
MAS Methodology for HMS

Adriana Giret, Vicente Botti, and Soledad Valero

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, Spain

46022 Valencia, Spain
Phone: +34 96 387 7000

{agiret, vbotti, svalero}@dsic.upv.es

Abstract. Developments in Holonic Manufacturing Systems (HMS)
have been reported in three main areas: architectures, algorithms, and
methodologies for HMS. Despite the advancements obtained in the first
two areas the methodologies for HMS have not received great attention.
To date, many of the developments in HMS have been conducted in an
almost “empirical way”, without design methodology. There is a definite
need to have methodologies for HMS that can assist the system designer
at every development steps. This methodology should also provide clear
and unambiguous analysis and design guidelines. To this end, in this work
we present a Multi Agent Methodology for HMS analysis and design.1

1 Introduction

In the last ten years, an increasing amount of research has been devoted to
holonic manufacturing (HMS) over a broad range of both theoretical issues and
industrial applications. We can divide these research efforts into three groups
[1]: (i) Holonic Control Architectures, (ii) Holonic Control Algorithms and (iii)
Methodologies for HMS. In spite of the large number of developments reported in
the first two areas (for a detailed study see [1]), there is very little work reported
on Methodologies for HMS. In [2], a formal specification approach for HMS con-
trol is presented, but it is still in a developmental stage. There are no defined
development phases, and no detailed descriptions to explain how to model issues
such as cooperation in the holarchy, holon autonomy and system flexibility. In
[3], it is proposed an agent organization to model each holon/holarchy that is in-
dependent of any holon architecture. However, it is focused only on the holarchy
definition and does not define the development phases.

There is a definite need to have methodologies for holonic systems [1], that are
based on software engineering principles in order to assist the system designer at
each stage of development. This methodology should provide clear, unambiguous
analysis and design guidelines. We believe that methodologies from the Multi
Agent Technology (MAS) are good candidates for modeling HMS due to the
following: the similarities between the holonic and the agent approaches, the wide
1 This work is partially supported by research grants TIC2003-07369-C02-01 from the

Spanish Education Department and CICYT DPI2002-04434-C04-02.

V. Mař́ık, R.W. Brennan, M. Pěchouček (Eds.): HoloMAS 2005, LNAI 3593, pp. 39–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 A. Giret, V. Botti, and S. Valero

use of agents as the implementation tool for holonic systems, and the availability
of complete MAS Methodologies. However, there are some extensions that must
be included in a MAS methodology to be able to model the HMS requirements in
a proper way: holon recursive structure, system abstraction levels, HMS specific
guidelines, and a mixed top-down and bottom-up development approach.

In this work we present a MAS Methodology for HMS analysis and design.
Section 1, introduces the Abstract Agent notion to model the holon recursive
structure. Section 2, lists the requirements for a methodology for HMS and
Section 3, presents it. Finally, in Section 4, we summarize the conclusions and
future works.

2 Abstract Agent and Holon

The HMS consortium has defined the following holon characteristics and holonic
concepts [4]:

– Holon - an autonomous and cooperative building block of a manufacturing
system for transforming, transporting, storing and/or validating information
and physical objects. The holon consists of an information processing part
and often a physical processing part. A holon can be part of another holon.

– Autonomy - the capability of a holon to create and control the execution of
its own plans and/or strategies (and to maintain its own functions).

– Cooperation - the process whereby a set of holons develops mutually accept-
able plans and executes them.

– Self-organization - the ability of holons to collect and arrange themselves in
order to achieve a production goal.

– Holarchy - a system of holons that can cooperate to achieve a goal or objec-
tive. The holarchy defines the basic rules for cooperation of the holons and
thereby limits their autonomy.

An agent is an autonomous and flexible computational system that is able
to act in an environment [5].

Holons and agents are very similar concepts (for a detailed comparison of
these two notions see [6]). In [6], we pointed out that the recursive structure is the
only holon property that is not presented as such in the agent definition. To cope
with this limitation, in [7] we proposed the Abstract Agent notion as a modeling
artifact for autonomous entities with recursive structures. The Abstract Agent
extends the traditional agent definition adding a structural perspective to the
agent concept: ”... an Abstract Agent can be an agent; or it can be a MAS made
up of Abstract Agents ...”.

