
A Study on the Locality Behavior of Minimum Spanning
Tree Algorithms

Guojing Cong and Simone Sbaraglia

IBM T.J. Watson Research Center
Yorktown Heights, NY, 10598

{gcong,ssbarag}@us.ibm.com

Abstract. Locality behavior study is crucial for achieving good performance for
irregular problems. Graph algorithms with large, sparse inputs, for example, of-
tentimes achieve only a tiny fraction of the potential peak performance on current
architectures. Compared with most numerical algorithms graph algorithms lay
higher pressure on the memory system. In this paper, using the minimum span-
ning tree problem as an example, we study the locality behavior of graph algo-
rithms, both sequential and parallel, for arbitrary, sparse instances. We show that
the inherent locality of graph algorithms may not be favoredby the current archi-
tecture, and parallel graph algorithms tend to have significantly poorer locality
behaviors than their sequential counterparts. As memory hierarchy gets deeper
and processors start to contain multi-cores, our study suggests that architectural
support and new parallel algorithm designs are necessary for achieving good per-
formance for irregular graph problems.

Keywords: memory locality, graph algorithm, minimum spanning tree

1 Introduction

Graph abstractions are used in many science and engineeringproblems, for example,
data mining, determining gene function, clustering in semantic webs, and security appli-
cations. Graph problems with large arbitrary, sparse instances are challenging to solve
on current architectures (e.g., see [3, 4]). For dense linear algebra packages near peak
performances are repeatedly reported. Yet we have not seen similar performance results
for graph problems. Graph algorithms tend to lay higher pressure on the memory sys-
tem. For architectures with deep memory hierarchy, locality features are crucial to the
performance of the algorithms. In this paper, using the minimum spanning tree (MST)
problem as an example, we study the locality behaviors of graph algorithms and com-
pare their performances with different cache configurations.

The MST problem finds a spanning tree of a connected graphG with the minimum
sum of edge weights. MST is one of the most studied combinatorial problems with
practical applications in VLSI layout, wireless communication, distributed networks
[15, 24, 26], and recent problems in biology and medicine [5,13], and national security
[7]. MST is also often a key step in other graph problems [16, 17, 23, 25].

Moret and Shapiro give an empirical analysis of MST algorithms in [18]. Implemen-
tations of Prim’s, Kruskal’s and Cheriton-Tarjan’s algorithms on several architectures
are compared. Through extensive comparisons, Prim’s algorithm is found to be the best
candidate. Computer architectures have since evolved, andPrim’s algorithm may no
longer be the fastest on current platforms. Moreover, running times alone are generally
not sufficient to estimate the relative performance of algorithms on new architectural
configurations. As memory hierarchy gets deeper, cache performance becomes crucial
to an application. Whether the locality behavior of an algorithm fits well with the cache
configuration affects the overall performance. Understanding the locality behavior helps
the adaptation of algorithms to target platforms and dynamic configurations (e.g., shut-
down of a cache bank to reduce power consumption).

In this paper we study the locality behavior of three MST algorithms, that is, Prim’s,
Borůvka’s, and Kruskal’s, and show how cache configurations (e.g., cache size and line
size) affect their performance. We include Borůvka’s algorithm as it can be easily par-
allelized to run in poly-log time under the PRAM model. As processors increasingly
adopt multi-core designs, solving a problem in parallel is important for performance.
The locality behavior of a parallel graph algorithm can be very different from the se-
quential counterpart as the designs are drastically different. Comparison of their local-
ity behavior brings insight to efficient parallel algorithmdesign and better architectural
support.

