
P A S M : A R E C O N F I G U R A B L E P A R A L L E L S Y S T E M
F O R I M A G E P R O C E S S I N G

Howard Jay Siegel, Thomas Schwederski, Nathaniel J. [)avis IV, James T. Kuehn

PASM Parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907 USA

July 1984

A b s t r a c t

PASM is a multifunction p_o,r titionable
~IMDfkIIMD system being designed at Purdue for
parallel image understanding. It is to be a large-scale,
dynamically reeonfigurable multimicroprocessor system,
which will incorporate over 1,000 complex processing
elements. Parallel algorithm studies and simulations
have been used to analyze application tasks in order to
guide design decisions. A prototype of PASM is under
construction (funded by an equipment grant from IBM),
including 30 Motorola MC68010 processors, a multistage
interconnection network, five disk drives, and connec-
tions to the Purdue Engineering Computer Network (for
access to peripherals, terminals, software development
tools, etc.). PASM is to serve as a vehicle for studying
the use of parallelism for performing the numeric and
symbolic processing needed for tasks such as computer
vision. The PASM design concepts and prototype are
overviewed and brief examples of parallel algorithms are
given.

I . I n t r o d u c t i o n

This is an overview of the design for the thousand-
processor PASM system and the 25-processor prototype
being built to validate the system design concepts. One
way to do image processing faster is through the use of
parallelism. Different modes of parallelism can be
employed in a computer system. The SIMD (st'ngle
instruction stream - multiple data stream)mode [FIyB6 l
typically uses a set of N processors, N memories, an
interconnection network, and a control unit (e.g., IIliac
IV [Bou72], STARAN [Bat77], CLIP4 [Fou81], MPP
[Bat82]). The control unit broadcasts instrueiions to
the processors and all active :(enabled} processors exe-
cute the same instruction at the same time. Each pro-
cessor executes instructions using data taken from a
memory with which only it is associated. The intercon-
nection network allows interprocessor communication.
An MSIMD (multiple-SIMD) system is a parallel process-
ing system which can be structured as one or :more

This paper was prepared for the proceedings of the Workshop on
Algorithm-guided Parallel Architectures for Automatic Target
Recognition, sponsored by the DARPA Tactical Technology Otfice
(TTO), the Naval Research Laboratory (NRL), and the Army
Night Vision and Electro-Optics Laboratory (NVLJ

independent SIMD machines of various sizes (e.g., MAP
[Nut77]). The Illiac 1V was originally designed as an
MSIMD system [Bar68]. The MIMD (multiple instruc-
tion stream - multiple data stream)mode [Fly66J typi-
cally consists of N processors and N memories, where
each processor can follow an independent instruction
stream (e.g., C.mmp ![WuB72], Cm* [SwF77], Ultraeom-
puter [GoG83]). As with SIMD architectures, there is a
multiple data stream and an interconnection network.
A partitionable SIMD/MIMD system is a parallel pro-
cessing system which can be structured as one or more
independent SIMD and/or MIMD machines of various
sizes (e.g., T R A C [SeU80]).

PASM is a p~.~rtitionable SIMD/MIMD machine
being designed at Purdue University to be a large-scale
dynamically reeonfigurable multimicroprocessor system
iSiS81]. It is a special-purpose system aimed at exploit-
mg the parallelism of image understanding tasks.
PASM is being developed using a variety of problems in
image processing and pattern recogniiiotl to guide the
design choices. It can also be applied to related areas
such as speech understanding and biomedical signal pro-
cessing.

PASM is to serve as a research tool for experiment-
ing with parallel processing. The design attempts to
incorporate the needed flexibility for studying large-
scale SIMD and MIMD parallelism while keeping sys-
tem costs "reasonable." Portions of PASM have been
simulated and a prototype is under development.

In Section II, the PASM architecture is overviewed.
Section IIl gives some examples of]low PASM can be
used for image processing. The PASM prototype is
described -in Section IV. The advantages of some of the
features of PASM are discussed in Section V. Selected
references for further reading about PASM appear at
the end of this paper.

H. T h e P A S M A r c h i t e c t u r e

A block diagram Of the basic components of PASM
is shown in Fig 1. The Parallel Computation Unit IFig.
2) contains N~-2 'z processors, N mevaory modules, ~and
an interconnection network. The processors are
microprocessors that perform the actual SIMD and
MIMD computations. The memory modules are used by
the processors for data storage in SIMD mode and both
data and instruction storage in MIMD mode Each PE

• SYSTEM
. _ _ _ _ ~ - - - - - ~ CO NTROL ~ ' - - - - - ~ L . , . , , , = .

STORAGE ~ PARALLEL ~k
S Y S T E M ~ COMPUT ATI ON UNIT

Fig. 1. Block diagram overview of PASM.

Z

<
Z
;<

F

PROCESSING ELEMENT 0

I M M. on V

MEM. 1B r ~ ~
o

O

PROCESSING ELEMENT N-1
~MEM. N-I A ~

MEM. N-1 B{ I I N-I]

[INTERCONNECTION NETWORK

Z
0

0

I

Fig. 2. Parallel Computation Unit.

can operate in both the SIMD and MIMD modes of
parallelism. A memory module is connected to each
processor to form a processor - memory pair called a
Processing Element (PE). The N PEs are numbered
from 0 to N - I and each PE knows its number (address).
A pair of memory units is used for each memory module
to allow data to be moved between one memory unit
and secondary storage (the Memory Storage System)
while the processor operates on data in the other
memory unit, A PASM N = I 6 prototype will use
Motorola MC68010 processors: the final N = 1024 system,
which the architecture is designed h)r. will employ cus-
tom VLSI processors specially designed for parallel
image processing. The interconnection network provides
a means of communication among the PEs. Two types
of. multistage intereonneetion networks are being con-
sidered for PASM: the Generalized Cube [SiM81b] and
the Augmented Data Manipulator (ADM) [SiM81a].
The ADM network is more flexible, but is more com-
plex. The Extra Stage Cube network {ADS82] is a
fault-tolerant variation of the Cube which is planned for
inclusion in the PASM prototype. Features of the Gen-
eralized Cube network will be described to familiarize
the readers with the properties of multistage networks.

The Generalized Cube network is representative of
the multistage cube-type class of networks which
include the baseline [WuF80], delta {Pat81], Extra Stage
Cube {ADS82] indirect binary n-cube {Pea77], omega
{Law75], STARAN flip {Bat76], and SW-banyan
(S=F=2) [GoL73]. The Cube has N inputs and N out-
puts. It is shown in Fig. 3a for N=8. PE i, 0_<i<N,
would be connected to input port i and output port i of

0 0 0 0 O 0 0 0 0 0 0 0 0 O

I 4 I i 4 l

2 2 2 2 2 2

6 6 6 6 6 6

STAGE 2 I 0 STAGE 2 I 0

STRAIGHT EXCHANGE LOWER UPPER (b)
BROADCAST BROADCAST

(o)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 4 t ~ 4 4 2 2 ~ i

2 2 2 2 2 2

g I g ;

B 6 6 & 6 6

STAGE 2 I 0 STAGE 2 I 0

(c) (d)

Fig. 3. (a) Generalized Cube topology, shown for
N=8. (b) Example one-to-one connection
(input 2 to output 4). (c) Example broadcast
connection (input 5 to outputs 2, 3, 6, and 7).
(d) Example permutation connection (input i
to output i + 1 mod N).

the unidirectional network. The Cube topology has
n = log2N stages, where each stage consists of a set of
N lines connected to N/2 interchange boxes. Each
interchange box is a two-input, two-output device. The
labels of the input /output (I/O) lines entering the upper
and lower inputs of an interchange box are used as the
labels for the upper and lower outputs, respectively.
Each interchange box can be set individually to one of
the four legitimate states shown in Fig. 3a. Figs. 3b, c,
and d illustrate one-to-one, broadcast, and permutation
connections, respectively. Note that many one-to-one
and/or broadcasts can occur simultaneously.

