
 

 

 

 

 

 

 

 

 

The Self-Tuning Memory 
Manager (STMM):  
A Technical White Paper 

 

 

 

 
 
 
 
Authors: 
Christian Garcia-Arellano 
Adam Storm 
Colin Taylor 

 

 

 

 

 

 

 

 

 



 

A. Introduction .........................................................................................................3 

Which parameters can STMM configure? .................................................................... 4 

Enabling and disabling STMM .......................................................................................... 4 

Enabling tuning for a parameter .................................................................................... 5 

Disabling tuning for a parameter ................................................................................... 6 
B. New or Changed in DB2 9...................................................................................6 

The new COMPUTED keyword ......................................................................................... 6 

The new DB_MEM_THRESH configuration parameter ........................................... 6 

Sort memory configuration changes in DB2 9.......................................................... 7 

Setting DATABASE_MEMORY to AUTOMATIC in DB2 9 ......................................... 7 

Setting DATABASE_MEMORY to a numeric value in DB2 9 ................................. 8 
C. STMM With Other DB2 Features ........................................................................8 

STMM and the Configuration Advisor ........................................................................... 8 

STMM with HADR.................................................................................................................. 9 

STMM with DPF ..................................................................................................................... 9 

Choosing a tuning partition ................................................................................. 10 

Updating the tuning partition............................................................................. 10 

Creating a non-tuned partition .......................................................................... 10 

STMM and the Balanced Warehouse .......................................................................... 11 
D. How STMM works..............................................................................................11 

Adapting the tuning cycle ............................................................................................... 11 

When the workload shifts ............................................................................................... 11 

Configuration persistence ............................................................................................... 11 
E. Experimental results .........................................................................................12 

Tuning From the Default Configuration ..................................................................... 12 

Dramatic Workload Shift ................................................................................................. 14 

Tuning multiple databases.............................................................................................. 15 
F. Special Considerations.....................................................................................16 

Platform support ................................................................................................................. 17 

File System Caching .......................................................................................................... 17 
G. Monitoring STMM ..............................................................................................18 

DB2 Tools .............................................................................................................................. 18 

Database configuration .......................................................................................... 18 

Database memory...................................................................................................... 19 

The tuning partition in a DPF environment................................................ 20 

The STMM agent.......................................................................................................... 21 

Operating System Tools .................................................................................................. 21 

Virtual memory............................................................................................................ 21 

Paging space ................................................................................................................. 23 

Logging................................................................................................................................... 23 

The db2diag.log file .................................................................................................. 23 
 



A. Introduction 

 

The Self-Tuning Memory Manager (STMM) solves two key problems with memory tuning: 1) 

an optimal memory configuration can be difficult to determine, and 2) any static memory 

configuration will be sub-optimal in the presence of dynamic workloads.  The feature works 

by iteratively modifying the memory configuration in small increments with the goal of 

improving overall system performance.   STMM makes its decisions with the help of new 

internal metrics that predict the effect that additional memory will have for a given heap.  

These metrics, when combined with STMM’s advanced tuning algorithms, can in most cases, 

tune a system from an out-of-the-box configuration to near-optimal memory usage in an 

hour or less.  This approach is well suited for industries where workload memory 

requirements can change dramatically over time. 

 

STMM improves performance and dramatically reduces the database’s total cost of 

ownership for small and large businesses alike.  Internal testing shows that it is effective at 

tuning database memory in performance-sensitive environments, with complex workloads, 

and in the presence of fluctuating system resource availability.  It works well in single-

partition and homogeneous multi-partition environments, providing fast convergence time, 

rapid adaptation, and stable response to noise.  In the vast majority of cases, even for 

steady-state workloads, STMM competes with the best tuning of human administrators.   

The feature also has a rich set of logged data, which allows the user to gain insights into 

how tuning decisions are being made. 

 

In general, STMM will be useful to the vast majority of DB2 9 users.  The feature is most 

useful in shops where knowledge of the DB2 memory model or where overall DBA skills are 

limited.  In shops where DB2 skills are plentiful, the feature can still be extremely useful 

when dealing with a new workload with unknown memory requirements or when a workload 

has volatile memory requirements.   

 

In environments where the workload has stable memory requirements, and skill levels in 

DB2 performance tuning and administration are particularly high, STMM can still be useful 

as a diagnostic tool.  In these environments, it is best to run STMM on a test system while 

closely monitoring the tuning decisions.  Then, before going into production, the 

configuration can be fixed (by turning STMM off) to ensure that the configuration doesn’t 

change. 

 

STMM is also particularly useful in Database Partitioning Feature (DPF) environments where 

each partition has similar memory requirements.  In these environments, STMM is able to 

tune all partitions at the same time.  If each partition in a DPF system does not have similar 

memory requirements, STMM can still be used if set up properly (as detailed later in this 

document). 

 

Similarly, on systems with many defined buffer pools, STMM can save a great deal of time 

and effort by automatically tuning the memory.  Not only does STMM utilize an advanced 

tuning algorithm for determining buffer pool sizes, but it is also able to adjust the memory 

configuration up to 120 times each hour.  These two factors combined allow STMM to reach 

a near optimal configuration dramatically faster than a human administrator.  

 

 

 

 

 

 



Which parameters can STMM configure? 

 
STMM can automatically tune the following parameters: 

 
• DATABASE_MEMORY – total database memory usage 

• MAXLOCKS – percentage of locklist granted to any given transaction 

• LOCKLIST- memory available for row or table locks 

• SHEAPTHRES_SHR – total amount of memory available for sorting 

• SORTHEAP – memory available for each sort 

• PCKCACHESZ – memory for compiled SQL package caching 

• Buffer pool size – memory for caching data and index pages 

 

When tuning the total database memory usage (the DATABASE_MEMORY parameter), STMM 

is able to balance the system’s memory across multiple DB2 databases.  In addition, STMM 

will also sense the memory requirements of other applications running on the system (even 

non-IBM applications) and will tune the memory accordingly so that the database’s memory 

consumption will not negatively impact the other applications.  

 

Additionally, STMM tunes the amount of free database memory that can be used when any 

of the following heaps run out of memory: 

 

• UTIL_HEAP_SZ – memory used for running utilities such as backup and load 

• DBHEAP – memory used for database control blocks 

• CATALOGCACHE_SZ – memory used for caching the system catalogs 

 

As a result of this overflow tuning, STMM is able to implicitly tune these parameters as well.  

This implicit tuning does not eliminate the need to suitably configure these parameters. 

However, it will help to prevent out-of-memory errors in cases where the memory usage for 

a given heap spikes unexpectedly. 