Cache-friendly algorithms, for example, external memory algorithms and cache-
oblivious algorithms, abound in the literature. These algorithms assume some memory
hierarchy models, and minimize the number of block transfers between hierarchy levels.
Common design techniques include divide-and-conquer and sequential scan, for which
the I/O complexity (number of blocks transfered) is relatively easy to analyze. For other
algorithms that do not employ these techniques, however, itis hard to analyze for I/O
complexity under these hierarchy models. Also the localitybehavior of an algorithm
is an inherent property that should not depend on the memory hierarchy of a target
platform (while its performance certainly depends on how well the locality behavior
fits with the cache configuration). In our study we do not analyze the MST algorithms
under these existing memory models. Instead we characterize locality throughLeast-
Recently-Used(LRU) stack distance analysis that is discussed in Section 2.

2 Characterizing Locality Behavior

LRU stack distance was first used in the “stack processing” technique proposed by
Mattsonet al. for evaluating cost-performance of storage hierarchies [14]. LRU stack
distance is also referred to asreuse distance, and the two names are used interchange-
ably in the literature. Locality of a program can be studied by computing the LRU stack
distance histogram (e.g., see [21]).

Consider a trace ofk memory accesses,T = T1,T2, . . . ,Tk, that access a set ofc
addresses. For a storage system withLeast-Recently-Usedreplacement policy, accessTi

is a hit if the size of the fast memory is larger than the stack distance∆(Ti). A histogram
can be derived if we compute for each∆ ∈ [0 : c], the total number of accesses that
have reuse distance∆. The LRU stack distance histogram has been used as a machine-

independent metric of locality (e.g., see [6]). With LRU stack distance analysis it is
possible to perform various optimizations on a program (e.g., see [21, 27]).

In our study we use the binary rewriting approach to get a memory access trace.
We intercept eachloadandstoreinstruction using SIGMA [10], and compute the reuse
distance histogram on the fly to avoid dumping huge traces.

3 Comparison of Three MST Algorithms

In this section we compare the locality behavior of the threeMST algorithms, that is,
Prim’s, Kruskal’s and Borůvka’s. For each algorithm the exact process of constructing
an MST is influenced by the topology, edge density, and weightdistribution of the in-
put graph. We focus on sparse random graphs with randomly-assigned edge weights.
We choose random graphs because they are the most challenging to solve on paral-
lel computers. As memory access pattern is highly dependenton the inputs, the study
of arbitrary graphs can expose regular memory patterns of the algorithms. A random
graph ofn vertices andmedges is generated by randomly picking a pair of vertices and
connecting them with an edge untilm edges are generated.

For Prim’s algorithm (denoted as Prim), we use the implicit binary heap described
[9]. For Kruskal’s algorithm (denoted as Kruskal), we use non-recursive merge sort as
the sorting routine. The union-find data structure is used tomaintain the disjoint sets of
elements. Borůvka’s algorithm (denoted as Borůvka) is composed of Borůvka iterations
that have three steps:find-min, connect-components, andcompact-graph. The algorithm
iterates until only isolated vertices are left. All MST implementations run inO(mlogn)
time. Fig. 1 shows the LRU stack distance histograms for eachalgorithm with an input
graph of 1K vertices and 4K edges (we use 1K to denote 1024).

 0

 2

 4

 6

 8

 10

 12

 18000 12000 6000 0

fr
eq

ue
nc

y

stack distance

Prim

 0

 2

 4

 6

 8

 10

 12

 32000 16000 0

fr
eq

ue
nc

y

stack distance

Kruskal

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000 25000

fr
eq

ue
nc

y

stack distance

Boruvka

Fig. 1.Histograms of stack distances for three MST implementations.

One common feature of the three plots in Fig. 1 is the blanks inthe histogram. The
ratio of the number of observed distinct stack distances over the memory footprint size
is 40% for Prim, 54% for Kruskal, and 73% for Boruvka. In each plot, the minimum
reuse distance is 0, and the maximum isc, the size of the footprint. Large concen-
trations of distribution are observed around certain distances. For example, there are
concentrations around small reuse distances in all plots. Each plot has a different shape.
For Prim the histogram monotonously decreases with the reuse distance. For Borůvka
and Kruskal, there are concentrations of distribution around large reuse distances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

pe
rc

en
ta

ge

stack distance

Random Graph with 1K vertices, 4K edges

Prim
Boruvka
Kruskal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

pe
rc

en
ta

ge

stack distance

Random Graph with 1K vertices, 4K edges

Prim
Boruvka
Kruskal

Fig. 2.The ratio plots for three implementation of MST algorithms with an input of 1K
vertices, 4K edges.