The Abstract Agent is an attempt to unify the concepts of holons and agents
and to simplify and close the gap between holons and agents in the analysis and
design steps. This will make it easer to translate the modelling products that are
obtained from methodologies for HMS into coding elements for the implemen-
tation of the holonic system. Thanks to the integration of the holon recursive
property into an Abstract Agent, the Abstract Agent is useful not only for HMS

MAS Methodology for HMS 41

but for the modeling of complex systems as well. An Abstract Agent that acts in
organizational structures can encapsulate the complexity of subsystems (simpli-
fying representation and design) and can modularize its functionality (providing
the basis for integration of pre-existing Multi Agent Systems and incremental
development). The Abstract Agent facilitates the modelling of organization of
organizations (as well as, Multi Agent Systems of Multi Agent Systems).

3 Requirements of a Methodology for HMS

Manufacturing requirements impose important properties on HMS [4]. These
properties define functional attributes and specific requirements for the HMS
structure and the HMS development process which must be considered in the
methodology. We have defined a HMS methodology requirements list based on
the study of the developments reported in HMS and on our experience with
software methodologies:

1. Manufacturing control systems require autonomous entities to be organized
in hierarchy and heterarchy structures [4].

2. Manufacturing control units require a routine-based behavior that is both
effective and timely [8].

3. A methodology for HMS should lead straight-forward from the control task
on a factory resource or factory function to autonomous entities [8,4].

4. A methodology for HMS should define a development process that is guided
by abstraction levels, and should also provide modeling artifacts, tools and
guidelines to manage this process.

5. A methodology for HMS should define a mixed top-down and bottom-up
development process.

6. A methodology for HMS should integrate the entire range of manufacturing
activities (from order booking through design, production, and marketing)
to model the agile manufacturing enterprise [4].

Bearing these requirements in mind we have studied software engineering
methodologies which are best suited for problems of this kind. This study has
demonstrated that MAS methodologies are good candidates to work with. To this
end, we have defined a MAS methodology for HMS which is based on INGENIAS
[9] (a complete MAS methodology that has good performance in the development
of complex systems). Our approach attempts to satisfy the requirements listed
in this section.

4 Methodology

In this section, we present a MAS methodology for HMS analysis and design
that is based on the Abstract Agent notion. Every software engineering method-
ology must define and provide notation, tools, and a development process. In the
followings sub-section, we present the notation and the development process of
our methodology. The development tools for this methodology will be available
in the near future. We use Abstract Agent and holon as similar notions [6].

42 A. Giret, V. Botti, and S. Valero

4.1 Notation

In our approach, the HMS is specified by dividing it in more specific character-
istics that form different views of the system. These views are defined in terms
of MAS technology; therefore, we talk about agents, roles, goals, beliefs, organi-
zations, etc. The views can be considered as general MAS models that can also
be applied to other domains. The way in which the views (models) are defined
[10,11] is inspired by the INGENIAS methodology. The extensions we have made
to the INGENIAS meta-models deal with the following: the addition of the Ab-
stract Agent notion and the properties to model real-time behaviours [12], the
redefinition of some relations to conform to the new modeling entities and the
dependencies between them. These extensions are motivated by requirements 1
and 2 of Section 3. Here we summarize the models:

– The agent model is concerned with the functionality of each Abstract Agent:
responsibilities and capabilities.

– The organization model describes how system components (Abstract Agents,
roles, resources, and applications) are grouped together.

– The interaction model addresses the exchange of information or requests
between Abstract Agents.

– The environment model defines the non-autonomous entities with which the
Abstract Agents interacts.

– The task/goal model describes relationships among goals and tasks, goal
structures, and task structures.

Figure 1 shows some graphical notations of our methodology. The next sec-
tion shows some example diagrams in which the usage of these notations in the
different models is illustrated.

G

Group
Goal

A

Abstract
Goal

GoalAgentRole

Task

G

Group
Believe

A

Abstract
Believe

Believe

EventResourceInteractionWorkFlowGroup

A

Abstract
Agent

A
Abstract

Task

Fig. 1. Some graphical notations of the methodology

4.2 The Development Process

The development process of our methodology provides the HMS designer with
clear and HMS-specific modeling guidelines. It also provides complete develop-
ment phases for the HMS life cycle. The development process is motivated by
requirements 3, 4, 5 and 6 of Section 3. In this section, we present the specifica-
tion of the development process using SPEM diagrams [13]. We also, illustrate