The connections in this network are based on the
cube intereonnection functions {Sic77, Sie79]. Let
P = Pn-I i i o P l P ° be the binary representation of an
arbitrary line label. Then the n cube interconnec-
tion functions can be defined as:

cubei(Pn-I " " " PIP0) = Pn-W'Pi+IPlPH " " " PlP0
where 0_<i<n, 0 < P < N , and Pl denotes the complement
of Pi. This means that the cube i interconnection func-
tion connects P to cubei(P), where cubei(P) is the I /O
line whose label differs from P in just the i-th bit posi-
tion. Stage i of the Cube topology contains the cube i
interconnection function, i.e., it pairs I /O lines that
differ only in the i-th bit position.

Routing tags are used as headers on messages; they
(l) control each interchange box individually, and (2)
allow network control to be distributed among the PEs.
The n-bit routing tag for one-to-one connections is com-
puted from the input port number and desired output
port number. Let S be the source address (input port
number) and D be the destination address (outl)ut porl
number). Then the routing tag T = S O D (where " ~ "
means bitwise "exclusive-or"). Let tnq. . . t l t 0 be the
binary representation of T. An interchange box in the

network at stage i need only examine t i. If t i = l , an
exchange is performed, and if ti=0, the straight connec-
tion is used_ For example, if N=8, S=010, and D=100,
then T=110. The corresponding stage settings are
exchange, exchange, straight (see Fig. 3b). Because the
exclusive-or operation is commutative, the incoming
routing tag is the same as the return tag. Since the des-
tination PE has the routing tag to the source PE, it is
easy to perform handshaking if desired. The address of
the source PE can be computed by the destination PE
using S = D O T . Routing tags that can be used for
broadcasting data are an extension of this scheme
[SiM81b].

The partitionability of a network is its ability to
divide the system into independent subsystems of
different sizes. The Cube network can be parti t ioned
into independent subnetworks of various sizes, where
each subnetwork of size N' < N will have all of the con-
nection properties of a Cube network built to be of size
N ' . In PASM, the part i t ioning is accomplished by
requiring that the. addresses of all of the 1/O ports in a
partit ion of size 2' agree (have the same values) in their
low-order n - i bit positions. For example, in Fig. 4 sub-
network A consists of ports 0, 2, 4, and 6, and

0 0 0 0 0 0 0

1 4 I

2 2 2

4 4 4 4 4 ~

6 6 6

STAGE2 ' 0

Fig. 4. Cube network of size eight partitioned into
two subnetworks of size four based on the
low-order bit position.

subnetwork B consists of ports 1.3, 5, and 7. All ports
in subnetwork A have a 0 in the low-order bit position;
all ports in subnetwork B have a 1 in the low-order bit
position. By setting all of the interchange boxes in
stage 0 to straight, the two subnetworks are isolated.
This is because stage 0 is the only stage which allows
input ports which differ in their low-order bit to
exchange data. Each subnetwork can be separately
further subdivided, resulting in subnetworks of varmus
sizes. The routing tag scheme can be used to enforce
the part i t ioning by logically AND-ing the tags with
masks to force to 0 tag positions which correspond to
interchange boxes which should be forced to the straight
state. The network part i t ioning property allows the set
of PASM PEs to be part i t ioned into independent virtual
machines of various sizes.

The Micro Controllers [MCs] (F ig . 5) are a set of
microprocessors which acl ms the control units for the
PEs in SIMD mode and orchestrate the activities of the
PEs in MIMD mode. There are Q--2 q MCs. l)hysically
addressed (numbered) from 0 to Q - l . Each MC con-
trols N / Q PEs. PASM is being designed for Q=32
(Q=4 in the prototype). The MCs are the multiple con-
trol units needed in order to have a part i t ionable
SIMD/MIMD system. Each MC memory module con-
sists of a pair of memory units so that memory loading
and computat ions can be overlapped. In SIMD mode,
each MC fetches instructions and common da ta from its
memory module, executing the control flow instructions
(e.g. branches) and broadcasting the data processing

TO SYSTEM CONTROL UNIT
AND CONTROL STORAGE

PCU PE N-Q+I

PCU PE Q MC
MICRO-

PCU PE N-Q PROC. o
PCU PE 1

e c u PE Q+I -- ~ MC /
MICRO- F- PROC. 1

PCU PE Q-I

PCUPE2Q-I--~ MICRo-MC ~__

PCU PE N-I ~ ~PROC" Q-I /

~ _ ~ M C o ~ E M . ~

~ ~ MC0~EM. {__ -

- MOgEM t_

- O
E _~ Mc MEM. I__.

Q-1A / ~
MC MEM.~___

2. Q-,B !

Fig. 5. PASM Micro Controllers (MCs}. "PCU" is
Parallel Computat ion Unit.

instructions to its PEs. In MIMI) mode, each MC gets
from its memory instructions and common data for
coordinating its PEs.

The physical addresses of the N/Q processors
which are connected to an MC must all have the same
low-order q bits so that the network can be partitioned.
The value of these low-order q bits is the physical
address of the MC. A virtual SIMD machine of size
RN/Q, where R = 2 r and 0 < r < q , is obtained by having
R MCs use the same instructions and synchronizing the
MCs. The physical addresses of these MCs must have
the same low-order q- r bits so that all of the PEs in the
part i t ion have the same low-order q-r physical address
bits. Similarly, a virtual MIMD machine of size R N / Q
is obtained by combining the efforts of the PEs associ-
ated with R MCs which have the same low-order q- r
physical address bits. In MIMD mode. the MCs may be
used to help coordinate the activities of their PEs. Q is
the maximum number of partit ions allowable, and N/Q
is the size of the smallest partition.

The MC processors and MC memories are con-
nected by a shared reconfigurable ("shortable"l bus
[ArP76, KaK79], as shown in Fig. 6. The MCs must be
ordered on the bus in terms of the bit reverse of their
addresses due to the part i t ioning rules. The MC con-
nection scheme provides more program space for jobs
using multiple MCs and provides a degree of fault toler-
ance, since known-faulty MC memory modules could be
ignored.

The PEs within each parti t ion are assigned logical
addresses. Given a virtual machine of size R N / Q , the
processors and memory modules for this partit ion have
logical addresses (numbers) 0 to (R N / Q) - l R=2 r,
0 < r < q . The logical number of a PE is the high-order
r + n - q bits of its physical number. Similarly. the MCs
assigned to the parti t ion are logically numbered
(addressed) from 0 to R - l . For R > I . the logical
number of an MC is the high-order r bits (if its physical
number. The PASM language compilers and operating
system will be used to convert from logical to physical
addresses, so a system user will deal only with logical
addresses.

A masking scheme is used in SIMI) mode for (h,tcr-
mining which PEs will be active, i.e., execute instruc-
tions broadcast to them by their MC. PASM will use
PE address masks and da ta conditional masks.

MC MEMORY MODULES

Me PROCESSORS

"THROUGH SHORT"

(o)

MC MEMORY MODULES

(-I I1 I-II

MC PROCESSORS

(b)

Fig. 6. (a) Reconfigurable shared bus scheme for
interconnecting MC processors and MC
memory modules, shown for Q=8, where
each box can be set to "through" or "short."
(b) Bus set for MCs 0, 2, 4, and 6 form~.ng one
vir tual machine. MCs 1 and 5 forming a
second virtual machine, MC 3 forming a
third virtual machine, and MC 7 forming a
fourth virtual machine.

