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Abstract. Ant-based clustering and sorting is a nature-inspired heuristic for general
clustering tasks. It has been applied variously, from problems arising in commerce, to
circuit design, to text-mining, all with some promise. However, although early results
were broadly encouraging, there has been very limited analytical evaluation of the
algorithm. Toward this end, we first propose a scheme that enables unbiased interpre-
tation of the clustering solutions obtained, and then use this to conduct a full evaluation
of the algorithm. Our analysis uses three sets each of real and artificial data, and four
distinct analytical measures. These results are compared with those obtained using
established clustering techniques and we find evidence that ant-based clustering is a
robust and viable alternative.

1 Introduction

Ant-based clustering and sorting [4] was inspired by the clustering of corpses and larval-
sorting activities observed in real ant colonies [3]. The algorithm’s basic principles are straight-
forward [16]: ants are modelled by simple agents that randomly move in their environment,
a square grid with periodic boundary conditions. Data items that are scattered within this
environment can be picked up, transported and dropped by the agents. The picking and drop-
ping operations are biased by the similarity and density of data items within the ants’ local
neighbourhood: ants are likely to pick up data items that are either isolated or surrounded by
dissimilar ones; they tend to drop them in the vicinity of similar ones. In this way, a clustering
and sorting of the elements on the grid is obtained. Hence, like ant colony optimisation (ACO,
[6]), ant-based clustering and sorting is a distributed process that employs positive feedback.
However, in contrast to ACO, no artificial pheromones are used; instead, the environment
itself serves as stigmergic variable [5].

One of the algorithm’s particular features is that it generates a clustering of a given set
of data through the embedding of the high-dimensional data items onto a two-dimensional
grid; it has been said to perform both a vector quantisation and a topographic mapping at
the same time, much as do self-organising feature maps (SOMs, [12]). While this would be
an attractive property, (i) there has been little thorough analysis of the algorithm’s actual
performance in terms of clustering and (ii) it is unclear to what degree the sorting really is
topology-preserving (cf. [10]).

In this paper, we address only the first of the above issues: ant-based clustering, that is,
the algorithm’s application to pure cluster analysis. Towards this goal we present:� A technique to convert the spatial embedding generated by the ant algorithm, which im-

plicitly contains clusters, to an explicit partitioning of the data set.



� Results on synthetic and real data sets. Evaluation is done using four different analytical
evaluation measures. We compare the outcome to k-means and to hierarchical agglomer-
ative clustering based on the linkage metric of average link.

The remainder of this paper is structured as follows. Section 2 briefly introduces the problem
domain and Section 3 reviews previous work on ant-based clustering. Section 4 presents
the algorithms used within our comparative study. The employed test data and evaluation
measures are explained in Section 5. Results are presented and discussed in Section 6, and
Section 7 concludes.

2 Clustering

Clustering is concerned with the division of data into homogenous subgroups. Informally, the
objective of this division is twofold: data items within one cluster are required to be similar
to each other, while those within different clusters should be dissimilar. Problems of this
type arise in a variety of disciplines ranging from sociology and psychology, to commerce,
biology and computer science, and algorithms for tackling them continue to be the subject of
active research. Consequently, there exists a multitude of clustering methods, which differ not
only in the principles of the algorithm used (which of course determine runtime behaviour
and scalability), but also in many of their most basic properties, such as the data handled
(numerical vs. categorical and proximity data), assumptions on the shape of the clusters (e.g.,
spherically shaped), the form of the final partitioning (hard vs. fuzzy assignments) or the
parameters that have to be provided (e.g., the correct number of clusters).

The four main classes of clustering algorithms available in the literature are partitioning
methods, hierarchical methods, density-based clustering and grid-based clustering (see [1]
for an extensive survey). For the purpose of our comparative study we select two of the most
popular and well-studied algorithms: � -means, a representative of the class of partitioning
methods, and agglomerative average link clustering, which is a hierarchical approach. Both
algorithms are described in more detail in Section 4.