MAS Methodology for HMS 43

System Requirement
Analysis

Client/User

Use Case
Diagram

Analysis
Models

System
Architecture

Executable
Code

Requirements

Operation and
Maintenance

SetUp and
Configuration

Holons
Implementation

Holons
Design

Holons Identification and
Specification

Fig. 2. Stages of the methodology

the development process with modeling diagrams from a Ceramic Tile Factory
case study2. The tile factory is divided into departments each of which is in
charge of a specific function (marketing, tile design, production planning, fac-
tory, raw material warehouse, finished tile warehouse, etc.). The tile production
process is as follows: the clay is obtained, mixed, refined, dried, pressed or ex-
truded, decorated/glazed and baked in ovens known as kilns. The HMS for the
Tile Factory must: (i) integrate the different departments of the company, (ii)
arrange factory resources for both on-demand and stock production orders, and
(iii) automate resources and processes controls at different levels in the company.

The development stages are presented in Figure 2. The first stage, System
Requirements Analysis and the second stage Holons Identification and Specifica-
tion define the analysis phase of our approach. The aim of the analysis phase is
to provide high-level HMS specifications from the problem Requirements, which
are specified by the Client/User and which can be updated by any development
stage. The analysis adopts a top-down recursive approach. One advantage of a
recursive analysis is that its results, i.e the Analysis Models, provide a set of
elementary elements and assembling rules. The next step in the development
process is the Holons Design stage which is a bottom-up process to produce the
System Architecture from the Analysis Models of the previous stage. The aim
of the Holons Implementation stage is to produce an Executable Code for the
SetUp and Configuration stage. Finally maintenances functions are executed in
the Operation and Maintenance stage.

In the analysis phase (Figure 3a), the designer must specify the HMS in terms
of the models presented in Section 4.1 and the UML Use Case Diagrams. This is
a top-down, recursive, incremental process. The main goal of the analysis phase
is to identify the constituent holons and to provide an initial holon specification.

2 The case study requirements where defined in a joint research project between the
GTI-IA group and the CIGIP group of the Polytechnic University of Valencia.

44 A. Giret, V. Botti, and S. Valero

Requirements
Set

Domain
Definition

Use Case
Model

Requirements

HMS UC
GuidelinesDetermine

Use Cases

Specify Use
Cases

RealizationInteraction
Model

Organization
Model

Identify
Holons

PROSA
Guidelines

Task/Goal
Model

Environment
Model

Specify
Environment

Relations

Analysis
Models

Analysis Design

Agent
Model

Refine Holons
Specification

Build System
Architecture

Design
Models

Analysis Models
[from Analysis

Phase]

Requirements

JADE
Guidelines

Function
Block

Guidelines

System
Architecture

Function Block
Interface

Specification

JADE Agents
Templates

(a) (b)

Fig. 3. Analysis and design phases

The designer must produce the Analysis Models from the Requirements Set and
the Domain Definition. Each iteration of the analysis phase identifies and spec-
ifies holarchies of different levels of recursion (holons made up of holons). The
first iteration identifies an initial holarchy, which is made up of holons that co-
operate to fulfil the global system requirements. At the end of every iteration,
the designer must analyze each holon in order to figure out the advantages of
decomposing it into a new holarchy. In this way, each new iteration will have as
many concurrent processes as constituent holons of the previous iteration that
was decided to decompose. This process is repeated until every holon is com-
pletely defined and there is no need for further decompositions. The working
definitions of an iteration is as follows.

– The first step is to Determine Use Cases by building a Use Case Model
from the system Requirements. We have defined the HMS UC Guidelines
to help the designer to identify domains cooperations [14] and the system
goals as use cases. Use cases can be considered as simpler sub-problems that
taken together define the entire system. Figure 4a shows an initial Use Case
Diagram of the Tile Factory which is a work product of the first iteration of
the analysis phase.

– The use cases of the previous step are analyzed in the step Specify Use Cases
Realization. Every use case is represented as an Abstract Agent and the in-
teraction and relationships among them are modeled by building Interaction

MAS Methodology for HMS 45

Sell Tile

Buy Raw
Materials

Tile Design

Manufacture
Ceramic Tile

Analysis of
Forecasted Sales

Plan Production
Process

Schedule and Control
of Production Tasks Make Tile

Store Finished
Products

<<Extends>>

<<Extends>>

<<Extends>>

<<Extends>>

<<Extends>>

(a) UML Use Case Model

(b) Interaction Model

Factory

A

Scheduler

APlanner

A
lot scheduling<<iniciates>>

<<cooperates>>

Define New
Schedule

Modify
Schedule

A

Plan

<<consumes>>

A
New

Schedule

<<produces>>

A
Initial

Schedule

<<consumes>>

A
Modified
Schedule

<<produces>>

New
Order

Factory
Failure

Fig. 4. a) UML Use Case Diagram of the Ceramic Tile Factory. b) An Interaction

diagram for scheduling of factory tasks.