 

Currently, STMM cannot be used to tune Application Global Memory.  The same is true for 

Agent Private Memory and Agent/Application Shared Memory, with the exception of the 

SORTHEAP parameter (listed above).  To enable the SORTHEAP parameter for tuning, the 

database manager SHEAPTHRES parameter must be set to 0. 

 

Enabling and disabling STMM 

 

The STMM feature is automatically enabled for all newly created, non-partitioned DB2 9 

databases.  If your database is a partitioned database or has been upgraded from a 

previous DB2 version, the feature will have to be enabled manually. 

 

To enable the STMM feature, turn the SELF_TUNING_MEM database configuration parameter 

to ON: 

 
 update database configuration using SELF_TUNING_MEM ON 
 
The SELF_TUNING_MEM database configuration parameter is the main way to enable and 

disable the STMM feature. In addition to setting the value of this parameter, each memory 

heap that will be tuned by STMM must be independently activated for tuning. 

 

 

 

 



To disable the STMM feature, set the SELF_TUNING_MEM database configuration parameter 

to OFF: 

 
 update database configuration using SELF_TUNING_MEM OFF 
 

If the SELF_TUNING_MEM configuration parameter is changed using the described 

commands (i.e., using an established database connection), it takes effect immediately so 

no database restart is necessary. 

 

Enabling tuning for a parameter 

 

With SELF_TUNING_MEM set to ON, setting any of the self-tunable parameters to 

AUTOMATIC allows the parameter to be tuned by STMM.  Because memory is being traded 

between memory consumers, there must be at least two memory consumers enabled for 

self-tuning in order for memory tuning to occur. When SELF_TUNING_MEM is set to ON, but 

fewer than two memory consumers are enabled for self-tuning, memory tuning will not 

occur. The exception to this is the sort heap memory area, which can be tuned whether or 

not other memory consumers are enabled for self-tuning. 

 

To view the current setting for the SELF_TUNING_MEM parameter, use the GET DATABASE 

CONFIGURATION command and specify the SHOW DETAIL option. The possible values for 

the parameter are: 

 
Self Tuning Memory                          (SELF_TUNING_MEM) = OFF 
Self Tuning Memory                          (SELF_TUNING_MEM) = ON (Active) 
Self Tuning Memory                          (SELF_TUNING_MEM) = ON (Inactive) 
 

If the parameter shows ON (Active), the memory tuner is actively tuning the memory on 

the system. If the parameter shows ON (Inactive), it means that although the parameter is 

set ON, self-tuning is not occurring because fewer than two memory consumers are enabled 

for self-tuning. 

 

The following command can be used to enable tuning for the DATABASE_MEMORY 

parameter: 

 
 update database configuration using DATABASE_MEMORY AUTOMATIC 
 

For the buffer pools, the setting of the size to AUTOMATIC is done using either the create 
bufferpool statement or the alter bufferpool statement. This is an example of the 

alter bufferpool syntax used to enable tuning for an existing buffer pool: 

 
 alter bufferpool <bufferpool_name> size AUTOMATIC 
 

This command must be followed by a commit; the change takes effect after the transaction 

is committed. 

 

When setting a parameter to AUTOMATIC, a starting size can be optionally specified.  This 

can be done in the buffer pool case using the following command:  

 
 alter bufferpool <bufferpool_name> size <new_size> AUTOMATIC 

 

 

 

 



In this case, the buffer pool will start tuning from an initial size of 1000 pages.   

 

Similarly, in the case of a configuration parameter, the following command can be used: 

 
 update database configuration using DATABASE_MEMORY <new_size> AUTOMATIC 
 

In this case, the DATABASE_MEMORY parameter will start tuning from an initial size of 

<new_size> pages. 

 

Disabling tuning for a parameter 

 

Alternatively, setting a configuration parameter to MANUAL will prevent automatic tuning of 

the parameter and fix the parameter’s size at the current value.  The following command 

can be used to disable tuning for the PCKCACHESZ parameter: 

 
 update database configuration using PCKCACHESZ MANUAL 

 

Note that there is no MANUAL command for the buffer pools.  Instead, you can disable 

tuning for a buffer pool by setting its size to a numeric value.   This is an example of the 
alter bufferpool syntax used to disable tuning for an existing buffer pool: 

 
 alter bufferpool <bufferpool_name> size <new_size> 
 

B. New or Changed in DB2 9 

 

The new COMPUTED keyword 

 

Prior to DB2 9, it was possible to set DATABASE_MEMORY to AUTOMATIC.  This notion of 

AUTOMATIC was very different from the current AUTOMATIC behavior (where STMM 

automatically sizes the database shared memory set based on free physical memory).  Prior 

to DB2 9, if the user set DATABASE_MEMORY to AUTOMATIC, the database would compute 

the size of the database memory by summing up the heaps that are allocated out of the 

database shared memory set and then allocate a statically sized shared memory set.  If you 

want to maintain pre-DB2 9 AUTOMATIC behavior, you should set DATABASE_MEMORY to 

COMPUTED.  All databases that are upgraded to DB2 9 from previous DB2 versions will have 

the AUTOMATIC setting converted to COMPUTED.  

 

The new DB_MEM_THRESH configuration parameter 

 

The new DB_MEM_THRESH configuration parameter specifies how DB2 9 handles excess 

unused database shared memory.  Typically, as pages of memory are touched by a process, 

they are committed, meaning that a page of memory has been allocated by the operating 

system, and occupies space in physical memory and/or in a page file on disk.  Depending on 

the database workload, there may be peak database shared memory requirements at a 

certain time of day.  However, this means that the amount of database shared memory that 

has been committed by DB2 9 will stay at that peak requirement.   

 

This new database configuration parameter represents the maximum percentage of 

committed, but currently unused, database shared memory that DB2 9 will allow before 

starting to release committed pages of memory back to the operating system.  Acceptable 

values are whole numbers in the range of 0 to 100. The value 0 means disclaim all unused 

database shared memory, while the value 100 means never disclaim any unused database 



shared memory. The default value is 10, which means disclaim memory when more than 

10% of database shared memory is unused, and should be suitable for most workloads.   

 

Care should be taken when updating this parameter because setting the value too low could 

cause excessive memory thrashing on the box (memory pages constantly being committed 

and then disclaimed), and setting the value too high may prevent DB2 9 from releasing any 

database shared memory back to the operating system for other processes to use.  The 

configuration parameter is ignored (meaning that unused database shared memory pages 

will remain committed) if the database shared memory region is pinned through the 

DB2_PINNED_BP registry variable, configured for large pages through the 

DB2_LARGE_PAGE_MEM registry variable, or if disclaiming of memory is explicitly disabled 

through the DB2MEMDISCLAIM registry variable. 