The plot on the left of Fig. 2 presents a different view of the same histogram data.
Thex axis is the stack distance. They value shows the percentage of accesses with stack
distance no bigger thanx. Alternatively,y can also be viewed as a cache hit ratio for
a fully associative cache of sizex with the LRU replacement policy. In the rest of the
paper we refer to such plots as ratio plots. For each of the three algorithms, the shape
of the line in the ratio plots is different. Prim and Kruskal achieve fairly good cache
hit ratios with small cache sizes. The curve of Borůvka remains flat at low ratios for
a range of reuse distances, and jump abruptly at relatively large distances. The plot on
the right of Fig. 2 is a zoomed-in view for reuse distances in the range of [0:150]. Prim
achieves a hit ratio of over 80% at a cache size of only 120 words.

3.1 Locality of Prim

Starting from a single vertex, Prim grows an MST one edge at a time. Prim maintains a
heap to retrieve the lightest-weight edge. During the execution, for sparse inputs, most
memory accesses occur around accessing the heap data structure. Each heap operation
incursO(logh) memory accesses, whereh = O(n) is the size of the heap. We focus our
analysis on the heap operations.

In our experiments, for all graphs of different sizes, ranging from 1K vertices to
100K vertices, a hit ratio of more than 70% is achieved with fewer than 20 words. In
fact hit ratios of more than 80% are achieved with around 120 words (integers), for all
input sizes. Within the reuse distance range of[0,50], the curves are nearly identical
and the hit ratio appear to be independent of the input size.

The magic numbers observed (i.e., 70% and 50 words) are dependent not only the
topology, edge density, and weight distribution of the input, but also the actual program-
ming of the algorithm. Instead of modeling the tree construction process and giving
rough bounds, we show that a significant percentage of memoryaccesses incur short
reuse distances.

Recall that a reuse distance is associated with each memory access. We now con-
sider the reuse distance for the memory accesses incurred byExtract Min, Insert and
DecreaseKey. Extract Min removes the top element of the heap, and places the last
element as the new top. It then iteratively inspects a node and its two children starting

from the top. If the parent has larger weight, it then is swapped with one of the children.
During each iteration there are three reads (reading the weights) and two writes (swap-
ping). The parent and one of the children are accessed twice,and the second access
has a distance ofO(1). More exactly, the distance will be 1 or 2 depending on whether
the left or right child gets swapped. Here we do not consider the interference of other
auxiliary data structures, for example, a temporary location to facilitate the swap. So
at least25 of the accesses generated byExtract Min are within a constant distance.In-
sert appends an element to the end of the heap and then compares iteratively from the
end whether an element is larger than its parent. If the parent is larger, it then gets
sifted down. Successive sifting incurs constant reuse distance, and1

2 of the accesses
have distanceO(1). DecreaseKeyworks similarly asExtract Min, and about12 of the
accesses have distanceO(1). Note that although the distances are constant, in practice
they can take a range of values due to book-keeping activities. For example, to enable
DecreaseKey, the positions of each vertex in the heap are recorded in an array. Up-
dating the positions increases reuse distances (stillO(1) though) for heap accesses in
DecreaseKey. According to our analysis, an estimate of 40 to 50 percent ofaccesses
have constant reuse distances (disregarding book-keepingactivities).

In addition to constant reuse distances, some operation incur O(logn) distance. For
example, to maintain the size of the heap, after eachExtract Min or Insert, a counter is
either incremented or decremented. Access to the counter generates reuse distance of
O(logn) asExtract Min andInsert incur O(logn) accesses to different memory loca-
tions. The top of the heap is accessed every time inExtract Min, and the largest reuse
distance incurred byExtract Min is O(d logn), whered is the largest degree of all ver-
tices. The distribution of reuse distances for the rest of memory operations is governed
by the random process of constructing an MST. It is easy to construct scenarios that
incur large (e.g.,O(n)) reuse distances.

