0)

2 − 1
2 d(x, x)2

= d(x, x0)
2. (4)

Also, computing angles between strings or graphs based on
the dot product in H, we find that the angle � between any
pattern �(x) ∈ H and �(x0) is undefined, which follows
from

cos � = 〈�(x), �(x0)〉
‖�(x)‖H‖�(x0)‖H and ‖�(x0)‖H = 0. (5)

Moreover, two strings or graphs �(x), �(x′) ∈ H are
orthogonal if the edit distances d(x, x0), d(x0, x

′), and

d(x, x′), interpreted as straight line segments in the Eu-
clidean plane, form a right triangle. If �(x) and �(x′) are
orthogonal, that is, �(x) ⊥ �(x′), then we know from the
dot product in H that k(x, x′) = 0, and hence we obtain

�(x) ⊥ �(x′) ⇐⇒ d(x, x0)
2+d(x0, x

′)2=d(x, x′)2. (6)

From these properties we conclude that the fixed string or
graph x0—or vector �(x0) in H—exhibits characteristics
of a zero vector, or element that defines the origin of the
considered pattern space. Hence we call pattern x0 a zero
string or zero graph, respectively.

If the kernel function kx0 defined above is valid for any
x0 ∈ X, more complex kernel functions can easily be ob-
tained by selecting a number of zero elements and com-
bining the resulting kernels. The pointwise sum or product
of several positive-definite kernel functions, for instance, is
known to be positive definite as well. Based on the func-
tion defined in Eq. (2), we therefore propose the sum kernel
function and product kernel function defined by

k+
I (x, x′) =

∑

x0∈I

kx0(x, x′), (7)

k∗
I (x, x′) =

∏

x0∈I

kx0(x, x′), (8)

where I ⊆ Xt ⊆ X denotes a set of zero strings or zero
graphs from the training set. The product kernel function
clearly allows for a more complex reflection of distance re-
lations of the original pattern space in the corresponding dot
product space. The sum kernel does not extend the expres-
siveness of the kernel function, but is less constrained in
terms of admissible zero patterns than the original function
in Eq. (2). In experiments it can be verified that using more
than one zero pattern leads to significantly better results and
that the optimal number of zero patterns is relatively small
(see Section 6). The product kernel function turns out to per-
form mostly better than the single kernel function and the
sum kernel function.

For the purpose of intuitive interpretation and visualiza-
tion, we proceed by investigating the proposed kernel func-
tions in a two-dimensional Euclidean space instead of a
string or graph space, using the Euclidean distance instead
of edit distance to measure the dissimilarity of patterns. To
obtain a graphical illustration of the behavior of the kernel
functions, we choose a constant zero set of vectors I, fix
the first kernel argument x, and evaluate the kernel func-
tions for various instances of the second argument x′. Here,
the patterns x, x′, and the elements from I are simply two-
dimensional vectors. The result of such a visualization is
shown in Fig. 1. Note that the point at the center marked by
a triangle represents the constant vector argument x and the
points marked by circles constitute the vectors from the zero
set I. The brightness of the color at a position x′ reflects the
value of the kernel function kx0(x, x′) in Fig. 1a, the ker-
nel function k+

I (x, x′) in Fig. 1b, and the kernel function
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Fig. 1. Illustration of the kernel function using (a) the single kernel function given in Eq. (2), (b) the sum kernel given in Eq. (7), and (c) the product
kernel given in Eq. (8).

k∗
I (x, x′) in Fig. 1c, respectively; brighter colors indicate

higher values of the kernel function. In case of the kernel
with a single zero element and the sum kernel, we observe
that the resulting similarity function belongs to the class
of linear functions of squared distances. The kernel assigns
high similarity values to patterns x′ that are far away from
the zero elements I and simultaneously closer to x than to
elements in I, which corresponds to the intuitive interpre-
tation of the kernel function mentioned previously. In the
product kernel case in Fig. 1c, we find that the kernel func-
tion is able to reflect more complex similarity conditions and
may therefore be better suited to model complex datasets.