 

Sort memory configuration changes in DB2 9 

 

Several changes were made to the sort memory configuration in DB2 9, two of which are 

noteworthy if you plan to use the STMM feature.  

 

The SHEAPTHRES_SHR parameter represents a limit on the total amount of database 

shared memory that can be used by sort memory consumers at any one time. The first 

change is that this limit was a hard limit before DB2 9, and is now a soft limit. This change 

to a soft limit allows the sort shared memory heap to consume additional, unreserved, 

database shared memory if needed. 

 

The other significant change is that in DB2 Version 8, sorts only used shared memory if 

INTRA_PARALLEL was set to ON or if the connection concentrator was enabled. In DB2 9, if 

the user sets the SHEAPTHRES database manager configuration parameter to 0, all sorts 

and other sort memory consumers will use shared memory (bound by the 

SHEAPTHRES_SHR parameter). This setting is a requirement for enabling tuning of the sort 

memory because the memory tuner only trades memory between memory consumers in 

database shared memory.  Having all sorts run in shared memory is enabled by default for 

newly created DB2 9 instances, but note that databases upgraded from previous versions 

will maintain their previous value of the SHEAPTHRES database manager configuration 

parameter. To revert to the DB2 Version 8 behavior (where some sorts run in private 

memory and some in shared memory), the user must set the SHEAPTHRES database 

manager configuration parameter to a value greater than 0. 

 

Setting DATABASE_MEMORY to AUTOMATIC in DB2 9 

 

If the DATABASE_MEMORY parameter is set to AUTOMATIC, the memory tuner will 

automatically adjust the amount of database shared memory allocated based on the amount 

of free physical memory available on the system at the time.  The amount of physical 

memory left free by a given DB2 database depends not only on the amount of physical 

memory on the system, but also on the database’s need for memory relative to the other 

active databases. When a given database is deeply in need of additional memory, it will 

maintain a small amount of free physical memory. Conversely, when a database has no 

need for additional memory, it will maintain a larger amount of free physical memory. This 

method allows databases to cooperate in the distribution of the system memory. 

 

We also note that a given database will not allocate more system memory unless it 

recognizes that it will benefit from the additional memory.  If the database will not benefit 

from additional memory, even if there is a large amount of memory free, the database will 

not take more memory.  Similarly, if a database has increased its memory consumption 



because of a need for more memory and then this need for memory decreases, the 

database will not free up any memory until there is a demand for memory by another 

database or application on the system.   

  

Setting DATABASE_MEMORY to a numeric value in DB2 9 

 

If you want to specify the amount of memory that a given database should consume, you 

should set DATABASE_MEMORY to a numeric value.  This value, in 4KB pages, represents 

the maximum amount of memory that the database will be allowed to consume.  If the 

value for DATABASE_MEMORY is larger than the sum of the heaps that comprise the 

database shared memory set, then the heaps that are set to AUTOMATIC will be able to 

grow by consuming some of the unused memory.  If, however, the DATABASE_MEMORY 

value is smaller than the sum of the heaps in the set, the AUTOMATIC parameters will be 

scaled down in an attempt to respect the setting of DATABASE_MEMORY. 

 

The setting of DATABASE_MEMORY to a numeric value is most useful in cases where the 

administrator knows how much memory should be devoted to a given database to achieve 

suitable performance.  The setting is also recommended on platforms that do not support 

the AUTOMATIC setting of DATABASE_MEMORY because it allows the AUTOMATIC heaps to 

grow up to the limit imposed by the specified value.  

 

C. STMM With Other DB2 Features 

 

STMM and the Configuration Advisor 

 
The first step in using STMM is to define the starting configuration for the memory heaps to 

be automatically tuned. The starting configuration will help STMM get to the optimal 

configuration faster, but it is not a requirement because STMM is able to get to the optimal 

configuration even if it is started from the default configuration values.  

 

If STMM is going to be activated on a previously tuned system, then the existing 

configuration should be a good starting point. For new systems, the best method for 

determining an appropriate initial configuration is to use the Configuration Advisor.  
 

The Configuration Advisor is accessible through a Command Line Processor (CLP) command, 

an API, or the Control Center, and it is also automatically invoked as part of the database 

creation in DB2 9. After just a few seconds of computation, it sets all the important memory 

configuration parameters and buffer pools by surveying the underlying resources such as 

the number of CPUs, the memory available, and the number and speed of the physical 

disks. The tool will tune most workloads very well, and can tune static OLTP workloads as 

well as performance experts.  

 

When running the Configuration Advisor, keep in mind the following two considerations. 

First, the configuration produced by the advisor is static, which is the main reason why it 

can only be used to generate an initial configuration for STMM.  If at any time there is a 

change in the workload or underlying resources, the configuration generated by the advisor 

may no longer be valid.  Second, the configuration recommended by the advisor depends 

greatly on the description of the workload given by the user. An inaccurate workload 

description will result in a sub-optimal initial configuration. 

 

 

 

 



STMM with HADR 

 

When STMM is activated on a HADR system, memory tuning will only occur on the primary 

server.  During takeover, when the secondary server becomes the primary server, STMM 

will be started on the new primary node (the former secondary node) and memory tuning 

will begin.  At the same time, tuning will be stopped on the new secondary node (the former 

primary node).  As a result, it may be advantageous to allow each server to run as the 

primary for a period of time before entering into production.  This will ensure that both 

servers are suitably configured from a memory perspective and will ease the memory tuning 

process after takeover occurs. 

 

STMM with DPF 

 

When using STMM in partitioned database environments, there are a few factors that 

determine how well the feature will tune the system. 

 

Enabling STMM on a DPF system 

 

To enable STMM in a DPF system, first set SELF_TUNING_MEM to ON on all partitions.  Then 

set the desired configuration parameters and buffer pools to AUTOMATIC on all partitions.  

Finally, for STMM to tune the memory of a DPF system, you must explicitly activate it on all 

partitions.  You can do this with the following command: 

 
 activate database <database_name> 

 

How STMM works on a DPF system 

 

When STMM is enabled in partitioned databases, a single database partition is designated as 

the tuning partition, and all memory-tuning decisions are based on the memory and 

workload characteristics of that database partition. Once tuning decisions are made on the 

tuning partition, the new memory configuration is distributed to all other database partitions 

to ensure that all database partitions maintain similar configurations.  In the case where 

there are only logical partitions (i.e., multiple database partitions running on the same 

physical machine), STMM assumes each partition has the same memory requirements.  

Conversely, if there are physical partitions (database partitions running on separate physical 

machines), STMM assumes each physical machine contains the same number of logical 

partitions (or that the physical memory to logical partition ratio is the same for all physical 

machines). 