The PE address masking scheme uses an n-position
mask to specify which of the N PEs are to be activated.
Each position of the mask will contain either a 0, 1. or
X ("don ' t care"} and the only PEs that will be active
are those whose address matches the mask: 0 matches
0, 1 matches 1, and either 0 or l matches X. Square
brackets denote a mask. Superscripts are used as
repetition factors. For example. "MASK IXn:10] "
activates all even-numbered PEs and "MASK [0n-~x~] "
act ivates PEs 0 to 2i-1. A negative PE address mask is
similar to a regular PE address mask except that it
activates all those PEs which do not match the mask.
Negative PE address masks are prefixed with a minus
sign to distinguish them from regular PE address masks.
For example.,, for N=8, "MASK [-0X1]" activates all
PEs except 1 and 3. PE address masks are specified in
the SIMD program.

Data conditional masks are the implicit result of
performing a condit ional branch dependent on local
da t a in an SIMD machine environment, where the result
of different PEs ' evaluations may differ. They are used
when the decision to enable and disable PEs is made at
execution time. As a result of a conditional where state-
ment of the form

where < d a t a - c o n d i t i o n > do . . - elsewhere -
each PE will set a flag to activate itself for either the

"do" or the "elsewhere," but not both. The execution
of the "elsewhere" statements must follow the "do"
statements; i.e., the "do" and "elsewhere" s ta tements
cannot be executed simultaneously. For example, as a
result of executing the statement:

where A < B do C ~-- A elsewhere C ~-- B
each P E will load its C register with the minimum of its
A and B registers, i.e., some PEs will execute "C ~ A,"
and then the rest will execute "C ~ B." This type of
masking is used in such machines as the Illiac IV [Bar681
and P E P E [Cra72]. "Where" s tatements can be nested
using a run-time control stack.

There are instructions whi(.h e×~mino the colle(.tive
status of all of the PEs of a virtual SIMD machine, such
as "if any," "if all," and "if none." These instructions
change the flow of control of the program at execution
time depending on whether any or all processors in the
vir tual SIMD machine satisfy some condition. For
example, if each PE is processing da ta from a different
section of an image, but all PEs are looking for enemy
tanks, it is desirable to know "if any" of the PEs have
discovered a tank. This requires communication among
the MCs comprising the virtual SIMD machine. There
is a set of buses shared by MCs for this purpose.

Control Storage contains the programs for the MCs.
The loading of programs from Control Storage into the
MC memory units is controlled by the System Control
Unit.

The Memory Storage System provides secondary
storage space for the Parallel Computat ion Unit for the
da ta files in SIMD mode, and for the data and program
files in MIMD mode. It consists of N/Q independent
Memory Storage Units, numbered from 0 to (N / Q) - I .
Each Memory Storage Unit is connected to Q PE
memory modules. For 0 < i < N/Q, Memory Storage
Unit i is connected to t h o ~ PE memory modules whose
physical addresses have the value i in their n-q high-
order bits. Recall that . for 0 < k < Q , MC k is connected
to those PEs whose physical addresses have the value k
in their q low-order bits. This is shown for N=32 and
Q=4 in Fig. 7.

A virtual machine of R N / Q PEs, R = 2 r
0 < r < n, logically numbered from 0 to (R N / Q) - I
requires only R parallel block loads if the da ta for the
PE memory module whose high-order n -q logical
address bits equal i is loaded into Memory Storage Unit
i. This is true no mat ter which group of R MCs {which
agree in their low-order q - r physical address bits) is
chosen. As an example, consider Fig. 7. and assume a
virtual machine of size 16 is desired. The da ta for the
PE memory modules whose logical addresses are 0 and 1
is loaded into Memory Storage Unit 0. for memory
modules 2 and 3 into Unit 1, etc. Assume the partition
of size 16 is chosen to consist of the PEs connected to
MCs ! and 3. Given this assignment of MCs. the PE
memory module whose physical address is 2i + 1 has log-
ical address i, 0 < i < 16. The Memory Storage Units
first simultaneously load PE memory modules physically
addressed I, 5. 9, 13, 17. 21. 25, and 29 (logically
addressed 0. 2, 4, 6, 8, 10, 12, and 14), and then simul-
taneously load P E memory modules physically
addressed 3, 7. 11, 15, 19, 23. 27. and 31 (logically
addressed 1, 3, 5, 7, 9, 11. 13. and 15}. No mat ler
which pair of MCs is chosen (i.e.. MCs 1 and 3. or MCs
0 and 2), only two parallel block loads are needed. This
same approach can be taken if only (N/Q) /2 d disl inct
Memory Storage Units are available, where
0 _< d < n - q In this case, however. R2 d parallel block

10

N/Q MEMORY N PCU PEs
STORAGE UNITS

MSU 0 ~

~/s 4 =8

5
MSU 1

6

7

8

9
MSU 2

1o

lI

i

28

29

MSU 7 ~ 3130

Q MICRO CONTROLLERS

I ~MC 1
2 MC 2

3 MC3

4

Fig. 7. Organization of the Memory Storage Sys-
tem. shown for N=32 and Q=4. "MSU" is
Memory Storage Unit. "PCU" is Parallel
Computation Unit.

loads will be required instead of just R to load a virtual
machine of R N / Q PEs.

The Memory Management System controls the
transferring of files between the Memory Storage System
and the PEs. It is composed of a separate set of
microprocessors dedicated to performing tasks in a dis-
tributed fashion. This distributed processing approach
is chosen in order to provide the Memory Management
System with a large amount of processing power at low
cost. The division of tasks chosen is based on the mare
functions which the Memory Management System must
perform, including: (1) generating tasks based on PE
load/unload requests from the System Control Unit; /~ l
scheduling Memory Storage System data transfers:
controlling input /output operations involving peripheral
devices and the Memory Storage System; (4) maintain-
ing the Memory Management System file directory
information; and (5) controlling the Memory Storage
System bus.

The System Control Unit is responsible for the
overall coordination of the activities of the other com-
ponents of PASM. The types of tasks the System Con-
trol Unit will perform include program development, job
scheduling, and coordination of the loading of the PE
memory modules from the Memory Storage System with
the loading of the MC memory modules from Control
Storage. By carefully choosing which tasks should be
assigned to the System Control Unit and which should
be assigned to other system components (e.g., the MCs
and Memory Management System) the System Control
Unit can work effectively and not become a bottleneck.
For the N=1024 PASM. the System Control Unit may
consist of several processors in order to perform all of its

functions efficiently. In the N=16 prototype, the Sys-
tem Control Unit is a microprocessor and the program
development functions are performed by the host com-
puter network.

III. Parallel Image Algorithms

A number of SIMD and MIMD algorithms to per-
form common image processing tasks have been
developed by our group. Image processing algorithms
which have been structured for parallel execution
include: image smoothing, histogramming, 2-D F F T cal-
culation, local area histogram equalization, local area.
brightness and gain control, feature extraction, max-
imum likelihood classification, contextual statistical
classification, image correlation (convolution, filtering),
block truncation coding, resampling, rectification, rota-
tion, translation, sealing, elevation/location determina-
tion, median filtering, Sobel edge sharpening, clustering
feature enhancement, scene segmentation. Karhunen-
Loeve transformation, 3-D shape analysis using Fourier
descriptors, and a computer vision task including edge
labeling, perimeter, area, center of mass, and hole count
computations. These have been analyzed in terms of
machine-size/problem-size relationships, processor capa-
bility needed for efficient execution, memory require-
ments, and inter-PE communication requirements.
Different algorithm strategies have been explored and
compared. From these studies, we are assessing the
ways m which parallelism can be used for VlSmn.
Current research includes the development of a simula-
tor for a parallel implementation of a LISP interpreter
for use in image understanding applications.