3 Ant-based clustering in the literature

Ant-based clustering and sorting was originally introduced for tasks in robotics by Deneubourg
et al. [4]. Lumer and Faieta [16] modified the algorithm to be applicable to numerical data
analysis, and it has subsequently been used for data-mining [17], graph-partitioning [15, 14,
13] and text-mining [11, 20, 10].

While many of the obtained results ‘look’ promising, there is a lack of knowledge on
the actual clustering performance of the algorithm. The evaluation of the results has, to a
large extent, been based on visual observation. Analytical evaluation has mainly been used
to track the progress of the clustering process, using evaluation functions (grid entropy and
local dissimilarity) that provide only very limited information on the overall quality of the
clustering and the sorting obtained [4, 16, 13, 20]. More enhanced analytical evaluation mea-
sures have been employed in [14] and [10] (non-metric stress and Pearson correlation), but
their focus is on measuring the degree of topology-preservation, not the clustering quality.
Classical evaluation measures for cluster analysis (cluster entropy and purity) have been used
in a single paper, which, unfortunately, merely provides results for one single run on a small
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document collection [11]. Only for the specialised application of graph-partitioning are an-
alytical results (error rate and inter-vertex cuts) on a family of pseudo-random graphs and
the corresponding values for the classical Fiduccia-Mattheyses heuristic, available [15]. Ad-
ditionally, the range of benchmark data sets employed has been very limited. Apart from the
pseudo-random graphs used by Kuntz et al. [15], one rather simple synthetical data set has
been used in most of the work.

Note that Monmarché has introduced an interesting hybridisation of ant-based clustering
and the � -means algorithm, and compared it to traditional � -means on various data sets, using
the classification error for evaluation purposes [18]. However, the results obtained with this
method are not applicable to ordinary ant-based clustering since it differs significantly from
the latter.

Looking at the previous evaluations of ant-based clustering, one is inclined to ask why
evaluation measures for cluster analysis have found so little application. Certainly, this is not
for a lack of measures, as the data-mining literature provides a large pool of functions for the
evaluation of partitionings both when the real cluster structure is known and when it is un-
known (cf. [7] for a survey). The main problem is one related to the nature of the algorithm’s
outcome: it does not generate an explicit partitioning but a spatial distribution of the data
elements. While this may contain clusters ‘obvious’ to the human observer, an evaluation of
the clustering performance requires the retrieval of these clusters, and it is not trivial to do this
without human interaction (e.g., ‘marking’ of the clusters) and without distorting the results
(e.g., by assuming that the correct number of clusters has been identified, as done in [15]).
A rigorous evaluation of the performance of ant-based clustering requires a solution to this
problem.

4 Algorithms

We will now detail the three algorithms used in our comparative study, starting with a short
description of the ant-based algorithm and the method developed to retrieve clusters from the
grid.

Ant-based clustering: While the ant algorithm is mainly based on the version described in
[10], a number of modifications have been introduced that improve the quality of the cluster-
ing, the time performance, and, in particular, the spatial separation between clusters on the
grid, which is essential for the scheme of cluster retrieval introduced below. A detailed de-
scription can be found in an extended version of this paper [9], and results on the qualitative
performance gains afforded by these extensions are provided in [8].

Cluster retrieval: In order to make the clusters identified by ant-based clustering explicit,
we apply an agglomerative hierarchical clustering algorithm to the positions of the data items
on the grid. The algorithm starts by assigning each data item on the grid to an individual
cluster, and proceeds by merging the two least distant clusters (in terms of spatial distance on
the grid) in each iteration, until a stopping criteria is met.

Given two clusters ��� and ��� on the grid and, without loss of generality, 	
����	��	
����	 , we
define their spatial distance in grid-space as��������������� ��� �!�#"$��"%� � �'&(�)� *+���-,/. ���(�!�#"$��"%� � �0&(�)�1*+���-,32 �4���(����� &(�)� *+���-,-5
Here, ���(�!�#"$��"%� � �0&(�)�1*+���-, is the standard single link linkage metric, i.e. the minimal distance
between all possible pairs of data elements � and 6 with �87 �9� and 6 7 ��� . In our case, the
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distance between two data elements is given by the Euclidean distance between their grid
positions. The term �4���(����� &(���(*+���-, is an additional scaling factor taking the relative sizes of
the clusters into account:����������� &��)� *+���-,:.<;=5?>8@BADC�E#F�GH&I;�5?>9@BJ�5K>L2 	
�)�M		 ����	 ,
Clearly, �4���(����� &(�)� *+���-, is restricted to the range &I;�*ONHP .