As the ratio plots show good locality of the simple binary heap, it is then interest-
ing to compare with other more sophisticated implementations of heaps. Heaps (and
priority queues) have been studied extensively, and quite afew data structures are pro-
posed, for example, Fibonacci heap, pairing heap, and splaytrees. Sanders presents
a data structure calledsequence heap[20] and shows that for a cache configuration
with size M and block sizeB, I insertions andI deletions can be performed with
I(2R/B+ O(1/k+ (logk)/m)) I/Os andI(logI + logR+ logm+ O(1)) comparisons,
wherem= Θ(M), k= Θ(M/B), R= [logk

I
m]. The motivation ofsequence heapis based

on the fact that mergingk sequences is I/O efficient under the external memory model.
Argeet al.designed cache-oblivious priority queues based on similarobservations [2].
In his study Sanders has four heap implementations, denotedashslow(implicit binary
heap),h2 (binary heap with the “bounce” heuristic [12]),h4(4-ary heap), andknh (the
sequence heap), respectively.

In Fig. 3 are the ratio plots for the four different heap implementations. Surpris-
ingly, the textbook binary heap (hslow) has the best locality behavior in terms of reuse
distances. At each distance, the ratio forhslow is consistently higher than the ratios
for other implementations. In practice, however,hslow is found to be the slowest for
most inputs on current architectures, for example, SUN SPARC V9 and IBM Power 4.
In fact,knhare four times faster thanhslowfor many inputs. Althoughhslowtends to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

fr
eq

ue
nc

y

stack distance

hslow
h2
h4

knh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

fr
eq

ue
nc

y

stack distance

hslow
h2
h4

knh

Fig. 3. The ratio plots for four heap implementations. The plot is for stack distance in
range [0:150]. On the left are the plots for 1000Insert followed by 1000Extract Min.
On the right are the plots for 1000Insert, Extract Min, andInsert followed by 1000
Extract Min, Insert, Extract Min.

make more memory accesses (about 1.5 times as many asknh), the difference does not
fully explain the observed poor performance ofhslow, especially considering its good
locality behavior. The fastest implementation isknh. As it mostly works with sorted se-
quences, it exhibits good spatial locality. Current architectures that typically have long
cache lines and long latency to main memory impose the requirement of spatial locality
for good performance. Unfortunately, spatial locality is scarce inhslow.

All heap operations start with a certain nodev, and inspectv’s parent and/or chil-
dren. Due to the layout of the implicit binary heap in memory,whenever a block is
brought into the cache, except for nodev that is currently being accessed, it is unlikely
that the rest of the block containsv’s parent or children unlessv is near the top of the
heap. In this case, long cache line causes fetching data thatis not used in the near future
and wastes memory bandwidth.

There is no machine-independent metric in the literature tomeasure the spatial lo-
cality of a program. Recently Snir and Yu studied the theoretical aspects of temporal
and spatial locality [22]. While they acknowledge that LRU stack distance analysis cap-
tures well temporal locality, they also point out that in terms of predicting cache miss
bandwidth, temporal locality and spatial locality can not be studied in isolation. We
present further experimental results in Section 4.

3.2 Locality of Kruskal

For Kruskal, sorting dominates the execution time, and dictates the shape of the plot.
For the implementation with merge sort, the hit ratio remains low until the distance and
hence cache size becomes very large. In fact only at a size that can hold all the data
structures used for sorting does the hit ratio reach above 90%. Fig. 4 shows the ratio
plots for Kruskal with three different inputs. The verticalline in each plot is∆ = 6m.
Recall that non-recursive merge sort employs an auxiliary buffer. For an input with
m edges, as each edge in the data structure has three elements (two vertices and the
weight), the size of the total memory usage is 2m∗3 = 6m words. The plots show that
a cache has to be of size at least 6m words in order to have reasonably good hit ratios.