In this section three brief examples of parallel
image processing algorithms are given. The first is a
simple SIMD image smoothing a|gorithm, the second a
more complex SIMD histogramming algorithm, and the
third an SIMD/MIMD contour extraction algorithm.
The contour extraction algorithm study was done as
part of ongoing research at Purdue in the area of
automatic target recognition [MiK82].

As an example of a simple parallel algorithm, con-
sider the smoothing of an image [SiSSl]. The algorithln
described here smooths a gray level input image. The
algorithm has 'T ' as an input image and "S" as an out-
put image. Assume both l and S contain 512-by-512
pixels (picture eleme.nts), for a total of 5122 pixels each.
Each point of I is an eight-bit unsigned integer
representing one of 256 possible gray le,vels. The gray
level of each pixel indicates how "dark ' that pixel is,
where 0 means white and 255 means black. Each point
in the smoothed image, S(i,j), is the average of the gray
levels of I(i j) and its eight nearest neighbors, l(i- l , j -1),
I(i-l,j). I(i~-l,j+l), I(i,j-l), l { i j+ l) , I (i + l j - l)
I(i+l,j '), and I (i + l , j t l) . The top, bottom, left. and
right edge pixels of S are not calculated since their
corresponding pixels in I do not have eight adjacent
neighbors.

Consider how this could be iml)lemented on an
SIMD machine with N = 1024 PEs. logically arranged
as an array of 32-by-32 PEs as shown in Fig. 8. Each
PE stores a 16-by-16 subimage block of the 512-by-512
image I. Specifically. PE 0 stores the pixels in columns
0 to 15 of rows 0 to 15, PE 1 stores the pixels in
columns 16 to 31 of rows 0 to 15, and so on. Each PE
smooths its own subimage, with all PEs doing this
simultaneously. At the edges of each 16-by-16 subim-

11

512
PIXELS '

512 PIXELS

PE 0 PE I . . . PE 3~]

PE 992 PE 1025 l

A B

Fig. 8. Data allocation and inter-PE transfers for
the image smoothing algorithm.

age, data must be t ransmit ted between PEs in order to
calculate the smoothed value. The necessary data
transfers are shown for PE J in Fig. 8. Transfers
between different PEs can occur simultaneously; e.g.,
when PE J -1 sends its upper right corner pixel to PE J,
P E J can send its upper right corner pixel to PE J + 1,
PE J + l can send its upper right corner pixel to PE
J + 2 , etc.

In order to perform a smoothing operation on a
512-by-512 image by the parallel smoothing of 1024
subimage blocks of size 16-by-16, 162 = 256 parallel
smoothing operations are performed. As described
above, the neighbors of the subimage edge pixels must
be transferred in from adjacent PEs. Using either the
Cube or ADM networks, the total number of parallel
da ta element transfers needed is (4 * 16) + 4 = 68 :16
for each of the top, bottom, left side. and right side
edges, and four for the corners (see Fig. 8). The
corresponding serial al$orithm needs no da ta transfers
between PEs, but 2 512 = 262.144 smoothing calcula-
tions must be performed. If no da ta transfers were
needed, the parallel algorithm would be faster than the
serial algorithm by a factor of 262,144/256 = 1024 = N.
If the inter-PE da ta transfer time is included and it is
assumed that each parallel data transfer requires at
most as much t ime as one smoothing operation, lhen
the time factor improvement is 262.144/32.t = 800.
The inter-PE transfer time approximation is a cons(q'v:l,
tive one. Thus, the overhead of the 68 inter-PE
transfers that must be performed in the SIMD machine
is negligible compared to the reduction from 262.144 to
256 smoothing operations.

As an example of a parallel algorithm that is not a
straightforward decomposition of the corresponding
serial algorithm (as the smoothing example was), con-
sider an SIMD algorithm for computing the global histo-
gram of an image ISIS81]. Assume there are
B = 2 b = 256 bins in the histogram. N=1024, and the
image is 512-by-512 pixels. The B-bin histogram of the
image contains a j in bin i if exactly j of the pixels have
a gray level of i, 0 < i < B . Assume the image is equally
distr ibuted among the 1024 PEs, i.e.. each PE has
5122/1024 pixels, and B _< 5122/1024. Since the image
is distributed over 1024 PEs, each PE will calculate a
B-bin histogram based on its subimage. Then these
"local" histograms will be combined using the method
described below.

In the next b steps, each block of B PEs performs
B simultaneous recursive doublings [StoB0] to compute
the histogram for the portion of the image contained in
the block (see Fig. g). In the first step, each block of

PE

0 (0,1,2,3) \ / (O ,1)~x . - - ' (O) / (0) (0)
Block I (0,1,2,3) ~ (0,1) / "-(I) //(1) (1)

0 2 (0,1,2,3) (2,3)~(2) ///(2) (2)
3 (0,1,2,3) (2,3) (3)////(3) (3)

Block 5 (0,1,2,3)
1 6 (0,1,2,3) ((i;~)) ~ ((§)) ~/

7 (0,1,2,3)

Block 9 (0,1,2,3) (0,1) I -"-(I)
2 10 (0,1,2,3) (2,3) -,,~- (2)

11 (0,1,2,3) (2,3) ~ -~" (3)

12 (0,1,2,3) ~ /(0,1)x(o)'
Block 13 (0, I, 2,3) ,~/~/(0, I) (1)'

3 14 (0,1,2,3) :/~\ (2,3;
15 (0,1,2,3) / "(2,3) ~ "-

Fig. 9. Histogram calculation for N=16 PEs, B=4
bins. (w,...,z) denotes that bins w through z
of the part ia l histogram ar(, ill the PE.

PEs is divided in half such that the PEs with the lower
addresses form one group, and the PEs with the higher
addresses form another. Each group accumulates the
sums for half of the bins, and sends the bins it is not
accumulating to the other group. The "lower-numbered
group" accumulates the sums for tile first half of the
bins while the "higher-numbered group" accumulates
the second half of the bins. For each successive merging
step, the groups of PEs are re-subdivided with the accu-
mulated subtotals for each bin being combined into half
as many PEs at each step. The subdividing process
continues until there is one PE in each group and each
PE has the total value for one bin from the portion of
the image contained in the B PEs in its block. The
next n - b steps combine the results of these blocks to
yield the histogram of the entire image distributed over
B PEs. The sum for bin i will end up in P E i . for
0_<i<B. This is done by performing n -b steps of a
recursive doubling algorithm to sum the partial histo-
grams from the N/B blocks, shown by the last two steps
of Fig. 9. The recursive doubling steps are done for all
B bins simultaneously.

A sequential algorithm to eoml)ule the histogram of
an M-by-M image reqmres M 2 additions. The S1MD
algorithm uses MZ/N addit ions for each PE to compute
its local histogram. At step i in the merging of the par-
tial histograms. 0 < i < b , the number of parallel data
t ransfer /adds required is B/2 i+s A total of B - I
t ransfer /adds are therefore perfornwd ill the first h st(,l)S
of the algorithm. Then n -b parallel transfers and addi-
tions are needed to combine the block histograms. This
technique therefore requires B-1 + n - b parallel
t ransfer /add operations, plus the M2/N additions
needed to compute the local PE histograms. For exam-
ple, for N=1024, M--512. and B=256. the sequential
algori thm would require 262,144 additions: the parallel
algorithm uses 256 addition steps plus 257 t ransfer /add
steps. Again. both the Cube and ADM multistage net-
works can perform each of the required inter-PE data
transfers in one step.