The spatial distribution generated by our version of the ant-based clustering algorithm
has two interesting features, which are necessary for the robust performance of this retrieval
scheme. These are, firstly, the high compactness of the clusters on the grid and, secondly, the
clear spatial separation between the individual clusters. Given these properties, an agglomer-
ative algorithm based on the single link criterion will clearly work very well and a stopping
criteria for the clustering algorithm can easily be derived. However, as data items around the
cluster borders are sometimes slightly isolated (so that they are prone to mislead the sin-
gle link metric by establishing individual clusters or ‘bridging’ gaps between clusters), we
have introduced the additional weighting term �����(����� &(���Q*+���-, that encourages the merging
of these elements with the ‘core’ clusters.� -means: The first algorithm we compare against is the well-known � -means algorithm.
Starting from a random partitioning, the algorithm repeatedly (i) computes the cluster centres
(i.e., the average vector of each cluster in data space) and (ii) reassigns each data item to the
cluster whose centre is closest to it. It terminates when no more reassignments take place. By
this means, the intra-cluster variance, that is, the sum of squares of the differences between
data items and their associated cluster centres, is locally minimised.� -means’ strength is its runtime, which is linear in the number of data elements, and its
ease of implementation. However, the algorithm tends to get stuck in suboptimal solutions
(dependent on the initial partitioning and the data ordering) and it works well only for spher-
ically shaped clusters. It requires the number of clusters to be provided or to be determined
(semi-) automatically.

In our experiments, we run � -means using the correct number of clusters � . Random
initialisation is used, and the best result out of 20 runs (in terms of minimum variance) is
selected in order to reduce the effects of local optima. If empty clusters arise during the
clustering process, these are reinitialised using a randomly selected data item.

Average link: As a second method, an agglomerative hierarchical clustering algorithm based
on the linkage metric average link is used. The algorithm starts with the finest partitioning
possible (i.e., singletons) and, in each iteration, merges the two least distant clusters. The
distance between two clusters ��� and ��� is computed as the average dissimilarity between all
possible pairs of data elements � and 6 with �:7 ��� and 6 7 ��� .

Hierarchical clustering methods are thought to give higher quality solutions than parti-
tioning methods. However, their runtime scales quadratically and results heavily depend on
the linkage metric used. Also, the derivation of appropriate stopping criteria can be difficult,
if the correct number of clusters is not known.

As for � -means, we provide the correct number of clusters, thus giving the same advantage
to both algorithms. The Ward updating formula [19] is used to efficiently recompute cluster
distances.
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5 Evaluation

Comparative results are presented for three synthetic test sets and three real data collections
taken from the Machine Learning Repository [2], which we describe below. In a preprocess-
ing step, the data vectors are normalised in each dimension, and, for the ant-based algorithm
and agglomerative clustering, all pairwise dissimilarities are precomputed. The employed dis-
tance function is the Euclidean distance1 for the synthetic data sets, and the Cosine measure2

for the real data sets.

Synthetic data: The Square1 data set is the type of data most frequently used within pre-
vious work on ant-based clustering. It is two-dimensional and consists of four clusters ar-
ranged as a square. They are generated by the Normal Distributions &�RS&IT�U#*+N�,-*+RV&�T4U#*ON�,�, ,&�RS& UW*ON�,-*XRS& UW*ON�,M, , &(RV&�T4U#*ON�,O*+RS&(U#*ON�,�, and &(RV& U#*ON=,-*+RV&�T4U#*ON�,�, , and are each of size N�U=> .
Hence, Square1 contains four spherically shaped clusters with equal spread. In the experi-
ments, a new sample is generated from these distributions in each run.N D- Y C and ;�>�> D- ;�> C are two examples of a range of benchmark test sets generated
and used for our comparative study. Every set Z D- [ C (where Z describes the dimensionality
of the data and [ gives the number of clusters) consists of U=> different instances, and we
generate each individual instance as follows. We specify a set of [\Z -dimensional normal
distributions RV&H]^ *_]` , from which we sample the data items for the [ different clusters in the
instance. The sample size � of each normal distribution, the mean vector ]^ and the vector
of the standard deviation ]` are themselves randomly determined using uniform distributions
over fixed ranges (with �a7Bb U=>�*MY_U=>cP , ^ � 7db >�*�;�>=>cP and ` � 7db >#*OUHP ).