Otherwise the hit ratio is as low as 30%, even for cache size 6m− 1. Unfortunately,
6m is in direct proportion to the input size, and the algorithm exhibits poor temporal
locality behavior.

In practice, for many inputs, Kruskal with merge sort is the fastest among all imple-
mentations. As long as the the data structure fits in main memory, our implementation
with merge sort beats the version with quick sort for large inputs on all tested platforms.
This is largely due to the fact that merge sort has very good spatial locality that are es-
pecially advantageous for long cache lines. Forn (assumingn = 2k,k ∈ N) elements,
merge sort takesk iterations. In iteration 1≤ i < k, n

2i pairs of consecutive sequences
(each of length 2i) are merged. Whenever a block is brought into cache, it contains data
that is soon to be used. We further presents experimental results in Section. 4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30000 20000 10000

fr
eq

ue
nc

y

stack distance

1K vertices

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 150000 100000 50000

fr
eq

ue
nc

y

stack distance

5K vertices

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300000 200000 100000

fr
eq

ue
nc

y

stack distance

10K vertices

Fig. 4. The ratio plots for Kruskal with three inputs. The input sizes from left to right
are 1K, 5K, and 10K vertices.m= 4n.

3.3 Locality of Borůvka

With Borůvka, the surges in the ratio plots are at distancesin direct proportion to the
input size, as shown in Fig. 5. In Fig. 5 we show the ratio plotsfor three different input
sizes, that is, random graphs with 1K, 5K, and 10K vertices, andm = 4n edges. The
vertical line in each plot is∆ = n∗3+m∗4. That is exactly the size of the input. With
our adjacency list representation, for each vertex there are three data fields. Each data
field takes a word of memory. For each edge incident to vertexv, there are two elements:
u, the other vertex, andw, the edge weight. Each edge appears twice in the adjacency
list. The size of the input is thus 3n+4m.

Algorithms with such reuse behavior as shown in Fig. 5 generally scans through
the data structures repeatedly for multiple runs, and each run can be considered as an
algorithmic phase that may have similar or different characteristics. These algorithms
generally lend themselves to parallelization as in the caseof Borůvka’s algorithm. In
fact the Borůvka iteration (find-min, connected-componentsandcompact-graph) is em-
ployed in other parallel MST algorithms (e.g., see [8, 11]).

As shown in Fig. 5, even with a fully associative cache, the cache needs to be at
least of the size of the input in order to have good hit ratios.Otherwise, the hit ratio is
well below 90%. The vertical line on the left of each plot (∆ = 4n) crosses the curve
at aboutfrequency=60%. The line corresponds nicely to the size of the four auxiliary
data structures used in the algorithm, that isMin, Min ind, D, Alive. Consistently, with

a cache size of 4n words, the hit ratio is around 60%. In order not to contract the graph
which is costly as it involves memory allocation and copying, we use theD andMin
arrays for each vertex (and supervertex) to record the component it belongs to and the
smallest weight of the adjacent edges.Min ind records the other vertex (or supervertex)
that is incident to the edge with smallest weight. TheAlivearray shows whether a vertex
should be considered in the Borůvka iteration. With a cachesize of 4n, most accesses
to D in our implementation are cache hits. We refer interested readers to [4] for details
of the algorithm.

There are two cache sizes for Borůvka that can achieve reasonable hit ratios. More
specifically, one is 4n and the second is 3n+4m. The effectiveness of caching is highly
dependent on the input size. In contrast to Prim and similar to Kruskal, Borůvka does
not exhibit good temporal locality. What is worse is that Borůvka does not exhibit good
spatial locality either, and most accesses to the arrays areirregular.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 10000

fr
eq

ue
nc

y

stack distance

1K vertices

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100000 50000

fr
eq

ue
nc

y

stack distance

5K vertices

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200000 100000

fr
eq

ue
nc

y

stack distance

10K vertices

Fig. 5. ratio plots for Borůvka with three different inputs.