Now consider an SIM1)/MIMI) parallel implementa-
tion of contour extraction [TuA83]. Two algorithms
from a contour extraction task are edge-guided
thresholding (EGT} and contour tracing. The E G T algo-

I 2

rithm is used to determine a set of optimal thresholds
for quantizing the image [MiR81]. The contour tracing
algorithm uses the set of ttlreshoids to segment the
image and trace the contours. It is assumed that the
image to be processed is dis tr ibuted among the PEs as
in the smoothing example.

The E G T algorithm consists of three major steps.
First , the Sobel edge operator [DuH73] is used to gen-
erate an edge image in which gray levcls indicate the
magnitude of the gradient. A figure of merit, which
indicates how well a given threshold gray level matches
edges in the edge image is then computed for every pos-
sible threshold. Finally, the maximum value of the
figure of merit function is chosen to determine the thres-
hold level. This is done for each PE's subimage
independently; thus, the threshold levels may differ from
one subimage to the next. The window-based Sobel
operator calculations and inter-PE communications used
in the SIMD E G T algorithm are very similar to those
discussed earlier for the image smoothing algorithm.

The MIMD contour tracing algorithm has two
phases. In Phase I, PEs segment their subimages based
on the threshold value each calculated using the EGT
algorithm. All local contours (both closed and partial)
are traced and recorded. In Phase II, part ial contours
traced during Phase I are connected.

In Phase I there is no PE-to-PE communication.
Each PE creates a segmented subimage for a particular
threshold T by assigning a value of one to subimage
pixels having a grey level greater than or equal to T,
and a value of zero to the others. Contour tracing
begins with each PE scanning the rows of its segmented
subimage beginning with the first pixel of the top row.
Scanning stops when a start point of a new contour is
found. A s tar t point is a pixel with value one which has
a zero-valued neighbor to either or both sides. Contours
are traced in either a clockwise or counter-clockwise
direction and the Freeman direction codes [Fre61] of the
"chain" of pixels are recorded. When a pixel from an
adjacent subimage would be required to determine the
next direction of the contour, a point of indecision is
reached. Such a point is recorded as an end point, and
the algorithm returns to the s tar t point to trace the
contour in the opposite direction until another point of
indecision is reached. Closed contours that are con-
tained within a subimage are traced completely (luring
Phase I.

In Phase If, each PE a t tempts to connect its partial
contours to those located in neighboring PEs. l)Es con-
sider each part ial contour's end point in turn and try to
find a possible extending contour in a neighboring PE.
Once such an extending contour is found, the process is
repeated, if necessary, by following the contour to the
next PE until the contour is closed or cannot be
extended. A protocol is necessary to prevent more than
one P E from trying to use the same partial contour as
an extending contour at the same time. Phase II is
complete when all of the contours have been connected.

The contour extraction task demonstrates the
advantages of several features of PASM. The local
neighbor inter-PE transfers needed for the SIMD E G T
algorithm can be performed by all PEs simultaneously,
as was discussed for the SIMD smoothing algorithm.
The global inter-PE communications for the MIMD con-
tour tracing can be performed efficiently by either the
multistage Cube or ADM networks. Lastly, the ability
of the PEs to operate in either SIMD or MIMD mode

allows the most appropriate type of parallelism to be
employed by each algorithm in the task.

IV. The PASM Prototype Design

A prototype of the PASM system is currently being
constructed (see Fig. 10). All processors in the system

ECN

PASM ~ _ _ ~
Prototype

I I I I

Storage
System

ECN

Fig. 10. The PASM parallel processing'system proto-
type.

are based on the Motorola MC68010 16-bit microproces-
sor. Only off-the-shelf components are used; this elim-
inates the need for VLSI chips and reduces development
time and construction costs. By using a modular design
concept, only five different types of physical boards are
needed: a CPU board containing the MC68010
microprocessor, a dynamic memory board with up to 1
Mbyte of memory, an I /O board, a network interchange
box board, and a specialized board used in the MCs.
The System Control Unit, MCs. PEs. Memory Manage-
ment System processors, Control Storage and Melnory
Storage Unit processors, and the PE interconnection
network can all be implemented by using these boards
in different configurations.

The Parallel Computat ion Unit will consist of 16
PEs, connected by an Ext ra Stage Cube interconnection
network. The Parallel Computat ion Unit is controlled
by four MCs. The prototype could be readily extended
to 8 MCs and 8 PEs per MC (pending the availability of
funding). The System Control Unit (SCU) for tile pro-
totype is a dedicated microprocessor rt,sl)onsible for tile
overall orchestration of the activiiics of the syst(,m. It
shares its mass storage device (D) wilh the MCs. ']'he
device m managed by the Control Storage (CS)
microprocessor. In order to allow a larger group of users
to access PASM, the System Control Unit will s~.rve as a
link between PASM and the Engineering Computer Net-
work (ECN). ECN is a local network of about twenty
DEC VAX and P D P - I I computers at Purdue Univer-
sity. The user s terminal will be physically connected to
an ECN host computer. The host will provide the

Micro
Controllers
Parallel
Computation
Unit
(PE network
not shown)

Memory
Management
System
Processors

13

environment for the development, compilation, and
debugging of SIMD and MIMD programs to prevent the
System Control Unit microprocessor from being bur-
dened. Commands (jobs) initiated by users are sent by
the host to the System Control Unit, which schedules
the jobs to be run on the parallel machine. The proto-
type system console is used for system startup and mon-
itoring of PASM activities. Mass storage for the PEs is
provided by four high capacity Winchester technology
disk drives (D), each controlled by a Memory Storage
Unit (MSU) microprocessor. The Memory Storage Units
are managed by the Memory Management System, con-
sisting of a Directory Lookup Processor (DP), a Memory
Scheduling Processor (MSP), a Command Distribution
Processor (CDP), and an Input /Output and Reformat-
ting Processor (IOP). User programs and data can be
received from or sent to ECN peripherals such as addi-
tional mass storage or image input /output devices.

The PE execution unit is a Motorola MC68010
microprocessor. Two lfi-bit dynamic memories imple-
ment the PASM double-buffered memory scheme. Each
of these memories can store 256 Kbytes of program or
data. The overall memory capacity can be increased to
2 Mbytes per PE if needed. The I /O board contains
parallel ports that interface the PE CPU to the inter-
connection network. Data can be sent to or read from
the network by I /O port read and write instructions.
This can be done either by the PE CPU directly or by
using a DMA controller. The M C / P E communication
controller is also found on the I /O board. This con-
troller allows data exchange between an MC and its PEs
via a shared bus. This data link is necessary to allow
the MC to coordinate PE activities in MIMI) mode.

When all active PEs request an instruction in SIMI)
mode, an instruction word is broadcast from the MC.s
and placed on all the PE data busses simultaneously.
Each PE decodes the instruction and performs the
operation or requests additional operand words. In
MIMD mode, instructions and data are contained wholly
within a PE's memory and no instructions are broadcast
by the MC. Since the instructions for each PE are
stored in the PE's local memory (for MIMD operations)
or are broadcast to the PE by its MC {for SIMD opera-
tions), the interconnection network will be used solely
for inter-PE data communication rather than both
inter-PE communication and instruction fetch opera-
tions.