Models and Organization Models. Figure 5a illustrates the corresponding
Organization Model obtained from the Use Case model of Figure 4a.

– In the third step, Identify Holons, the designer works with the work products
of the previous step, the system Requirements, and the PROSA Guidelines
to identify any new Abstract Agent and to categorize the identified Abstract
Agents. The PROSA Guidelines are defined based on PROSA types of holons
[15]. Some sample rules for identifying holons are: (i) Each production means
(a factory, a department, a shop, machine, conveyor, pipeline, component,
tool, tool holder, personnel, etc.) and the information processing that con-
trols it, is modeled as an Abstract Agent; (ii) Each product definition or
recipe is modeled as an Abstract Agent; (iii) Each task in the manufactur-
ing system (customer order, make-to-stock order, prototype-making order,
order to maintain and repair resources, ect.), is represented as an Abstract
Agent. Based on these rules the designer must refine both the Organization
model and the Interaction model by adding new or modified relations and
interactions among holons in the cooperation domains. Figure 4b shows the
Interaction Model to define a new schedule for an order, or to modify a pre-
viously defined schedule due to factory failures or new orders. The Agent
Model (Figure 5b) is built to specify holon capabilities and responsibilities
in terms of tasks and goals which are described in detail in the Task/Goal
Model.

– The Environment Model is built in the fourth step, Specify Environment Re-
lations, to represent non-autonomous domain entities with which the holons
have to work.

In the design phase the initial system architecture, i.e. Analysis Models, must
be completed with details of the target implementation platform (Figure 3b).
This phase is divided into two steps.

46 A. Giret, V. Botti, and S. Valero

(a) Organization Model

(b) Agent Model

Tile Stock

A
Scheduler

A

Factory

A

Planner

A

Buy Dept.

A

A

Sales Dept.

Design Dept.

A

<<Belongs To>>

G
Manufacture

TileProduction
Dept.

<<cooperates>>

<<subordinated>>

<<subordinated>>To Sale
Tile

To Design
Tile

A

A

A

To Buy Raw
Materials <<in charge>>

<<cooperates>>

Manufacturing
A

Spray glaze
applicator

Spray glaze onto the tile

Save glaze

<<pursues>>

<<pursues>>
Glaze
per tile

Glaze
amount

Tile
Design

Tile
size

Flow back glaze
into the drum

Pump glaze
from drum

Calculate wasted
glaze per tile

Spray
tileDrums

<<has>>

Stage<<plays>>
Maximize tile meters per glaze and time

<<pursues>>

<<in charge>>

Fig. 5. a) An Organization Diagram of the Ceramic Tile Factory. b) The Agent Model

of the Spray glaze applicator holon.

– The first design step, Refine Holons Specification, is dedicated to complete
analysis models without taking into account platform modeling issues. The
designer must focus on the “atomic” holons of the previous phase in order to
complete their definitions. The Agent Model must be revised to include the
internal execution states of the holon and their transitions. The Task/Goal
Model must be analyzed to ensure that each agent goal has a corresponding
task that pursues it. Pre and post conditions have to be identified for every
modelled task. The Environment Model must be detailed to include the
resource attributes and the agents perceptions in terms of application events.
Once every atomic holon is completely specified, the designer must move
up to the nearest abstraction level in the holarchy structure, i.e., to the
cooperation domain in which the given holon interacts. Dependencies among
cooperation domains/holarchies are refined in the Organization Model. The
Interaction Model is enhanced with preconditions, task executions and effects
on the environment and on interacting holons. This bottom-up process must
be repeated until there is no higher cooperation domain in the Analysis
Models.