Next, we address the question of how to find a well-
performing set of zero patterns. Simple descriptors of the
distribution of the zero patterns seem not to correlate with the
performance of the kernel function. Although such criteria
for the choice of zero sets would be desirable, we employ
in our experiments an iterative, greedy selection strategy
based on a validation set. We first determine the n patterns
I (1) ⊆ Xt individually best performing as zero element on
the validation set. Next, we identify the n best performing
pairs of zero patterns I (2) ⊆ I (1) × Xt . To obtain zero sets
of size 3, we compute the n best zero sets I (3) ⊆ I (2) ×Xt .
We then proceed similarly to compute zero sets of larger size
up to some maximum value smax . Eventually, we choose
the zero set from I (1) ∪ I (2) ∪ I (3) ∪ · · · ∪ I (smax) that best
performs on the validation set.

For a kernel function to be applicable in the context of
statistical learning theory, it needs to satisfy the property of
positive definiteness. The proposed kernel functions given in
Eqs. (2), (7), and (8) are all defined with respect to an under-
lying pattern dissimilarity measure d : X×X → R+ ∪ {0}.
From positive-definite function theory it follows that if −d2

is conditionally positive definite, the kernel functions in
Eqs. (2), (7), and (8) are positive definite and hence valid ker-
nels [31]. For example, the kernel functions resulting from
the Euclidean metric and several other distance measures
are known to be positive definite. Edit distance measures,
however, do not generally satisfy all necessary conditions.
The validity of the proposed kernel function thus cannot
be established in the general case.The common optimal

hyperplane interpretation of SVM training as a process of
margin maximization therefore cannot be adopted in our
case. However, Haasdonk recently demonstrated [35] that
SVM training with kernel functions violating the condition
of positive definiteness can be understood, in geometrical
terms, as an optimal separation of convex hulls in pseudo-
Euclidean spaces. To predict whether or not a non-positive-
definite kernel function is applicable to SVMs, some
suitability criteria can be derived from the kernel matrix
[35]. In our experiments, we actually find that a small num-
ber of zero patterns (but more than a single one) combined
according to Eqs. (7) and (8) are sufficient for the kernel
function to be suitable for SVM learning (see Section 6).

In cases where the kernel function does not satisfy the
positive-definiteness condition, it is possible to adjust the
resulting kernel matrix such that kernel methods can be ap-
plied. If the eigensystem of the kernel matrix is available,
for example, reversing negative eigenvalues in the diago-
nal eigenvalue matrix leads to a valid kernel matrix. An-
other computationally more efficient approach relies on the
Cholesky decomposition of the kernel matrix. Elements of
the diagonal Cholesky matrix are made sufficiently positive
to yield a positive-definite product matrix. A numerically
more stable approach consists in performing a modified
Cholesky factorization, where the matrix is updated dur-
ing computation of the Cholesky factors. In this case, we
obtain a positive-definite matrix differing from the original
matrix only by a small amount in its diagonal elements.
The modified kernel matrix can then be fed into a kernel
algorithm instead of the original matrix. Further details can
be found in Ref. [36]. It should be noted that the kernel
matrices we applied in our experiments did not require such
a modification.

5. String and graph datasets

In this section, we provide a description of the struc-
tural datasets the proposed kernel functions were evaluated
on. Some characteristics of the datasets are summarized
in Table 1.
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Table 1
Number of classes and size of training set, validation set, and test set for
various string and graph datasets

Dataset Classes Training Validation Testing Type

Chicken pieces 5 149 149 148 String
Toolset 8 16 16 15 String
Pendigits 10 234 234 233 String
Chromosomes 21 280 280 280 String
Manually distorted 15 15 – 150 Graph
letters
Automatically 15 150 150 150 Graph
distorted letters
Diatom graphs 22 22 – 88 Graph
Fingerprint graphs 5 167 167 166 Graph

The chicken pieces dataset [37] consists of a variety of
silhouettes of chicken pieces. The contour line of a silhou-
ette is extracted by means of an edge detector. The resulting
contour line is then approximated by a sequence of normal-
ized vectors of constant length. From this vector sequence
we construct a string consisting of the angles between con-
secutive vectors, which leads to a rotation-invariant cyclic
string of relative angles representing the original chicken
piece silhouette. An illustration of the processing steps can
be found in Fig. 2a–c. To obtain rotation-invariant edit dis-
tances, we compute distances between these strings using
an efficient cyclic string edit distance algorithm [38].

The toolset database [39] contains images of tools from
eight classes, such as cutter and hammer. After binarization
and edge detection, the tools are represented by contour
lines. In analogy to the chicken pieces dataset, these contour
lines are represented by strings of normalized vectors, and
cyclic string edit distances are computed. For an illustration,
see Fig. 2d–f.