The PASM prototype's mterconnection network is
a circuit switched implementation of the Extra Stage
Cube network lAdS82] which is a fault-tolerant version
of the multistage Cube network discussed earlier. This
network is single-fault tolerant and has been shown to
be very robust under multiple faults lAdS84]. Circuit
switching was chosen for its ease of implementation as
well as its particular suitability (when compared to
packet switching) for the anticipated large data
transfers under DMA (direct memory access) control.
Using a circuit switched network, prior to any message
transmission between a network source-destination pair,
a physical path through the network must be made con-
necting the pair. This path is established through the
use of a request-grant protocol. This connects the
source-destination pair for the duration of the message
transmission. Individual words within the message are
transferred from the source PE to the destination PE
using a handshaking protocol between the parallel ports
that interface the PEs to the network.

The PASM prototype network is being constructed
from readily available SSI/MSI integrated circuits. It is
anticipated that a full t024 PE system would integrate
custom designed VLSI components into the network
design. In its current configuration of 16 PEs, the net-
work consists of five stages of interchange boxes, with
eight boxes per stage. It is estimated that a path
through the network can be established in approxi-
mately 1000 ns (assuming no delays due to network
conflicts). The data itself can be transmitted from a net-
work input port to a network output port at a rate of
one 16-bit word every 400 ns. With the PEs themselves
operating on a 10 Mhz system clock, these transfer
times are fast enough so that the network will not act
as a bottleneck in the computation process under execu-
tion.

An MC is composed of essentially the same physi-
cal boards as a PE but has an extra board containing
specialized logic used for time-critical MC functions.
The MC execution unit coordinates its PEs in MIMD
mode; in SIMD mode, it performs program flow opera-
tions (such as loop counting and branching) and the
masking operations.

One of the specialized components of the MC is the
fetch unit. It is a finite state machine that fetches
SIMD instructions from fetch unit memory, determines
if they are MC (control) instructions or PE (computa-
tional) instructions, and sends them to the appropriate
unit. A four-bit tag associated with each instruction
word in the fetch unit memory specifies the sequence of
actions the fetch unit has to perform on the remaining
16 bits.

When the fetch unit encounters PE instructions, it
enqueues them to a F IFO buffer. When all of the PEs
associated with an MC request an instruction, one is
dequeued and broadcast to them. The FIFO buffer
allows overlap between the operations of an MC and its
PEs in SIMD mode, thereby improving performance.

For programming the PASM prototype, a parallel
assembly language for the MC68010 for SIMD opera-
tions has already been implemented. Also, an
MC68010-based SIMD simulation system has been
developed to allow the exploration of additional PASM
design features. Work on the simulation system is con-
tinuing, and it will be expanded for MIMD use. Studies
of parallel programming languages based on the "C"
and "ADA" languages are underway.

V. Summary and Proposed Future Research

This paper provided an overview of the PASM
design concepts and prototype and examples of parallel
image processing algorithms. Table l summarizes the
PASM design parameters. A reading list for further
information about PASM is provided at the end of this
paper. The rest of this section summarizes some of the
PASM design features and discusses future research
plans.

The possible advantages of a rcconfigurable system
such as PASM include:
(a) fault tolerance - If a single PE fails, only those vir-

tual machines (partitions) which must include the
failed PE need to be disabled. The rest of the sys-
tem can continue to function.

14

Table 1.

Number of PEs
Number of network stages

(Extra Stage Cube)
Number of MCs
Number of PEs per MC
Number of Memory Storage Units
Number of Memory Management

System processors
Smallest size partition

The PASM design parameters, based on
current plans.

full t PASM
general PASM t prototype

N 1024 16

Maximum number of partitions

logzN + 1 1 t 5

Q 32 4
N/Q 32 4
N/Q 32 4

fixed 4 4
N/Q 32 4
q a~ 4

(b) multiple simultaneous users - Since there can be
multiple independent virtual machines, there can be
multiple simultaneous users of the system, each exe-
cuting a different program.

(c) program development - Rather than trying to debug
a program on, for example, 1024 PEs, it can be
debugged on a smaller size virtual machine of 32
PEs.

(d) variable machine size for efficiency - If a task
requires only N /2 of N available PEs, the other N/2
can be used for another task.

(e) subtask parallelism - Two independent subtasks that
are par t of the same job can be executed in parallel,
sharing results if necessary.

(f} multiple processing modes - An algorithm can be
executed using either the SIMD or MIMD mode of
parallelism, whichever is more efficient. A task
requiring algorithms that use both modes of parallel-
ism can be executed using the same set of PEs.

The advantageous features of both the multistage
Cube and the ADM networks include:
(a) up to N simultaneous transfers are possible;
(b) they are part i t ionable into independent subnet-

works:
(e) they can be controlled in a distributed fashion

using routing tags;
(d) one PE can broadcast to all or a subset of the oth-

ers;
(e) there are a variety of implementation options for

these networks;
(f) they can be used in SIMD and/or MIMI) opera-

tions; and
(g) they can support efficient global as well as local

(nearest neighbor) inter-PE communications.
An additional advantage of the Ex t ra Stage Cube is
tha t it is singl'e-fauR tolerant.

Permanent ly assigning a fixed number of PEs to
each MC has several advantages over allowing a varying
assignment such as used in MAP [Nut77]:
(a) scheduling The operat ing system need only

schedule (and monitor the "bus)" s tatus of) Q MCs,
rather than N PEs (when Q=32 and N=102i , this is
a substantial savings).

(b) hardware simplicity - No crossbar switch is needed
for connecting PEs and control units (such as pro-
posed for MAP [Nut77]).

(c) software simplicity - There is no need to do the
bookkeeping of recording PE to MC assignments.

(d) network part i t ioning - The fixed assignment sup-
ports network partitioning.

(e) secondary storage - The fixed assignment allows the
efficient use of multiple secondary storage devices.

The main disadvantage of this approach is that each
virtual machine size must be a power of two, with a
minimum value of N/Q. However, for PASM's intended
experimental environment, flexibility at reasonable cost
is the goal, not maximum PE utilization.

Advantages of the MC memory organization
include:
(a) the use of the reconfigurable bus for sharing

memory modules and tolerance of a faulty memory
module; and

(b) the abili ty to overlap computation and MC
memory module loading due to the double-
buffering.
The Memory Storage System design allows the

loading/unloading of a virtual machine of R N / Q PEs in
R paralleI block moves. The double-buffered PE
memory modules permit this loading/unloading to be
overlapped with PE execution. The Memory Manage-
meat System, which coordinates these memory
transfers, is implemented with multiple processors, pro-
viding parallelism at another level.

The PASM operating system functions will be dis-
tr ibuted over various system components to prevent the
System Control Unit from being a bottleneck. These
components are the System Control Unit, the MCs, the
Memory Management System, tile Memory Storage Unit
processors, and the Control Storage processor.

We have a group of faculty at Purdue who want to
study a variety of topics relating to the application of
parallel processing to vision and the implementation and
use of the PASM prototype. These topics include:

Parallel Computer Vision: We will continue to study the
structuring of image understanding tasks for efficienl
parallel execution. [n particular, we will investigate
how to use the reconfigurable PASM system for both
the numeric and symbolic processing that is necessary
for vision tasks. Our algorithm studies will involve
complexity analyses, simulation, and execution on the
prototype.

Reliability: Limited fault-tolerance is built into PASM
due to its parti t ionabili ty, use of a faul t - tolerant inter-
connection network, etc. Fur ther work includes defining
the overall system reliability goals and methods for their
evaluation, and the development of fault detection and
recovery algorithms and their hardware and software
requirements.