The reuse distance analysis of Borůvka suggests poor temporal locality for parallel
graph algorithms (we mainly focus on PRAM algorithms since most interesting parallel
graph algorithms are based on PRAM) due to the inherent phasebehavior. In addition,
the irregular nature of the input dictates poor spatial locality behavior.

3.4 Locality of Parallel MST Algorithms

In this section we consider the locality of parallel Borůvka’s algorithm. The local-
ity of parallel Borůvka’s algorithm is representative forat least some stages in the
more complex MST algorithms. In fact, the graft-and-shortcut approach used in par-
allel Borůvka’s algorithm is also frequently used in otherparallel graph algorithms, for
this class of algorithms, we expect to see similar locality behavior.

The parallel implementations offind-minandconnect-componentsare straightfor-
ward. We have two implementations of thecompact-graphstep. One of them contracts
the graph using parallel sorting routines, while the other adopts a data structure called
flexible adjacency listthat avoids large scale sorting. We refer interested readers to [4]
for details of the implementations.

Fig. 6 shows the ratio plots for two implementations of parallel Borůvka’s algo-
rithm. Again the input is a random graph with 1K vertices and 4K edges. We emulate
the parallel algorithm with one thread. The locality behavior for each thread with mul-
tiple threads should be similar. The two ratio plots of Fig. 6look roughly like the plots

in Fig. 5, and show poor locality in terms of reuse distance. At a large distance about
130,000 words, the hit ratio reaches above 80%. The range of the reuse distance is sig-
nificantly larger than that of the sequential implementation. This is due to the fact in
both implementations, after each iteration new instances of the graph (either fully or
partially compacted) are generated and the next iteration works on the new instances.
Fig. 6 partly explains why it is difficult to achieve good parallel speedup for sparse
arbitrary instances on current parallel computers. The parallel algorithms have poorer
locality than the sequential algorithms, and as far as we areaware of, there are no mature
techniques for improving the locality behavior of parallelgraph algorithms. As cache
performance becomes even more crucial, the gap between theoretical results and actual
performances can be increasing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000

fr
eq

ue
nc

y

stack distance

Random Graph, 1K vertices, 4K edges

no-compact
compact

Fig. 6. The ratio plots for two implementations of parallel Borůvka’s algorithm. The
implementation labeled ascompactcompacts the graph using parallel sorting routines.
Theno-compactversion uses theflexible adjacency listrepresentation.

4 Simulation Results

We next present our experimental results with different cache configurations that sup-
port our analysis in the prior section. We run the algorithmson the RSIM simulator [19]
that simulates modern processors and memory sub-system. Instead of giving pages of
specifications for the processor, we use similar settings asin prior studies (e.g., see [1]).
The important features include instruction-level parallelism, out-of-order scheduling,
non-blocking reads and speculative execution. As we only run sequential algorithms,
we do not use any of the multiprocessor features such as memory consistency protocols.
In our study we use directly-mapped L1 cache and 2-way set associative L2 cache, and
the input is a random graph with 1K vertices and 4K edges.

First we vary the cache line size, and measure the performance. As the cache line
size increases, each transfer brings more data into cache, and the spatial locality of an
algorithm becomes more important for performance.

In Fig. 7, the plot on the left shows how the performance varies with different cache
line sizes. The size of the cache is kept constant (1KB L1 and 4KB L2) in the experi-
ments. The smallest cache line size that can be simulated is 16 bytes. With the increase

Fig. 7.Performance of MST algorithms with different cache configurations. For the plot
on the left, we experiment with cache line sizes of 16 bytes, 32 bytes and 64 bytes. The
plot on the right shows performance for different cache sizes.

of line size, the performance of both Prim and Borůvka decreases while that of Kruskal
improves. The results support our analysis that both Prim and Borůvka do not have
good spatial locality and is not favored by long cache lines.