The Pendigits dataset [40] contains handwritten digits
produced by different writers. For our purpose, we convert
a subset of the full database into strings by transforming
the online handwriting into a sequence of normalized vec-
tors. The standard string edit distance algorithm [7] can then
be used to compute distances between handwritten digits.
A few handwritten digit examples are provided in Fig. 2g–k.

Unlike the other string datasets, the Copenhagen Chromo-
some database [41] does not consist of shape descriptions,
but of density histograms of chromosome images. A hori-
zontal density profile of a chromosome image is first com-
puted. After discretization, the resulting idealized profile can
be encoded as a string. Substitution costs are set equal to
the absolute difference of the corresponding discretized den-
sity values. An example image of a chromosome, the corre-
sponding raw density profile, and the resulting discretized
string are given in Fig. 2l–n.

The letter datasets contain drawings of 15 capital letters
that consist of straight lines only. The first letter database in-
cludes a set of class prototypes and manually distorted pat-
terns. Because of its small size, this dataset was only split
into a training and a test set, and no validation set was used.

The training set consists of the class prototypes (one letter
prototype per class) and the test set of the manually distorted
patterns. For the second letter database, the letter prototypes
were repeatedly randomly distorted using an automatic pro-
cedure governed by a parameter controlling the strength of
the distortions [42]. An illustration of some distorted copies
of the same letter is given in Fig. 3a–e. Line drawings are
then transformed into attributed graphs by representing end
points by nodes and lines connecting end points by edges.
Nodes are additionally endowed with an attribute specifying
their position. Node substitution costs are defined propor-
tional to the Euclidean distance of the node positions, and
edge substitutions involve no costs. Insertions and deletions
of nodes and edges have constant costs. An approximate
algorithm for the efficient computation of graph edit dis-
tance is applied [29]. The manually distorted letter dataset
is the only one provided with a predefined set of training
patterns, namely the class prototypes. In all other cases, the
full dataset has been randomly split into a training set, a
validation set, and a test set of about equal size.

The small diatom database contains microscopic im-
ages of diatoms. Diatoms are unicellular algae occurring
in humid places on earth [43]. Their classification is an
important, but difficult task in various disciplines such as
environmental monitoring and climate research. The diatom
images from the database first undergo a segmentation pro-
cess. Each segmented image can then be represented by
a region adjacency graph. The graph extraction process is
illustrated in Fig. 3f–h. For further details, the reader is re-
ferred to Ref. [44]. The edit cost function and edit distance
algorithm we employ for this data set are analogous to the
ones described above for the letter datasets. Similarly to
the manually distorted letter data set, no validation set was
defined because of the small size of this dataset.

Fingerprint classification is mainly used as a database fil-
tering operation prior to fingerprint matching to reduce the
overall running time [45]. The automatic classification of
fingerprints is considered a difficult task, as the standard fin-
gerprint classes are known to be strongly overlapping. In
this paper, we use a subset of the NIST-4 database of fin-
gerprints [46]. We obtain a graph from a fingerprint image
by computing the local ridge orientation at every pixel of
the image and representing the resulting orientation vector
field by a grid graph [29]. An attribute representing one of
eight discrete directions is attached to each edge. Insertions
and deletions have constant costs, the substitution of nodes
involves no costs, and edge substitution costs are propor-
tional to the directional difference of the corresponding edge
attributes. For an illustration of a fingerprint image, its orien-
tation vector field, and the corresponding fingerprint graph
refer to Fig. 3i–k.

6. Experimental results

In this section, an experimental evaluation of the proposed
kernel functions on the string and graph datasets introduced
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Fig. 2. Chicken pieces dataset: (a) silhouette image; (b) extracted contour line; and (c) normalized string. Tool dataset: (d) tool image; (e) extracted
contour line; and (f) normalized string. Pendigits dataset: (g–k) examples of a written digit ‘2’. Chromosome dataset: (l) chromosome image; (m) raw
density profile; and (n) discretized density string.

above is presented. We begin by studying various aspects of
the behavior and performance of SVMs compared to nearest-
neighbor classifiers. For the training, we use the widespread

SVM implementation libsvm [47], using an error weighting
factor of C = 1 throughout our experiments. The number of
neighbors k considered by the k-nearest-neighbor classifier
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Fig. 3. Letter drawing dataset: (a–e) examples of a distorted letter ‘A’ drawing. Diatom dataset: (f) diatom image; (g) segmented image; and (h) region
adjacency graph. Fingerprint graph dataset: (i) fingerprint image; (j) extracted orientation field; and (k) fingerprint graph.

as well as the various edit distance parameters are optimized
on the validation set. A summary and discussion of the clas-
sification rates obtained on all datasets follows at the end of
this section.