Software - Languages: We will investigate programming
language notations for specifying both implicit, and
explicit specification of paralMism. Using our algorithm
studies as a basis, we want, to develop optimizing compi-
lation techniques for the efficient mapping of applica-
tions onto parallel architectures. We plan to continue
our research on parallel LISP, and to develop a LISP
system for the PASM prototype.

Software - Operating Systems: The special distributed
operating system problems which we want to study
include: mechanisms for the efficient switching between
the SIMD and MIMD modes of parallelism: automati-

15

cally reconfiguring a task when a fault requires it to run
on fewer processors than it was compiled for; methods
for efficiently implementing the distribution and subse-
quent coordination of operating system functions over
the various system components; and tools for algorithm
debugging and hardware supported performance collec-
tion from many points in the system.
Hardware: The PASM prototype incorporates the
MC68010 as the basic building block for the PEs and
MCs, using external hardware to interface and adopt
these processors for the prototype. In preparation for
the construction of larger PASM systems based on our
experience with the prototype, we wish to study the
incorporation of these features into custom VLSI proces-
sor implementations specifically geared towards use in
multifunction multiprocessors, emphasizing easily exten-
sible and highly reliable systems.

Additional topics of interest include: the comparison
of design and implementation choices for (l) a fault-
tolerant intereonnection network, (2) communications
between the PEs and MCs, (3) communications among
the MCs, and (4) the connection scheme linking the mul-
tiple secondary storage devices to the PE memories; the
development of additional operating system and
hardware features to facilitate the use of one
reconfigurable system for both the numeric processing
and symbolic manipulation typical of complete vision
tasks; and the design of real-time input/output device
interfaces to PASM.

In conclusion, the objective of the PASM design is to
achieve a system which attains a compromise between
flexibility and cost-effectiveness for a specific problem
domain. A dynamically reconfigurable system such as
PASM will be a valuable tool for both image understand-
ing and parallel processing research.

Acknowledgements -- Portions of this overview of the
PASM system and its use in parallel image processing are
based on [SiM81b l, [SIS81], and [Tuh83]. The contribu-
tions of the co-authors on these papers are gratefully ack-
nowledged. Some of the figures are from lnterconnection
Networks for Large-Scale Parallel Processing: Theory and
Case Studies. by H. J. Siegel, Lexington Books, Lexing-
ton, MA, 1984. The work surveyed in this paper was sup-
ported by the following grants/contracts: United States
Air Force Command, Rome Air Development Center,
under contract F30602-83-K-0119; United States Army
Research Office, Department of the Army, under grant
DAAG29-82-K-0101; National Science Foundation under
grant ECS 80.-16580; Ballistic Missile Defense Agency,
under contract DAS60-80-C-0022; Defense Mapping
Agency, monitored by the United States Air Force Com-
mand, Rome Air Development Center. under contract
F30602-C-0193; Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under grant
AFOSR-78-3581.

R e f e r e n c e s

lAdS82] G .B . Adams III and H. J. Siegel, "The extra
stage cube: A fault-tolerant interconnection
network for supersystems," IEEE Trans. Com-
puters, Vol. C-31, May 1982, pp. 443-454.

lAdS84] G. B. Adams IU and H. J. Siegel,
"Modifications to improve the fault tolerance

[ArP76]

[Bar68]

[Bat76]

[Bat77]

[Bat82]

[Bou72]

[Cra721

[DuH73]

[Fly66]

[Fou81]

[Fre61]

[GoL73]

[GoG83]

[KaK79]

[Law75]

[MiS82]

[MiR81]

of the extra stage cube intereonnection net-
work," 1984 Int'l. Conf. Parallel Processing,
Aug. 1984, to appear.
R. Arnold and E. Page, "A hierarchical, res-
tructurable multimicroprocessor architecture,"
3rd Syrup. Computer Architecture, Jan. 1976,
pp. 40-45.
G. Barnes, et al., "The Illiac IV computer,"
IEEE Trans. Computers, Vol. C-17, Aug. 1968,
pp. 746-757.
K. E. Batcher, "The flip network in
STARAN," 1976 Int'l. Conf. Parallel Process-
ing, Aug. 1976, pp. 65-71.
K. E. Batcher, "STARAN series E," 1977 Int 7.
Conf. Parallel Processing, Aug. 1977, pp. 144-
153.
K. E. Batcher, "Bit serial parallel processing
systems," IEEE Trans. Computers, Vol. C-31,
May 1982, pp. 337-384.
W. J. Bouknight, et al., "The Illiac IV system,"
Proc. IEEE, Vol. 60, Apr. 1972, pp. 369-388.
B. A. Crane, et al., "PEPE computer architec-
ture," COMPCON 1972, Sept. 1972, pp. 57-60.
R. O. Duda and P. E. Hart, Pattern
Classification and Scene Analysis, John Wiley
and Sons, New York, NY, 1973.
M. J. Flynn, "Very high-speed computing sys-
tems," Proc. IEEE, Vol. 54, Dec. 1966, pp.
1901-1909.
T. J. Fountain, "CLIP4: progress report," in
Languages and Architectures for Image Pro-
cessing, M. J. B. Duff and S. Levialdi, editors,
Academic Press, London, 1981, pp. 281-291.
H. Freeman, "Techniques for the digital com-
puter analysis of chain-encoded arbitrary plane
curves," Proc. NEC, Vol. 17, Oct. 1961, pp.
421-432.
L. R. Goke and G. J. Lipovski, "Banyan net-
works for partitioning multimicroprocessor sys-
tems," 1st Syrup. Computer Architecture, Dec.
1973, pp. 21-28.

A. Gottlieb. R. Grishman, C. P. Kruskal. K. P.
McAuliffe, L. Rudolph, and M. Snir. "The
NYU Ultracomputer -- designing an MIMD
shared memory parallel computer," IEEE
Trans. Computers. Vol C-32. Feb. 1983, pp.
175-189.
S. I. Kartashev and S. P. Kartashev, "A multi-
computer system with dynamic architecture."
IEEE Trans. Computers. Vol. C-28. Oct. 1979,
pp. 704--720.
D. H. Lawrie, "Access and alignment of data in
an array processor," IEEE Trans. Computers.
Vol. C-24, Dec. 1975, pp. 1145-1155.
O. R. Mitchell, F. P. Grogan, and D. J. Char-
pentier, "A shape extraction and recognition
system," Southcon 82, Mar. 1982, pp. 4/1:1-
4/1:4.
O. R. Mitchell, A. P. Reeves, and K-S. Fu.
"Shape and texture measurements for
automated cartography," 1981 IEEE Computer
Soc. Conf. Pattern Recognition and Image Pro-
cessing, Aug. 1981, pp. 367.