 

If all partitions in the system are uniform (i.e., they are each running similar workloads and 

have similar memory requirements), then STMM will work properly across all partitions.  In 

this case, the configuration of each database partition will be the same as it would have 

been had there been only a single partition.  If, however, at least two partitions in the 

system have different memory requirements, STMM must be enabled on some partitions 

and disabled on others in order to function properly.  Since there is only one tuning partition 

for each database, enabling STMM on the largest subset of similar partitions will alleviate 

the greatest amount of tuning effort. 

 

In partitioned database environments, the SELF_TUNING_MEM configuration parameter will 

only show ON (Active) for the database partition on which the tuner is running. On all other 

partitions SELF_TUNING_MEM will show ON (Inactive) or OFF (if tuning has been disabled 

on the given partition). As a result, to determine if memory tuner is active in a partitioned 

database, the SELF_TUNING_MEM parameter must be checked on all database partitions. 



 

Choosing a tuning partition 

 

As described above, as STMM tunes more partitions in a DPF system, the amount of manual 

tuning required decreases.  As a result, it is desirable to have a large subset of partitions 

that STMM is able to tune.  In general, most DPF systems have partitions that are either 

catalog partitions, data partitions, or coordinator partitions, and each of these partition 

types have differing memory requirements.  As a result, at any given time it is advisable to 

configure STMM such that only partitions of the same type are being automatically tuned.  

 

Since there is only ever one catalog partition in a DPF system, this would generally be a bad 

choice for the tuning partition since only one partition will be tuned automatically.  As a 

result, choosing a tuning partition usually involves a choice between a data or coordinator 

partition.  Since, in most DPF systems, there are more data partitions than coordinator 

partitions, the best choice for the tuning partition will likely be a data partition.    

 

If no action is taken on the part of the user, STMM will automatically choose a tuning 

partition in an attempt to maximize the number of partitions that can be properly tuned.  To 

be eligible, a partition must not be the catalog partition; it must not constitute a single-

partition partition group and it must contain data.  The eligible partition with the most buffer 

pools is made the tuning partition.  In the case of a tie, the lowest numbered partition is 

chosen.   

 

Updating the tuning partition 

 

Even though there is an algorithm to automatically determine the STMM tuning partition, 

users are able to override this decision by setting the user-preferred tuning partition value.  

This is done through a new command in the ADMIN_CMD stored procedure. The syntax of 

the new command is as follows: 

 
CALL SYSPROC.ADMIN_CMD( 'update stmm tuning dbpartitionnum <db partition number>’ ) 

 

See the documentation for more details on the ADMIN_CMD procedure. 

 

The STMM tuner determines, on startup and periodically when running, whether the tuner is 

running on the user-preferred partition.  If it is not running on the user-preferred partition, 

this indicates that the user recently updated the tuning partition value using the above 

command.  When this is detected, the tuner will stop running on the given partition, update 

the current STMM partition number, and start up on the new partition. 

 

Creating a non-tuned partition 

 

Once a tuning partition is chosen (either automatically or manually) tuning must be disabled 

on all dissimilar partitions.  This is done by setting the SELF_TUNING_MEM database 

configuration parameter on that partition to OFF.   

 

Note that only the configuration parameters and buffer pools set to AUTOMATIC on the 

tuning partition will be tuned by the memory tuner since all tuning decisions are made 

based on STMM’s configuration on the tuning node. Also note that if the SELF_TUNING_MEM 

database configuration parameter is set to OFF on the tuning partition, then no tuning will 

occur on any partition. 

 

 



 

 

STMM and the Balanced Warehouse 

 

Currently, STMM is not recommended in a Balanced Warehouse environment.  Consult the 

Balanced Warehouse documentation for guidance on how to properly configure the database 

memory in that environment. 

 

D. How STMM works 

 

STMM works iteratively by making small adjustments to each tunable parameter and then 

collecting more data to determine if the adjustment made produced the simulated effect.  

Tuning the system with a series of small configuration changes rather than one large 

configuration change prevents large swings in system performance.  Making small changes 

also allows STMM to ensure that the tuning changes are having the desired effect before 

large amounts of memory are transferred between consumers. 

 

The tuning process occurs by alternating data collection and tuning cycles.  In the data 

collection cycle, STMM maintains a given configuration while collecting data on the effect of 

altering the memory.  In the tuning cycles, STMM uses the collected data to determine and 

set a new memory configuration.   

 

The default data collection period is 180 seconds, and in most cases 20 tuning cycles should 

be sufficient to produce a reasonable configuration.  As a result, for STMM to produce a 

reasonable system configuration, a workload must run on the system for at least an hour.  

Running a workload for a sustained period of time allows STMM to collect the data necessary 

to tune.  On systems with large amounts of memory (greater than 50 GB), or systems that 

start from poor initial configurations, reaching the final configuration may take longer.  

 

Adapting the tuning cycle 

 

STMM is able to adjust its tuning cycle based on the running workload and can tune as 

quickly as every 30 seconds or as infrequently as every 10 minutes.  If the workload is 

composed mostly of short transactions that are frequently repeated (i.e., an OLTP 

workload), STMM will choose a shorter data collection period and configuration changes will 

occur more frequently.  Conversely, if the running workload is composed of mostly long 

running queries (i.e., a DSS workload), the data collection period will be lengthened so that 

the collected data will be more representative of the entire workload and not just the 

portion of the workload that is running at a given time.  Adapting the tuning cycle is one 

way that STMM uses to prevent tuning oscillations. 

 

When the workload shifts 

 

In the presence of a workload shift, STMM can quickly adapt to the memory requirements of 

the new workload.  Tests conducted in the lab (mentioned later in this document) have 

shown that performance can begin to improve in the first tuning cycle with a near optimal 

configuration achieved in less than an hour in most cases. 

 

Configuration persistence 

 

All configuration changes made by STMM are written to disk so that when the database is 

shutdown, the configuration changes made by STMM are not lost.  As a result, while 

determining an optimal configuration may take some time when STMM is first enabled, once 



the configuration is determined, each database activation will start from the optimal 

configuration. 

 

E. Experimental results 

 

In this section, we discuss three experimental results that show different aspects of STMM 

tuning.  In the first experiment, we compare STMM to a benchmark configuration of an 

industry standard OLTP workload.  Through this experiment, we show how well STMM can 

tune a system with a static workload.  In the second test, we test STMM on a system 

undergoing dramatic changes to its memory requirements.  These tests show how STMM is 

able to adapt to changing memory requirements in a single database. In the last 

experiment, we show how STMM is able to tune the total amount of memory used by 

multiple databases sharing the same machine. This test shows how users can exploit the full 

power of their machines at all times by using all the available memory. 