We first investigate the influence of the number of kernel
functions combined in Eqs. (7) and (8), that is, the number
of zero patterns, on the classification performance. Applying
a nearest-neighbor classifier to the manually distorted letter
graphs in the graph domain, we obtain a classification rate
of 65.3%. Using a single zero graph from the training set to
feed the same edit distances into an SVM, we are able to
correctly classify all patterns, yielding a classification rate
of 100% on the test set. This result is obtained for all but
two graphs as zero graph from the training set. The class
boundaries learned by the SVM hence constitute a much
better decision criterion than that of a nearest-neighbor clas-
sifier in the graph domain. In this particular case, to obtain
a perfect classification on the test set, it is sufficient to ap-
ply a training set consisting of one graph prototype per class
using a single zero graph (see Fig. 1a) to an SVM, whereas
the nearest-neighbor classifier in the graph domain performs
relatively poorly. We conclude from this observation that
the kernel function in Eq. (2) does not only exhibit interest-
ing theoretical properties in the related dot product space,
but can also extract significant characteristics of a dataset of
graphs that facilitate the classification in practice. Note that
a validation set is not required in this experiment, for the
zero set need not be optimized.

We proceed by studying how the number of zero patterns
influences the SVM performance. For this purpose we use
the more difficult database of automatically distorted letters
(using distortion factor 0.1, which corresponds to Fig. 3b).
An SVM is trained on the training set and evaluated on the
validation set according to the iterative selection procedure
of a zero set described in Section 4. The zero set that results
in an optimal classification of the validation set is then ap-
plied to the independent test set. The classification rate on
the validation set and test set with respect to zero sets of
different sizes is illustrated in Fig. 4. The larger the value
on the horizontal axis, the more zero graphs are involved.
Comparing the SVM performance on the validation set and
test set, we find that virtually no overfitting of the validation
data occurs. This observation indicates that a validation set
approach for optimizing the zero set is suitable for the SVM
method. Furthermore, the optimal number of zero graphs is
rather small, being no greater than 6. The low classification
rates obtained for zero sets of size 30 to 35 and the succes-
sive sharp rise of the classification performance indicate that
the sequence of selected zero sets does not correlate with a
globally optimal one, which is due to the greedy nature of
our selection strategy. Nevertheless, the SVM clearly out-
performs the nearest-neighbor classifier for most zero sets
and in particular for smaller ones. Optimized on the valida-
tion set, the SVM achieves a classification rate of 92.7% on
the independent test set, whereas the nearest-neighbor clas-
sifier reaches a classification rate of 63.3% only.
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Fig. 4. Performance of an SVM and a nearest-neighbor classifier in the graph space for zero sets of various size.
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Fig. 5. Criteria for the suitability of an SVM training: fraction of negative eigenvalues (upper) and average squared distance of class means (lower).

The proposed kernel functions do not generally lead to
positive-definite kernels. To verify whether it is reasonable
to apply non-positive-definite kernels to SVMs, Haasdonk
[35] suggests to consider the number of negative eigenvalues
of the kernel matrix, since an increasing number of negative
eigenvalues makes the separation of the training data more
difficult. Even more precise according to Ref. [35] is the
constraint that the squared distance of class means should be
positive, which is not generally satisfied in pseudo-Euclidean
spaces. In Fig. 5, the fraction of negative eigenvalues (which
should be small) and the average squared distance of class
means (which should be positive) is shown for zero sets of

various size, similar to Fig. 4. We derive from these results
that it makes sense to use more than one zero pattern. For
zero sets of about five patterns, the geometrical interpretation
of SVM training as a separation of convex hulls seems to
be reasonable according to the criteria evaluated above. The
conclusion that a small number of zero patterns is sufficient
confirms the empirical results in Fig. 4.