Consequently, the expected size of instances of N D- Y C and ;�>�> D- ;�> C is ;�>�>�> and N�U=>=>
data items respectively. During the generation process, cluster centres are rejected if the re-
sulting distributions would have more than egf overlap. A different instance is used in each
individual run of the experiments.

Real data: The Iris data contains ;hUc> items described by Y attributes. Its e clusters are each of
size U=> . Two of them are linearly non-separable. The Breast Cancer Wisconsin data containsi J=J items described by J attributes. Its N clusters are of size YgU=j and NcY�; respectively. The
Yeast data contains ;�YgjcY data elements described by j attributes. Its ;�> clusters are of sizeY i e , Y_N=J , NcY�Y , ; i e , U#; , Y�Y , egU , e�> , N=>�> and U . The real data sets are arbitrarily permuted in
each run.

Evaluation functions: The clustering results of the different algorithms on the test sets are
compared using four different evaluation measures. The first two of them make use of the
correct classification, which is known for all six data sets.� The F-Measure uses the ideas of precision and recall from information retrieval. Each

class � (as given by the class labels of the used benchmark data set) is regarded as the set
of � � items desired for a query; each cluster 6 (generated by the algorithm) is regarded
as the set of � � items retrieved for a query; � �k� gives the number of elements of class �
within cluster 6 . For each class � and cluster 6 precision and recall are then defined as

1The synthetic test sets are generated in Euclidean space and the Euclidean distance is therefore the appro-
priate measure to use.

2On the real data sets taken from the Machine Learning Repository the Cosine measure outperforms the
Euclidean distance and is commonly used.
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l & � *16W,:.nmpo qm+q and r�& � *Q6#,�.sm�o qm�o , and the corresponding value under the F-Measure ist & � *16W,:. &�u+vw@x;h,32 l & � *16W,32�r�& � *16W,u v 2 l & � *16W,y@dr�& � *16W, *
where we chose uz.{; , to obtain equal weighting for l & � *16W, and r�& � *16W, . The overall F-
value for the partitioning is computed ast .}| � � ���~��H���� t & � *Q6#,+�_*
where � is the total size of the data set.

t
is limited to the interval b >�*�;�P and should be

maximised.� The Rand Index determines the degree of similarity (in terms of pairwise co-assignments)
between the known correct classification � and the solution � generated by a clustering
algorithm. It is defined as � . � @ �� @�u3@��:@ � *
where � *+u�*+� and � are computed for all possible pairs of data points � and 6 and their
respective cluster assignments ���w& � ,-*X�p��&D6W,-*+�-�/& � , and �-�/&D6W, :
� .�	 � � *16'	 �p��& � ,:.��p�w&�6W,=�����/& � ,:.}�-�:&D6W,O��	?*�u�.�	 � � *16'	 �p��& � ,:.��p�w&�6W,=�����/& � ,��.}�-��&�6W,O��	�*�9.�	 � � *16'	
���3& � ,��.}���w&�6#,c�����/& � ,:.��-��&�6W,O��	�* � .�	 � � *16'	 �p��& � ,��.��p�w&�6W,=�����/& � ,��.}�-��&�6W,O��	�5
R is limited to the interval b >�*�;pP and is to be maximised.� The Inner Cluster Variance computes the sum of squared deviations between all data
items and their associated cluster centre, which reflects the common agreement that data
elements within individual clusters must be similar. It is given by� . | �Q����| � ���)  & � * ^ � , v *
where � is the set of all clusters, ^ �

is the centroid of cluster � and   & � * ^ � , is the distance
function employed to compute the deviation between each data item � and its associated
cluster centre. It is to be minimised.� The Dunn Index determines the minimal ratio between cluster diameter and inter cluster
distance for a given partitioning. Thus, it captures the notion that, in a good clustering so-
lution, data elements within one cluster should be much closer than those within different
clusters. It is defined as ¡ . ~�¢D£�Q¤ ¥X���§¦   & ^ � * ^ ¥ ,~z�h��¨ ��� bk�g� �g© & � ,1P�ª *
where the diameter �g� �g© &��p, of a cluster � is computed as the maximum inner cluster
distance, and   & ^ � * ^ ¥ , is the distance between the centroids of clusters � and � . It is to be
maximised.
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Table 1: Results for « -means, hierarchical agglomerative average-link clustering and ant-based clustering on
three synthetic and three real data sets. The quality of the partitioning is evaluated using the F-Measure, the Rand
Index, the Inner Cluster Variance and the Dunn Index. Runtimes and the number of identified clusters (which
is automatically determined only for the ant algorithm) are additionally provided. The table shows means and
standard deviations (in brackets) for 50 independent runs. Bold face indicates the best and italic face the second
best result out of the three algorithms.

Square1 « -means average link ant-based clustering

#Clusters 4 (0) 4 (0) 4 (0)
F-Measure 0.987059 (0.00409363) 0.980654 (0.0076673) 0.982561 (0.00518902)
Rand Index 0.987212 (0.00398614) 0.981053 (0.00730242) 0.982828 (0.00503838)
Variance 0.461473 (0.0060167) 0.465201 (0.0086531) 0.463618 (0.00883593)
Dunn Index 3.78352 (0.105684) 3.22921 (0.298599) 3.64224 (0.249045)
Runtime 1.26 (0.795236) 4.24 (0.427083) 10.14 (1.74367)

2D-4C « -means average link ant-based clustering

#Clusters 4 (0) 4 (0) 4 (0.282843)
F-Measure 0.972734 (0.0740772) 0.997365 (0.018445) 0.990371 (0.0354898)
Rand Index 0.983066 (0.0464064) 0.998241 (0.012311) 0.99155 (0.031725)
Variance 0.177598 (0.16193) 0.127346 (0.0372185) 0.133784 (0.062165)
Dunn Index 4.45335 (2.09255) 5.10569 (1.61428) 5.02245 (1.78885)
Runtime 0.74 (1.09197) 6.8 (4.36807) 15.68 (6.60739)

10D-10C « -means average link ant-based clustering

#Clusters 10 (0) 10 (0) 10 (0)
F-Measure 0.971745 (0.0410038) 1.0 (0.0) 0.999986 (0.0000960888)
Rand Index 0.993207 (0.0118778) 1.0 (0.0) 0.999995 (0.0000318648)
Variance 0.411021 (0.160722) 0.331714 (0.0305796) 0.331777 (0.0305041)
Dunn Index 8.22036 (6.67596) 13.6787 1.90435) 13.445 (2.36789)
Runtime 46.04 (13.1559) 83.26 (33.2955) 19.2 (5.5715)

IRIS « -means average link ant-based clustering

#Clusters 3 (0) 3 (0) 3.02 (0.14)
F-Measure 0.824521 (0.0848664) 0.809857 (0.0) 0.816812 (0.0148461)
Rand Index 0.816599 (0.101288) 0.822311 (0.0) 0.825422 (0.00804509)
Variance 0.922221 (0.221044) 0.900175 (0.0) 0.880333 (0.00405812)
Dunn Index 2.65093 (0.4201) 2.5186 (0.0) 2.9215 (0.298826)
Runtime 0.16 (0.366606) 0.02 (0.14) 3.36 (0.48)

WISCONSIN « -means average link ant-based clustering

#Clusters 2 (0) 2 (0) 2 (0)
F-Measure 0.965825 (0.0) 0.965966 (0.0) 0.967604 (0.00144665)
Rand Index 0.933688 (0.065321) 0.933688 (0.0) 0.93711 (0.00273506)
Variance 1.61493 (0.0) 1.63441 (0.0) 1.61257 (0.000838131)
Dunn Index 5.47121(0.000178411) 4.91649 (0.000000284355) 5.4424 (0.0957218)
Runtime 0.06 (0.237487) 1.44 (0.496387) 10.54 (0.498397)