 

Tuning From the Default Configuration 

 

In evaluating a database memory tuning feature, the most convincing result would be to 

show that the tuner is able to take an out-of-the-box configuration and tune it to an 

“optimal” configuration in a reasonable amount of time.  The main problem with conducting 

such a test is that, typically, there is no easy way to determine the optimal memory 

configuration for a given workload.  In this case, we compare the results obtained by the 

memory tuner with those obtained using a benchmark configuration. We use a benchmark 

configuration because benchmark results produce the most highly tuned memory 

configurations, which can be considered “optimal” for this particular workload running on 

DB2 9. The benchmark configuration used was a result of a significant number of manual 

hours of tuning by a number of DB2 performance-tuning experts. 

 

To test STMM using this new metric, we conducted experiments on an industry standard 

transaction-processing benchmark.  The test system was configured to use 14 buffer pools, 

and we started each buffer pool at 1000 pages, which is the default size for newly created 

buffer pools in DB2 9.  For these tests, sort, lock memory, and SQL query cache memory 

were not tuned since they are not relevant for this benchmark as its transactions are small 

(i.e., they use very little locking memory), have no sorts, and require very little package 

cache memory to run.  When publishing a benchmark on this workload, it is always the 

buffer pool configuration that is most difficult to derive and it usually takes weeks of hand-

tuning to finalize.   

 

For these experiments, we ran the workload on a machine with 128 GB of physical memory, 

housing the 1.95 TB database.   

 

Figure 5 shows the tuning effect on the sizes of the six largest buffer pools during execution 

of the workload.  The figure shows three phases of tuning.  In the first phase, STMM takes 

the system from the default configuration to a configuration within 10% of the hand-tuned 

result.  In the second phase of tuning, the buffer pools are finely tuned to arrive at the 

desired final configuration.  Finally, in the third phase, STMM makes only very minor 

adjustments to the system.   

 

 

 

 

 

 



 

 

 

Figure 5: Sizes of the six largest buffer pools during transaction processing workload 

 

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

22000000

2
3
:2
4
:5
1

2
3
:2
7
:5
5

2
3
:3
1
:3
1

2
3
:3
5
:0
7

2
3
:4
3
:0
5

2
3
:5
0
:5
4

0
:0
1
:1
0

0
:0
5
:5
8

0
:1
6
:3
4

0
:2
8
:0
5

0
:4
7
:5
5

1
:0
8
:1
7

1
:5
2
:1
4

2
:2
4
:3
5

2
:4
3
:4
5

2
:5
5
:3
4

3
:0
6
:5
9

3
:1
9
:4
0

3
:3
3
:0
9

3
:4
8
:2
1

3
:5
5
:2
8

4
:0
5
:3
8

4
:1
9
:3
1

4
:2
9
:4
5

4
:3
9
:4
1

4
:4
7
:5
7

4
:5
5
:1
0

5
:0
3
:2
6

5
:0
8
:0
7

5
:1
6
:1
4

5
:2
4
:5
8

5
:3
2
:4
0

5
:3
8
:3
0

5
:4
4
:4
9

Time

B
P
 S
iz
e
 i
n
 4
K
 P
a
g
e
s

BP 1 BP2 BP3 BP4 BP 5 BP 6

Phase 1 Phase 2 Phase 3

 
 

The workload performance during the run is shown in Figure 6. The performance of the 

system as illustrated in the figure can be seen in the same three phases.  In the first phase, 

STMM takes the system from 783 transactions per second to 2,318 transactions per second.  

In the second phase, while STMM is fine-tuning the configuration, performance oscillates 

around 2,330 transactions per second.  Finally, in the third phase, performance stabilizes at 

2,385 transactions per second.  This shows the dramatic impact that STMM can have on a 

workload; in this case, STMM improved performance by over 300%, most of which is 

achieved in the first hour and a half of tuning.   

 

Figure 6: System performance during STMM tuning 

 

0

400

800

1200

1600

2000

2400

2
2
:5
4
:4
2

2
3
:0
6
:0
4

2
3
:1
7
:2
4

2
3
:2
8
:4
4

2
3
:4
0
:0
4

2
3
:5
1
:2
4

0
:0
2
:4
4

0
:1
4
:0
4

0
:2
5
:2
5

0
:3
6
:4
5

0
:4
8
:0
5

0
:5
9
:2
5

1
:1
0
:4
5

1
:2
2
:0
5

1
:3
3
:2
6

1
:4
4
:4
6

1
:5
6
:0
6

2
:0
7
:2
6

2
:1
8
:4
8

2
:3
0
:0
8

2
:4
1
:2
9

2
:5
2
:4
9

3
:0
4
:0
9

3
:1
5
:2
9

3
:2
6
:4
9

3
:3
8
:0
9

3
:4
9
:2
9

4
:0
0
:5
0

4
:1
2
:1
0

4
:2
3
:3
0

4
:3
4
:5
0

4
:4
6
:1
0

4
:5
7
:3
0

5
:0
8
:5
0

5
:2
0
:1
0

5
:3
1
:3
1

5
:4
2
:5
1

Time

T
ra
n
s
a
c
ti
o
n
s
 P
e
r 
S
e
c
o
n
d

Phase 1 Phase 2 Phase 3

 



 

To determine how close the final configuration was to the hand-tuned result, we performed 

a second run using the final memory configuration and turning STMM off (also removing any 

small effect that tuning might have on the system).  In this test, we found that the STMM-

generated configuration resulted in an average transaction rate of 2,423 transactions per 

second compared to the baseline configuration of 2,419 transactions per second (a 

difference of 0.16%, which is within the inter-run variability of the workload on the test 

machine).  From this second run with STMM off, it can also be observed that even with 

STMM actively tuning a system, the performance can be within 1.4% of the hand-tuned 

result. 

 

Dramatic Workload Shift 

 

One common problem with memory tuning arises from the fact that memory demands are 

not uniform throughout a typical day.  For example, during regular business hours a 

database server may be processing simple transactions.  Then, once the business day ends, 

the database will spend the next 8 hours running complex decision-support queries to 

provide data to be used for the next business day.  This presents a challenge for an 

automated memory tuning system because the tuner must be able to quickly shift the 

memory to where it is most needed. 