The plot on the right of Fig. 7 shows the performance of the algorithms with dif-
ferent cache sizes, from 1KB L1 and 4KB L2 to 128KB L1 and 512KB L2. The per-
formance, measured as instruction per cycle (IPC), improveas the cache size increases.
The performance curves in this plot are correlated with the ratio plots in Fig. 2. Yet it
is not straightforward to predict the performance with realcache configurations from
the ratio plots. According to the ratio plot we would expect the performance curve for
Prim’s algorithm rise sharply at a small cache size and remain somewhat flat afterwards.
This is obviously not true in the performance plot. The discrepancy is mostly due to the
associativity of the cache and the cache line size. For Kruskal the IPC increases sharply
at 32K bytes (L1 cache size), and the whole input (of size roughly 24K bytes) fits in L1.
For Borůvka, there are two sharp increases with the performance curve. The increases
correspond roughly to the sharp increases in the ratio plots.

5 Conclusion and Future Work

In this paper we studied the locality behavior of MST algorithms. As memory hierarchy
deepens, locality is becoming even more important to the performance. We show that
Prim with implicit binary heap has better temporal localitythan the cache-aware im-
plementations in our study. A significant percentage of the memory accesses incurred
by the heap operation haveO(1) or O(logn) reuse distances. However, architectures
with long cache lines impose the requirement of spatial locality for good performance,
and penalize the performance of Prim with implicit binary heap. Kruskal (with non-
recursive merge sort) exhibits poor temporal locality as many reuse distances are in
the order ofO(n). Due to its good spatial locality, it runs fast on current architectures.
Increasing cache line size in general improves its performance. Comparing Prim and
Kruskal, it seems that good spatial locality fits better withcurrent cache organizations.

Both the sequential and parallel implementations of Borůvka show poor temporal
and spatial locality. In future work we will further investigate the locality behaviors
of parallel graph algorithms. This is especially meaningful as many processors adopt
multi-core designs. Our study of Borůvka’s algorithm hints that poor locality might be
inherent in the PRAM algorithms. In order to verify, we will need to find a metric for
measuring spatial locality. On one hand, it is important to design parallel algorithms
with reasonable locality behavior. On the other hand, special architectural support, for
example, multi-threaded architecture, is necessary to tolerate the memory access la-
tency for parallel algorithms. We will also investigate theimpact of locality enhancing
techniques such as vertex reordering on the performance of parallel algorithms. For
Prim and Kruskal in our study, from the analysis of the algorithms, we do not expect
to see too big a difference in the stack distance distribution. For Borůvka, however,
there can be interesting findings, and we expect similar results with many other parallel
algorithms.

References

1. S.V. Adve, V.S. P, and P. Ranganathan. Recent advances in memory consistency models for
hardware shared-memory systems. Inproceedings of the IEEE, special issue on distributed
shared-memory, pages 445–455, 1999.

2. G. Aloupis, P. Bose, E.D. Demaine, S. Langerman, H. Meijer, M. Overmars, and G.T. Tou-
ssaint. Computing signed permutations of polygons. InProc. of the 14th Canadian Conf.
on Computational Geometry (CCCG), pages 68–71, Lethbridge, Alberta, Canada, August
2002.

3. D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric multiproces-
sors (SMPs). InProceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS 2004), Santa Fe, New Mexico, Apr 2004.

4. D. A. Bader and G. Cong. Fast shared-memory algorithms forcomputing the minimum
spanning forest of sparse graphs. InProc. 18th Int’l Parallel and Distributed Processing
Symp. (IPDPS 2004), Santa Fe, New Mexico, 2004.

5. M. Brinkhuis, G.A. Meijer, P.J. van Diest, L.T. Schuurmans, and J.P. Baak. Minimum span-
ning tree analysis in advanced ovarian carcinoma.Anal. Quant. Cytol. Histol., 19(3):194–
201, 1997.