YEAST « -means average link ant-based clustering

#Clusters 10 (0) 10 (0) 5.36 (1.17915)
F-Measure 0.431505 (0.00443954) 0.448316 (0.0) 0.435396 (0.0345797)
Rand Index 0.750657 (0.00124985) 0.742682 (0.0) 0.678131 (0.0752791)
Variance 1.53798, (0.001611) 1.60028 (0.00000000652216) 1.89537 (0.115468)
Dunn Index 1.69692 (0.109608) 1.55563 (0.000000120366) 1.88049 (0.207959)
Runtime 1.7 (1.0247) 14.04 (0.0) 9.22 (0.54)
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6 Results

Table 1 gives the means and standard deviations (over 50 runs) obtained for each of these
measures. Additionally, it shows the average number of clusters (which is automatically de-
termined only for the ant algorithm) and the algorithms’ average runtimes. Note that the
timings reported for the ant algorithm do not include the time required for cluster retrieval.
This is justified as the cluster retrieval is a tool only necessary for the analysis process. In
a typical application, the user would be presented with the visual representation and, in an
interactive setting, clusters could then be identified with hardly any computational overhead.

Number of clusters: The results demonstrate that, if clear cluster structures exist within the
data, the ant algorithm is quite reliable at identifying the correct number of clusters. This is
the case both if the clusters are spatially well separated (as is the case in the test sets N D- Y�� ,
and ;�> D- Y C) and also if they touch but show clear density gradients (in Square1). Only on
the Yeast data the detected number of clusters is far too low. However, the F-Measure reveals
that all three algorithms perform very badly on this data, showing that both � -means and
agglomerative clustering equally fail to correctly identify the clusters in spite of the fact that
they have a priori knowledge of the correct number. This is an indication that the structure
within the data is not very pronounced.

Solution quality: With the exception of the Yeast data set, ant-based clustering performs very
well under all four measures. On the synthetic benchmarks, it always comes second best and
is very close to the best solution. On the first two real data benchmarks it even shows the
highest performance under three of the four measures.

It is interesting to note that on the ;�> D- ;�> C test data, where both agglomerative clustering
and ant-based clustering perform consistently well, � -means repeatedly generates very bad
solutions. This happens in spite of the fact that � -means’ solution is already the best selected
out of 20 runs, and it is a trend that can (to a lesser degree) also be observed on the test setN D- Y C. In the table this can be seen in the relatively high standard deviations in � -means’
results.

Runtime: For the small data collections, the ant algorithm’s runtimes are considerably higher
than those of � -means and hierarchical clustering. However, it is worth observing that they
scale linearly, such that ant-based clustering already outperforms the agglomerative scheme
on the Yeast data set. As � -means is affected by the rise in dimensionality, ant-based clustering
even becomes the fastest method on the ;�> D- N D data.

7 Conclusion

In contrast to previous studies on ant-based clustering and sorting, we have studied the algo-
rithm’s clustering solutions in isolation, in order to obtain an improved understanding of its
performance relative to other methods for clustering. Nonetheless, it should not be forgotten
that the mapping simultaneously provided by the algorithm is one of its most attractive fea-
tures. To what extent this mapping really is (or can be improved to be) topology-preserving
is investigated in [8].

Seen purely as a clustering algorithm, ant-based clustering performs well in our compari-
son to the popular methods of � -means and agglomerative hierarchical clustering. In addition
to that, the algorithm has a number of features that make it an interesting candidate for clus-
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ter analysis. Firstly, there is its linear scaling behaviour, which is attractive for use on large
data sets as are frequently encountered today, e.g., in information retrieval. Also, the nature
of the algorithm makes it fairly robust to the effects of outliers within the data. In addition,
ant-based clustering has the capacity to work with any kind of data that can be described in
terms of symmetric dissimilarities, and it imposes no assumption on the shape of the clusters
it works with. Finally, an important strength of the algorithm is its ability to automatically
determine the number of clusters within the data.
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