 

To simulate such an environment, we conducted an experiment where the database began 

by running one type of query and then, once the memory configuration stabilized, the 

workload shifted to more complex queries.  At first we ran 16 concurrent streams of one of 

the queries in an industry standard decision-support testing workload with low requirements 

for sort memory (Q13).  Then, once the memory configuration stabilized, we changed the 

workload to 16 concurrent streams of another query of the same workload, which is 

substantially more complex, contains multiple sub-queries, and has much higher 

requirements for sort memory (Q21).  This shift from query Q13 to query Q21 places 

considerable pressure on the sort memory and should force the memory to be dramatically 

reallocated.   

 

Figure 7: Workload Shift - Memory Distribution 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
u
m
b
e
r 
o
f 
4
K
B
 P
a
g
e
s
 (
in
 m

il
li
o
n
s
)

BUFFER POOL 2 SORT MEMORY BUFFER POOL 1

Q13 - 16 streams - No Sort Workload Q21 - 16 streams - Sort Intensive Workload

 
 



In Figure 7, we can see the memory distribution shift over the course of the run.  Once the 

streams of query Q13 stop and query Q21 starts running, we see a dramatic increase in the 

amount of sort memory allocated to the database.  By the time the system has converged, 

the database has reserved more than 8 GB of memory for sorting.  As Figure 8 shows, this 

memory distribution shift has a dramatic effect on the workload performance. 

 

Figure 8: Workload shift query performance 

0

2

4

6

8

10

12

14

16

Q
u
e
ry
 T
im

e
 A
v
e
ra
g
e
d
 O
v
e
r 
1
6
 R
u
n
s
 (
 i
n
 H
u
n
d
re
d
s
 o
f 
S
e
c
o
n
d
s
)

Q13 - No Sort Workload Q21 - Sort Intensive Workload

356%

69%

 
 

In the first stage of the run, we can see that the memory distribution is stable as the 16 

streams of query Q13 complete consistently in around 281 seconds.  Once the workload 

shifts, however, it is clear that the system’s memory is not properly configured for query 

Q21.  At this point, STMM begins redistributing the database memory and the resultant 

dramatic effect on performance can be observed as quickly as the second run of the 

queries; by this time, performance has already improved by 69%.  After several more runs 

of the query, response time stabilizes and a performance improvement of 356% can be 

observed when compared to the first execution of query Q21.  This not only shows how 

critical sort memory can be to a database system, but also how effective STMM can be at 

supplying the sort memory when necessary. 

 

Tuning multiple databases 

 

One difficult issue database administrators face when tuning memory is determining the 

total amount of system memory to dedicate to a given database. The problem is 

compounded when the system administrator is dealing with multiple databases, each of 

which may run at different periods of time in a single 24-hour window.  If each database is 

configured with a static amount of memory, which is commonly the case, a good portion of 

the system memory will be unutilized during periods where one or more of the databases 

are not active. 

  

To test STMM in an environment where multiple databases are competing for a single 

system’s memory, we conducted an experiment with two identical databases running the 

same workload.  In building the databases, it was necessary to ensure that both databases 

had the same physical design, resided on the same number of disks, and that the disks 



were of the same speed, since even the slightest difference in any of these variables could 

have skewed the memory requirements for the databases.  The tests were run on a 

machine with 8 processors and 32 GB of physical memory.   Each of the 2 databases was 

loaded with 15 GB of raw data.  The workload being run by each of the databases consisted 

of 4 clients, each running 22 queries used in an industry standard decision-support 

workload. 

 

Figure 9 shows the database memory usage for the two databases during the 20-hour run.  

The first database is activated with the default configuration and the workload is started.  In 

the first hour, STMM gives all of the system memory to this database because there are no 

other applications running on the system. After six hours, the second database is activated 

with the default configuration and begins running the same workload. As expected, two 

hours later both databases are sharing the system memory equally.  A few hours after the 

memory is evenly distributed, the second database stops running the workload but remains 

activated. The dramatic difference in relative database activity that follows causes STMM to 

take memory from the second database and give it back to the first database. 

 

Figure 9: Total database memory tuning 

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

M
il
li
o
n
s

Time in seconds

4
K
B
 P
a
g
e
s

 
 

F. Special Considerations 

 

Tuning databases in separate instances 

 

STMM is able to tune databases in separate instances the same way it tunes databases in 

the same instance.  In fact, the “Tuning Multiple Databases” result presented in the 

previous section was a case of two databases in separate instances.  No special 

considerations are required if the databases being tuned are in separate instances. 

 

Related configuration parameters 

 

Two sets of configuration parameters are related in that the setting of one parameter has a 

dependency on the other parameter.  The first set of parameters is MAXLOCKS and 

LOCKLIST.  When either MAXLOCKS or LOCKLIST is set to AUTOMATIC, the other parameter 



must also be set to AUTOMATIC.  This implies that when one of the parameters is not set to 

AUTOMATIC, neither must be set to AUTOMATIC. 

 

The second set of parameters is SHEAPTHRES, SHEAPTHRES_SHR, and SORTHEAP.  As 

mentioned above, before sort memory can be tuned, SHEAPTHRES must be set to 0.  If 

SHEAPTHRES is not set to 0 and both SORTHEAP and SHEAPTHRES_SHR are set to 

AUTOMATIC, no tuning will occur.  Additionally, when SHEAPTHRES_SHR is set to 

AUTOMATIC, SORTHEAP must also be set to AUTOMATIC.  If SHEAPTHRES_SHR is not set to 

AUTOMATIC, SORTHEAP can still be set to AUTOMATIC and, if SHEAPTHRES is set to 0, the 

SORTHEAP value will be tuned within the limit specified by SHEAPTHRES_SHR. 

 

Platform support 

 

The support for setting DATABASE_MEMORY to AUTOMATIC (thus tuning the total amount of 

memory available to the database) is only available on AIX® and Windows® platforms.  On 

other platforms (Linux®, Solaris, HP, etc.), DATABASE_MEMORY can only be set to 

COMPUTED or a numeric value. 

 

File System Caching 

 

Disabling file system caching for all table spaces that use a buffer pool that STMM will tune 

may improve system performance. 

 

In some cases, particularly when LOBs or LONG data is involved, file system caching can 

help system performance.  In most cases, however, file system caching can cause pages 

moving between disk and DB2 to be double cached – once by the operating system and 

once by a DB2 buffer pool.    To avoid this double caching, you can disable the file system 

cache, thereby enabling non-buffered I/O.  By moving to non-buffered I/O, you free up 

system memory that STMM can use to improve database performance.  Additionally, by 

allowing STMM to tune the buffer pool serving table spaces for which you have disabled file 

system caching, you decrease the likelihood that the performance of the table space will be 

negatively impacted by the move to non-buffered I/O. 