– The last design step is Build System Architecture. Our approach defines de-
sign guidelines to implement the HMS as proposed by Christensen in [16].
For high-level control (intra-holon information processing and inter-holon co-
operation), our methodology provides design guidelines for JADE [17]. For
the low level control (physical operations), our methodology provides design
guidelines for function blocks (IEC 61499 series of standards) [18]. The work
product of this step is the System Architecture composed of the Design Mod-
els (built in the previous step), the JADE Agent Templates and the Function
Block Interface Specification. A JADE Agent Template is produced for each

MAS Methodology for HMS 47

Function Block Interface
Specification

Agent ID

Normal Operation Sequence

Agent Platform

Resource Behaviour
Command

2ns

FB template code

Abnormal Operation Sequence

Actuator Sensor Output Time

3ns
1ns
1ns

Agent Task

Conveyor Belt
Holon Factory KT, WD, MT

Divert Tile to BeltHC2

Incoming Tile detected
Target Belt detected
Connect Belts
Tile in target Belt

INIT

E_SEN_IN SEN_INSTOPPER_OUT E_SET_STOPPER
E_SEND_STR A_ID

SEN_OUT_STRAIGHTE_SEND_STR
E_RECV_ID NEW_ID

Can’t connect belts
Stop source belt
Connect Belts
Tile in target Belt

Incoming Tile detected
Target Belt detected

Fig. 6. A Function Block Interface Specification for the task Divert Tile to Belt of the

Conveyor Belt Holon

public class GlazeLineManager extends Agent {
// The type of the applicator to find
private String typeApplicator;
// The list of known Glaze Applicators
private AID[] glazeApplicator;
// Put agent initializations here
protected void setup() {
….

//Add a SearchSprayGlazeBehaiour that schedules a request to Glaze Applicators every minute
addBehaviour(new SearchSprayGlazeBehaiour(this, 60000) {
protected void onTick() {
// Update the list of glaze applicators
DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescription();
sd.setType(“spray-glaze-applicator”);
template.addServices(sd);
try {
DFAgentDescription[] result = DFService.search(myAgent, template);
glazeApplicator = new AID[result.length];
for (int i = 0; i < result.length; ++i) {
glazeApplicator[i] = result.getName();
}
}
catch (FIPAException fe) {
fe.printStackTrace();
}
// Perform the request
myAgent.addBehaviour(new RequestPerformer());
}
});
...

Fig. 7. The JADE fragment code for the behaviour of the Glaze Line Manager to

search for a Spray Glaze Applicators in a glaze line

agent in the Design Models. The Function Block Interface Specification is
produced for the physical processing part of each agent representing physi-
cal processes, equipment or machines. The JADE Agent Template contains
JADE specific characteristics such as agent identifiers, agent behaviours,
agent communication and services. The Function Block Interface Specifica-
tion contains a table so that there is an ordered list of corresponding physical

48 A. Giret, V. Botti, and S. Valero

device commands and responses for every agent physical action (task). Fig-
ure 6 shows an example Function Block Interface Specification for the task
Divert Tile to Belt of the Conveyor Belt Holon.

From the System Architecture the Holons Implementation phase produces the
Executable Code for the HMS. In this phase the programmer has to implement
the information processing part of each JADE-agent and the physical processing
part of each agent representing physical processes, equipment or machines. For
the first task the designer may use the JADE programmers guide [17], and for
the second task he may use the programmers guide defined by the standard IEC
61499 [18]. Figure 7 shows an example JADE fragment code for the Glaze Line
Manager holon. To implement the intra-holon communication the programmer
can implement a blackboard system [19] or a special management service inter-
face function block [20]. Configuration activities are carried out in the SetUp
and Configuration phase to deploy the HMS at the target destination. Finally
in the Operation and Maintenance phase maintenance activities are performed.
In the case of new requirements, a new development process must be initiated.

5 Conclusion

In this work, we have presented the notation and development process of a MAS
methodology for HMS. In our approach the HMS is specified by dividing it
in more specific characteristics that form different views of the system. These
views are define based on INGENIAS (a proven MAS methodology for complex
systems) [9]. We have extended the INGENIAS models to be able to model the
HMS requirements properly. These extensions include the notion of Abstract
Agent [7] and the properties to model real-time behaviours [12]. They also include
the redefinition of some relations to conform to the new modeling entities and
the dependencies among them. The development process we have proposed is
a mixed top-down and bottom-up approach. The aim of the analysis phase is
to provide high-level HMS specifications from the problem Requirements, which
are specified by the Client/User and which can be updated by any development
stage. The analysis adopts a top-down recursive approach. One advantage of a
recursive analysis is that its results, i.e the Analysis Models, provide a set of
elementary elements and assembling rules. The next step in the development
process is the Holons Design stage which is a bottom-up process to produce
the System Architecture from the Analysis Models of the previous stage. The
aim of the Holons Implementation stage is to produce an Executable Code for
the SetUp and Configuration stage. Finally maintenances functions are executed
in the Operation and Maintenance stage. Our approach provides HMS-specific
guidelines to help the designer in every development step.