6. C. CaΒcaval and D.A. Padua. Estimating cache missesand locality using stack dis-
tances. InProceedings of the 17th annual international conference onSupercomputing,
pages 150–159, San Francisco, CA, 2003.

7. C. Chen and S. Morris. Visualizing evolving networks: Minimum spanning trees versus
pathfinder networks. InIEEE Symp. on Information Visualization, Seattle, WA, October
2003. to appear.

8. R. Cole, P.N. Klein, and R.E. Tarjan. A linear-work parallel algorithm for finding minimum
spanning trees. InProceedings of the 6th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 11–15, Cape May, NJ, 1994.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press,
Inc., Cambridge, MA, 1990.

10. L. DeRose, K. Ekanadham, J.K. Hollingsworth, and S. Sbaraglia. Sigma: a simulator infras-
tructure to guide memory analysis. InProceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–13, 2002.

11. D.R. Karger, P.N. Klein, and R.E. Tarjan. A randomized linear-time algorithm to find mini-
mum spanning trees.J. ACM, 42(2):321–328, 1995.

12. D.E. Knuth.The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley Publishing Company, Reading, MA, 1973.

13. M. Matos, B.N. Raby, J.M. Zahm, M. Polette, P. Birembaut,and N. Bonnet. Cell migra-
tion and proliferation are not discriminatory factors in the in vitro sociologic behavior of
bronchial epithelial cell lines.Cell Motility and the Cytoskeleton, 53(1):53–65, 2002.

14. R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger. Evaluation techniques for storage
hierarchies.IBM Systems Journal, 9:78–117, 1970.

15. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava. Coverage problems in
wireless ad-hoc sensor networks. InProc. INFOCOM ’01, pages 1380–1387, Anchorage,
AK, April 2001. IEEE Press.

16. G. L. Miller and V. Ramachandran. Efficient parallel ear decomposition with applications.
Manuscript, UC Berkeley, MSRI, January 1986.

17. Y. Moan, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS) and st-
numbering in graphs.Theoretical Computer Science, 47(3):277–296, 1986.

18. B.M.E. Moret and H.D. Shapiro. An empirical assessment of algorithms for constructing
a minimal spanning tree. InDIMACS Monographs in Discrete Mathematics and Theoreti-
cal Computer Science: Computational Support for Discrete Mathematics15, pages 99–117.
American Mathematical Society, 1994.

19. V.S. Pai, P. Ranganathan, and S.V. Adve. RSIM: an execution-driven simulator for ILP-based
shared-memory multiprocessors and uniprocessor. InProceedings of the 3rd workshop on
computer architecture education, 1997.

20. P. Sanders. Fast priority queues for cached memory.ACM J. Experimental Algorithmics,
5(7), 2000.www.jea.acm.org/2000/SandersPriority/.

21. X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Proceedings of the 11th
international conference on Architectural support for programming languages and operating
systems, pages 165–176, Bostaon, MA, 2004.

22. M. Snir and J. Yu. On the theory of spatial and temporal locality. Technical Report
UIUCDCS-R-2005-2611, University of Illinois at Urbana-Champaign, 2005.

23. R.E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm.SIAM J. Comput-
ing, 14(4):862–874, 1985.

24. Y.-C. Tseng, T.T.-Y. Juang, and M.-C. Du. Building a multicasting tree in a high-speed
network. IEEE Concurrency, 6(4):57–67, 1998.

25. U. Vishkin. On efficient parallel strong orientation.Information Processing Letters,
20(5):235–240, 1985.

26. S.Q. Zheng, J.S. Lim, and S.S. Iyengar. Routing using implicit connection graphs. In9th
Int’l Conf. on VLSI Design: VLSI in Mobile Communication, Bangalore, India, January 1996.
IEEE Computer Society Press.

27. Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping and structure splitting using
whole-program reference affinity. InProceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, pages 255–266, Washington, DC, 2004.