 

If you are going to take the step to disable file system caching for one or more table spaces, 

it is best to first move LOBs and LONG data into their own table space, and then disable file 

system caching for the remaining table spaces.  You can disable file system caching by 

creating or altering a table space with the NO FILE SYSTEM CACHING clause. 



G. Monitoring STMM 

 

DB2 Tools 

 

Database configuration 

 

To retrieve the current values of the configuration parameters set to AUTOMATIC, use the 
show detail clause when issuing a “get database configuration” command.  To use the 

show detail clause, you must first establish a connection to the database. This is an 

example of the result (only showing the relevant configuration parameters): 
 
get database configuration show detail 
 
Database Configuration for Database mydb1 
 
Description                             Parameter          Current Value     Delayed Value 
--------------------------------------------------------- 
Size of database shared memory (4KB)   (DATABASE_MEMORY) = AUTOMATIC(32224)  AUTOMATIC(25380) 
Max storage for lock list (4KB)        (LOCKLIST)        = AUTOMATIC(12928)  AUTOMATIC(12928) 
Percent. of lock lists per application (MAXLOCKS)        = AUTOMATIC(98)     AUTOMATIC(98) 
Package cache size (4KB)               (PCKCACHESZ)      = AUTOMATIC(6185)   AUTOMATIC(6463) 
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR)  = AUTOMATIC(9306)   AUTOMATIC(5115) 
Sort list heap (4KB)                   (SORTHEAP)        = AUTOMATIC(122)    AUTOMATIC(122) 
 

In the above output, “Current Value” is the value used by the currently running database.  

The “Delayed Value” is the value of the configuration parameter on disk, which will be 

applied the next time the database is stopped and restarted. 

 

When a buffer pool size is set to AUTOMATIC, the NPAGES value in the buffer pools catalog 

view will be set to -2. In the following example of a query of the syscat.bufferpools view, 
you can see that BUFFERPOOL_16K is set to AUTOMATIC. 
 
select distinct char(bpname,18) as bpname, bufferpoolid, npages from 
syscat.bufferpools 
 
BPNAME             BUFFERPOOLID NPAGES 
------------------ ------------ ----------- 
IBMDEFAULTBP                  1      136730 
BUFFERPOOL_16K                2          -2 
 

To retrieve the current size of a buffer pool set to AUTOMATIC, use db2pd or the Snapshot 

Monitor.  This is the db2pd output: 

 
$ db2pd -database MYDB1 -bufferpools 
 
Database Partition 0 -- Database MYDB1 -- Active -- Up 0 days 01:00:56 
 
Bufferpools: 
First Active Pool ID      1 
Max Bufferpool ID         1 
Max Bufferpool ID on Disk 1 
Num Bufferpools           5 
 
Address            Id   Name               PageSz     PA-NumPgs  BA-NumPgs    
      BlkSize    NumTbsp    PgsToRemov CurrentSzCurrentSzCurrentSzCurrentSz  PostAlter  SuspndTSCt 
... 
0x070000003044F940 1    IBMDEFAULTBP       4096       30445      0           
      0          4          0          30445304453044530445      30445      0          
... 
 

 

 



Here is the Snapshot Monitor output: 

 
$ db2 get snapshot for bufferpools on MYDB1 
 
 
             Bufferpool Snapshot 
 
Bufferpool name                            = IBMDEFAULTBP 
Database name                              = MYDB1 
Database path                              =   
                                /home/colint/colint/NODE0000/SQL00001/ 
Input database alias                       = MYDB1 
Snapshot timestamp                         = 05/18/2007 12:07:13.684986 
... 
Node number                                = 0 
Tablespaces using bufferpool               = 4 
 
Alter bufferpool information: 
 Pages left to remove                      = 0 
 Current size                              = 30445304453044530445 
 Post-alter size                           = 30445 
 
Database memory 

 

The DB2 tools for monitoring the sizes of the memory heaps are db2pd, the Snapshot 

Monitor, the DB2 Memory Tracker and the DB2 Memory Visualizer. These tools allow the 

user to know the current size of the memory heaps.  Here is a db2pd example: 
 
$ db2pd -database MYDB1 –mempools 
 
Database Partition 0 -- Database MYDB1 -- Active -- Up 0 days 00:19:45 
 
Memory Pools: 
Address            MemSet  PoolName   Id    Overhead   LogSz       ... 
... 
0x0700000030001650 MYDB1   pckcacheh  7     151744     1103562     ... 
0x0700000030001130 MYDB1   bph        16    97728      130878528   ...  
0x0700000030000EA0 MYDB1   bph        16    0          543616      ... 
0x0700000030000C10 MYDB1   bph        16    0          281472      ... 
0x0700000030000980 MYDB1   bph        16    0          150400      ...   
0x07000000300006F0 MYDB1   bph        16    0          84864       ...   
0x07000000300005A8 MYDB1   shsorth    18    0          12736       ... 
0x0700000030000460 MYDB1   lockh      4     0          16401408    ...   
0x0700000030000318 MYDB1   dbh        2     409696     19472159    ... 
... 

 

Here is a DB2 Memory Tracker example: 

 
$ db2mtrk -d 
Tracking Memory on: 2007/05/18 at 11:29:48 
 
Memory for database: MYDB1   
 
   utilh       pckcacheh   other       catcacheh   bph (1)     bph (S32K)   
   64.0K       1.2M        192.0K      320.0K      125.4M      640.0K       
 
   bph (S16K)  bph (S8K)   bph (S4K)   shsorth     lockh       dbh          
   384.0K      256.0K      192.0K      192.0K      15.7M       19.4M        
... 
 
The DB2 Memory Visualizer provides the same information and can also be used to plot the 

recent memory heap size history. 



 

 
 

 
 

The tuning partition in a DPF environment 

 

The ADMIN_CMD procedure can be used to determine the user-preferred and current STMM 

tuning database partition number. The syntax of the new command is as follows: 

 

CALL SYSPROC.ADMIN_CMD( ‘get stmm tuning dbpartitionnum’ ) 

 

And this is an example of the result: 

 
          USER_PREFERRED_NUMBER CURRENT_NUMBER 
      --------------------- -------------- 
                          1              1 

 

If the two values in the above output are not equal, it indicates that the user has requested 

that the tuner move to a new partition but that request has not yet been processed.  In 

general, the process will be carried out within 10 minutes of being issued.  If the user wants 

to force the movement of the tuner to the new partition, this can be done by deactivating 

and reactivating the database, at which point the tuner will move immediately. 

 

See the documentation for more details on the ADMIN_CMD procedure. 