We are currently working on the evaluation of our methodology with in-
dustrial case studies; for example: the Ceramic Tile Factory presented in this
work, and an Assembly and Supplier Company of Automobile Parts. We are
also working on CASE tools for our methodology.

MAS Methodology for HMS 49

References

1. McFarlane, D., S., B.: Holonic Manufacturing Control: Rationales, Developments
and Open Issues. In: Agent-Based Manufacturing. Advances in the Holonic Ap-
proach. Springer-Verlag (2003) 301–326

2. Leitao, P., Restivo, F.: An Approach to the Formal Specification of Holonic Control
Systems. Holonic and Multi-Agent Systems for Manufacturing. LNAI 2744. ISSN
0302-9743 (2003) 59–70

3. Fischer, K., Schillo, M., Siekmann, J.: Holonic Multiagent Systems: A Foundation
fo Organisation of Multiagent Systems. Holonic and Multi-Agent Systems for
Manufacturing. LNAI 2744. ISSN 0302-9743 (2003) 71–80

4. HMS, P.R.: HMS Requirements. HMS Server, http://hms.ifw.uni-hannover.de/
(1994)

5. Wooldridge, M., Jennings, N.R.: Intelligent Agents - Theories, Architectures, and
Languages. Lecture Notes in Artificia Intelligence, Springer-Verlag. ISBN 3-540-
58855-8 890 (1995)

6. Giret, A., Botti, V.: Holons and Agents. Journal of Intelligent Manufacturing 15
(2004) 645–659

7. Giret, A., Botti, V.: Towards an Abstract Recursive Agent. Integrated Computer-
Aided Engineering 11 (2004) 165–177

8. Bussmann, S., Jennings, N., Wooldridge, M.: Multiagent Systems for Manufactur-
ing Control. A design Methodology. Springer Verlag (2004)

9. Pavon, J., Gomez, J.: Agent Oriented Software Engineering with INGENIAS. 3rd
International Central and Eastern European Conference on Multi-Agent Systems
(CEEMAS 2003) : V. Marik, J. Mller, M. Pechoucek:Multi-Agent Systems and
Applications II, LNAI 2691 (2003) 394–403

10. Giret, A., Botti, V.: Towards a Recursive Agent Oriented Methodology for Large-
Scale MAS. Agent-Oriented Software Engineering IV. LNCS 2935 (2004) 25–35

11. Giret, A., Botti, V.: On the definition of meta-models for analysis of large-scale
MAS. In: Multiagent System Technologies. LNAI 3187 (2004) 273–286

12. Julian, V., Botti, V.: Developing real-time multiagent systems. Integrated
Computer-Aided Engineering 11 (2004) 135–149

13. OMG, O.M.G.: Software Process Engineering Metamodel Specification Version
1.0. http://www.omg.org/docs/formal/02-11-14.pdf (2002)

14. Fletcher, M., Garcia-Herreros, E., Chritensen, J., Deen, S., Mittmann, R.: An
Open Architecture for Holonic Cooperation and Autonomy. Proceeding of Holo-
MAS’2000 (2000)

15. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference
Architecture for Holonic Manufacturing Systems: PROSA. Computers In Industry
37 (1998) 255–274

16. Christensen, J.: HMS/FB Architecture and Its Implementation. In: Agent-Based
Manufacturing. Advances in the Holonic Approach. Springer Verlag (2003) 53–88

17. JADE: Java Agent DEvelopment Framework. http://jade.tilab.com/ (2005)
18. IEC: International Electrotechnical Commission: Function Blocks, Part 1 - Soft-

ware Tool Requirenments.PAS 61499-2. (2001)
19. McFarlane, D., Kollingbaum, M., Matson, J., Valckenaers, P.: Development of

algorithms for agent-oriented control of manufacturing flow shops. In: Proceedings
of the IEEE International Conference on Systems, Man and Cybernetics. (2001)

20. Fletcher, M., Brennan, R.: Designing a holonic control system with iec 61499
function blocks. In: Proceedings of the International Conference on Intelligent
Modeling and Control. (2001)

	Introduction
	Abstract Agent and Holon
	Requirements of a Methodology for HMS
	Methodology
	Notation
	The Development Process

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