During construction of the letter database, a distortion pa-
rameter is used to control the strength of applied distortions
(see also Fig. 3a–e). Clearly, the higher the distortion factor,
the more difficult is the letter classification problem. To ver-
ify that the SVM is not only superior to the nearest-neighbor
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Fig. 6. Performance of an SVM classifier and a nearest-neighbor classifier in the graph space for various distortion degrees.

classifier for weakly distorted letters, we construct a number
of letter graph datasets with various degrees of distortion and
compute the nearest-neighbor and SVM classification per-
formance. An illustration of the resulting classification rate
is provided in Fig. 6. Note that the performance at distortion
factor 0 corresponds to the manually constructed database
and all other cases correspond to the automatically distorted
database. The largest distortion factor considered in Fig. 6 is
0.5, which corresponds to Fig. 3e. As expected, the classifi-
cation rate becomes worse for stronger distortions. Although
the relative performance decrease of the SVM is more se-
vere than that of the nearest-neighbor classifier, the SVM
performs clearly better for all distortion degrees. From this
result we conclude that the kernel approach is not only appli-
cable to homogeneous classes of graphs, but also to strongly
distorted datasets.

The aim of the experiments described so far was to
study particular issues, such as influence of zero set size
and degree of noise on SVM classification performance,
using datasets particularly suited to the considered tasks.
Next, we come to an overall comparison of the k-nearest-
neighbor performance (kNN) in the original string or
graph space and the SVM performance including the best
number of zero elements and the utilized kernel function.
A summary of the results obtained on all datasets described
in Section 5 is shown in Table 2. As previously mentioned,
the manually distorted letter dataset and the diatom dataset
do not involve a validation set because of their small size.
For all other datasets, the zero set that performs best on
the validation set is identified first and then applied to the
independent test set. Hence, for all datasets a computa-
tion like the one illustrated in Fig. 4 is performed. The
maximum of the validation classification rate determines
which zero set is used to compute the test classification
rate. In Table 2, we see that SVMs outperform nearest-
neighbor classifiers on all datasets. The improvement is
statistically significant on all datasets (� = 0.05) except the
Chromosome dataset and the very small toolset and diatom
datasets. Hence, we draw the conclusion that the proposed
kernel functions are able to extract characteristics from

Table 2
Classification rate of a k-nearest-neighbor classifier (kNN), a support
vector machine (SVM), and the best performing number of zero elements
and kernel function

Dataset kNN SVM Size of I Kernel

Chicken pieces 74.3 81.1a 4 k+
I

Toolset 53.3 66.7 3 k∗
I

Pendigits 74.2 89.7a 4 k∗
I

Chromosomes 90.7 91.1 8 k+
I

Manually distorted letters 65.3 100.0a 1 k+
I

or k∗
I

Automatically distorted letters 62.0 92.7a 7 k∗
I

Diatom graphs 35.2 40.9 3 k∗
I

Fingerprint graphs 41.6 53.0a 4 k∗
I

aImprovement statistically significant (� = 0.05).

string and attributed graph datasets that help eliminating
misclassifications. For the majority of the datasets, the
product kernel leads to the best results. A combination of
kernels using either the sum kernel or the product kernel
generally results in an improvement of the performance.
The optimal size of zero sets is at a rather small average of
4.25 zero elements.

7. Conclusions

Edit distance has been successfully used for a long time in
structural pattern recognition to measure the dissimilarity of
strings and graphs. Until recently, edit distance-based sys-
tems have only been applicable in conjunction with nearest-
neighbor classifiers. In this paper we propose a method to
overcome this limitation by introducing a class of kernel
functions that allow us to apply powerful tools from statis-
tical pattern recognition to the structural domain of strings
and graphs. The kernel functions we describe provide a
direct link between the structural pattern space and the ker-
nel space in that the Euclidean distance in the kernel space
is identical to the edit distance in the pattern space. Unlike
other structural kernel methods, we first perform a structural
matching by computing the dissimilarity of patterns using
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the edit distance. The kernel function is then defined with
respect to distances between strings or graphs. The proposed
method is applicable to general dissimilarity measures and
has been tested using a standard and a cyclic version of the
string edit distance algorithm and an approximate graph edit
distance algorithm. Although the proposed kernel functions
are not generally valid, they perform well on a number of
real-world string and graph datasets. In experiments we find
that SVMs using the kernel functions are superior to tradi-
tional nearest-neighbor classifiers. The results, evaluated on
a variety of datasets, suggest that the proposed kernels are
in fact applicable to various kinds of string and graph data.

In the future, we intend to verify that the proposed ker-
nel functions can also be applied in conjunction with other
statistical data analysis methods, such as principal compo-
nent analysis, Fisher discriminant analysis, and clustering.
We also plan to study whether our kernel method is able to
improve classifiers based on tree edit distance [24,48].
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