 

The STMM agent 

 

If you want to monitor the STMM agent, you can obtain some rudimentary information 
through the list applications command.  That command has the following output (with 

the STMM agent information bolded): 

 
db2 list applications 
 
Auth Id  Application   Appl.    Application Id                DB       # of 
         Name          Handle                                 Name    Agents 
-------- ------------- -------- ----------------------------- -------- ----- 
USER     db2wlmd       411      *LOCAL.DB2.070323132434       SAMPLE   1     
USER     db2taskd      410      *LOCAL.DB2.070323132433       SAMPLE   1     
USER     db2stmm       409      *LOCAL.DB2.070323132432       SAMPLE   1    USER     db2stmm       409      *LOCAL.DB2.070323132432       SAMPLE   1    USER     db2stmm       409      *LOCAL.DB2.070323132432       SAMPLE   1    USER     db2stmm       409      *LOCAL.DB2.070323132432       SAMPLE   1        
USER     db2bp         408      *LOCAL.user.070323132429      SAMPLE   1     
 

Operating System Tools 

 

A number of operating system tools can be used to monitor the memory utilization, and can 

be useful when running DB2 9 with the DATABASE_MEMORY tuning feature of STMM 

enabled. Since this STMM feature is only available for the AIX and Windows operating 

systems, we include below a brief summary of some of the tools that can be used on each 

platform to monitor the free memory on the system and the usage of paging space.  

 

Virtual memory 

 
The vmstat command is one of the most commonly used tools for monitoring virtual 

memory usage that is available on Linux and multiple UNIX platforms. In the case of AIX, it 

also reports statistics about kernel threads, disk activity, traps and CPU activity.  

 

Of all the options available in the AIX version, option –v is the most interesting to use in 

conjunction with the DATABASE_MEMORY tuning functionality because it reports various 

statistics maintained by the Virtual Memory Manager. Further discussion of the file cache is 

outside the scope of this document; more details about this can be found in the white paper 

“Optimizing AIX 5L performance: Tuning your memory settings, Part 1” (http://www-

128.ibm.com/developerworks/aix/library/au-aixoptimization-memtun1/). 

  
$ vmstat –v | grep –e “memory pages” –e free –e perm –e “file pages” 
4194304 memory pages 
  66237 free pages 
    5.0 minperm percentage 
   15.0 maxperm percentage 
    1.5 numperm percentage  
  59669 file pages 

 

 

 

 

 

 

 

 

 

 

 



 

On the Windows platform, the Performance Monitor can be used to monitor virtual memory. 

 

 
 

The Windows Task Manager’s Performance tab can also be used to monitor memory usage. 

 

 
 

 



 

Paging space 

 
On the AIX operating system, the paging space usage statistics can be seen using the lsps 
command.  The -s flag displays the percentage of paging space allocated (reserved), 

whether the paging space has been assigned (used) or not.  

 
$ lsps -s 
Total Paging Space   Percent Used 
      32768MB              3% 
 

On the Windows platform, the Performance Monitor can also be used to monitor paging 

space. 

 

 
 

 

Logging 

 

The db2diag.log file 

 

All changes made by STMM are logged in two places.  Simple information on each 

configuration change can be found in the db2diag.log file.  In this file, you will see records 

that indicate a configuration change such as this: 

 
2006-10-17-19.10.00.912218-240 I408210A457        LEVEL: Event 
PID     : 946302               TID  : 1           PROC : db2stmm (MYDB1) 1 
INSTANCE: ewhhr                NODE : 001         DB   : MYDB1 
APPHDL  : 1-52                 APPID: *N1.cgarciaa.060809150048 
AUTHID  : CGARCIAA 
FUNCTION: DB2 UDB, config/install, sqlfLogUpdateCfgParam, probe:20 
CHANGE  : STMM CFG DB DEWHR000: "Sheapthres_shr" From: "109306" <automatic>   
                     To: "105115" <automatic> 
 

 

 

 



 

You will also see records that indicate a buffer pool change such as this: 
 
2006-10-17-19.03.58.672185-240 I395047A488        LEVEL: Event 
PID     : 946302               TID  : 1           PROC : db2stmm (MYDB1) 1 
INSTANCE: ewhhr                NODE : 001 
APPHDL  : 1-52                 APPID: *N1.cgarciaa.060809150048 
AUTHID  : CGARCIAA 
FUNCTION: DB2 UDB, buffer pool services, sqlbAlterBufferPoolAct, probe:90 
MESSAGE : Altering bufferpool “BUFFERPOOL_16K" From: “117268" <automatic>  
                   To: “109666" <automatic>  

 

In addition to these log entries, the changes are also logged in much greater detail in the 

STMM logs, which are in a directory named stmmlog, in the same directory as the 

db2diag.log file.  The STMM logs are meant for DB2 Support, to assist with problem 

determination.  



  

 

 

 

 
 
 
 
 
 
 

 
 
© Copyright IBM Corporation, 2007 
All Rights Reserved. 
IBM Canada 
8200 Warden Avenue 
Markham, ON 
L6G 1C7 
Canada 
 
Published June 2007 
 
The opinions, solutions, and advice in this article are from the author’s  
experiences and are not intended to represent official communication 
from IBM or an endorsement of any products listed within. Neither the  
author nor IBM is liable for any of the contents in this article. The  
accuracy of the information in this article is based on the author’s 
knowledge at the time of writing. 
 
Neither this documentation nor any part of it may be copied or 
reproduced in any form or by any means or translated into another 
language, without the prior consent of all of the above mentioned 
copyright owners. 
 
IBM makes no warranties or representations with respect to the 
content hereof and specifically disclaims any implied warranties of 
merchantability or fitness for any particular purpose. IBM assumes no 
responsibility for any errors that may appear in this document. The 
information contained in this document is subject to change without 
any notice. IBM reserves the right to make any such changes without 
obligation to notify any person of such revision or changes. IBM makes  
no commitment to keep the information contained herein up to date. 
 
The information in this document concerning non-IBM products was 
obtained from the supplier(s) of those products. IBM has not tested 
such products and cannot confirm the accuracy of the performance, 
compatibility or any other claims related to non-IBM products. Questions  
about the capabilities of non-IBM products should be addressed to the  
supplier(s) of those products. 
 
IBM, the IBM logo, AIX, and DB2 are registered trademarks of International  
Business Machines Corporation in the United States, other countries, or both. 
 
Windows is a trademark of Microsoft Corporation in the United States,  
other countries, or both. 
 
UNIX is a registered trademark of The Open Group in the United States  
and other countries. 
 
Linux is a registered trademark of Linus Torvalds in the United States, other 
countries, or both. 
 
Other company, product, or service names may be trademarks or 
service marks of others. 
 
References in this publication to IBM products or services do not imply that  
IBM intends to make them available in all countries in which IBM operates. 