16

[Nut77]

[PatS1]

[Pea77]

[SeUSO]

[SiM81a]

[SiM81bl

1SIS81]

[Sie771

[Sie791

[Sto80]

[SwF771

[TuA83]

[WuB72]

[WuF80]

G. J. Nutt, "Microprocessor implementation of
a parallel processor," 4th Syrup. Computer
Architecture, Mar. t977, pp. 147-152.
J. H. Patel, "Performance of processor-memory
interconnections for multiprocessors," IEEE
Trans. Computers, Vol. C-30, Oct. 198l, pp.
771-780.
M. C. Pease, III, "The indirect binary n-cube
microprocessor array," IEEE 7"rans. Comput-
ers, Vol. C-26, May 1977, pp. 458-473.
M. C. Sejnowski, E. T. Upchurch, R. N. Kapur,
D. P. S. Charlu, and G. J. Lipovski, "An over-
view of the Texas Reconfigurable Array Com-
puter," AFIPS 1980 Nat'l. Computer Conf.,
June 1980, pp. 631-641.
H. J. Siegel and R. J. McMillen, "Using the
augmented data manipulator network in
PASM," Computer, Vol. 14, Feb. 1981, pp. 25-
33.
H. J. Siegel and R. J. McMillen, "The multi-
stage cube: a versatile interconnection net-
work," Computer, Vol. 14, Dec. 1981, pp. 65-
76.
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T.
Mueller, Jr., H. E. Smalley, and S. D. Smith,
"PASM: a partitionable SIMD/MIMD system
for image processing and pattern recognition,"
IEEE Trans. Computers, Vol. C-30, Dee. 1981,
pp. 934-947.
H. J. Siegel, "Analysis techniques for SIMD
machine interconnection networks and the
effects of processor address masks," IEEE
Trans. Computers, Vol. C-26, Feb. 1977, pp.
153-161.
H. J. Siegel, "A model of SIMD machines and a
comparison of various interconnection net-
works." IEEE Trans. Computers. Vol. C-28,
Dee. 1979, pp. 907-917.
H. S. Stone, "Parallel computers," in Introduc-
tion to Computer Architecture, 2nd edition,
edited by H. S. Stone, Science Research Associ-
ates, Inc., Chicago, IL, 1980, pp. 363-425.
R. J. Swan, S H. Fuller. and D. P. Siewiorek.
"Cm*: a modular, multi-microprocessor."
Nat 7. Computer Conf., June 1977, pp. 637-644.
D. L. Tuomenoksa. G. B. Adams Ill, H. J.
Siegel, and O. R. Mitchell, "A parallel algo-
rithm for contour extraction: advantages and
architectural implications," 1983 IEEE Comp.
Soe. Syrup. Computer Vision and Pattern
Recognition, June 1983. pp. 336-344.
W. A. Wulf and C. G. Bell. "C.mmp - a multi-
miniprocessor," Fall Joint Computer Conf.,
Dee. 1972, pp. 765-777.
C. L. Wu and T. Y. Feng, "On a class of multi-
stage intereonneetion networks." IEEE Trans.
Computers, Vol. C-29, Aug. 1980, pp. 694-702.

Reading List of Selected PASM Related Publications

Reconfigurable Organization:

H. J. Siegel, P. T. Mueller, Jr., and H. E. Smalley, Jr.,
"Control of a partitionable multimicroprocessor sys-
tem," 1978 Int'l. Conf. Parallel Processing, Aug. 1978,
pp. 9-17.

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T.
Mueller, Jr., H. E. Smalley, and S. D. Smith, "PASM:
a partitionable SIMD/MIMD system for image pro-
cessing and pattern recognition," IEEE Trans. Com-
puters, Vol. C-30, Dec. 1981, pp. 934-947.

Parallel Memory Management System:

H. J. Siegel, F. Kemmerer, and M. Washburn, "Paral-
lel memory system for a partitionable SIMD/MIMD
machine," 1979 lnt'l. Conf. Parallel Processing, Aug.
1979, pp. 212-221.
J. T. Kuehn, H. J. Siegel, and M. Grosz, "A distri-
buted memory management system for PASM," IEEE
Comp. Soc. Workshop Computer Architecture for Pat-
tern Analysis and Image Database Management, Oct.
1983, pp. 101-108.

Interconnection Network - Multistage Cube:

R. J. McMillen and H. J. Siegel, "The hybrid cube
network," Distributed Data Acquisition, Computing,
and Control Symp., Dec. 1980, pp. 11-22.

R. J. McMillen, G. B. Adams III, and H. J. Siegel,
"Performance and implementation of 4x4 switching
nodes in an intereonnection network for PASM," 1981
Int'l. Conf. Parallel Processing, Aug. 1981, pp. 229-
233.
H. J. Siegel and R. J. McMillen, "The multistage
cube: a versatile interconnection network," Computer,
Vol. 14, Dec. 1981, pp. 65-76.
G. B. Adams IIf and H. J. Siegel, "The extra stage
cube: a fault-tolerant interconnection network for
supersystems," IEEE Trans. Computers, Vol. C-31,
May 1982, pp. 443-454.
G. B. Adams III and H. J. Siegel, "The use of 4x4
switching elements in the multistage cube network,"
Ist [niT. Conf. Computers and Applications, June
1984, pp. 585-592.
G. B. Adams III and H. J. Siegel. "A modification to
improve the fault tolerance of the extra stage cube
intereonnection network," 1984 lnt'l. Conf. Parallel
Processing, Aug. 1984, to appear.

Intereonneetion Network - ADM:

S. D. Smith, H. J Siegel, R. J. McMillen, and G. B.
Adams III, "Use of the augmented data manipulator
multistage network for SIMD machines," 1980 lnt'l.
Conf. Parallel Processing, Aug. 1980, pp. 75-78.

R. J. McMillen, G. B. Adams III, and H. J. Siegel,
"Permuting with the augmented data manipulator
network," 18th Allerton Conf. Communication, Con-
trol, and Computing, Oct. 1980, pp. 544-553.

17

H. J. Siegel and R. J. McMillen, "Using the aug-
mented data manipulator network in PASM," Com-
puter, Vol. 14, Feb. 1981, pp. 25-33.

R. J. McMillen and H. J. Siegel, "Performance and
fault tolerance improvements fn the inverse aug-
mented data manipulator network," 9th Int'l. Syrup.
Computer Architecture, Apr. 1982, pp. 63-72.

G. B. Adams III and H. J. Siegel, "On the number of
permutations performable by the augmented data
manipulator network," IEEE Trans. Computers, Vol.
C-31, Apr. 1982, pp. 270-277.

R. J. McMillen and H. J. Siegel, "Routing schemes for
the augmented data manipulator network in an
MIMD system," IEEE Trans. Computers, Dec. 1982,
pp. 63-72.

Interconnection Network - Multistage Cube/ADM Com-
parisons:

H. J. Siegel and S. D. Smith, "Study of multistage
SIMD interconnection networks," 5th Syrup. Com-
puterArchiteeture, Apr. 1978, pp. 223-229.

H. J. Siegel, "Interconnection networks for SIMD
machines," Computer, Vol. 12, June 1979, pp. 57-65.

H. J. Siegel, R. J. MeMillen, and P. T. Mueller, Jr., "A
survey of intereonnection methods for reconfigurable
parallel processing systems," 1979 Nat'l. Computer
Conf., June 1979, pp. 529-542.

H. J. Siegel, "The theory underlying the partitioning
of permutation networks," IEEE Trans. Computers,
Vol. C-29, Sept. 1980, pp, 791-801.

G. B. Adams III and H. J. Siegel, "A survey of fault-
tolerant multistage networks and comparison to the
extra stage cube," 17th Hawaii lnt 7. Conf. System Sci-
ences, Jan. 1984, pp. 268-277.

H. J. Siegel, Intereonneetion Networks for Large-Scale
Parallel Processing: Theory and Case Studies. Lexing-
ton Books, Lexington, MA, 1984.

R. J. McMillen and H. J. Siegel, "Evaluation of cube
and data manipulator networks,, Journal of Parallel
and Distributed Computing, scheduled to appear in
1984.

Distributed Operating System:

H. J. Siegel, L. J. Siegel, R. J. McMillen, P. T.
Mueller, Jr., and S. D. Smith, "An SIMD/MIMD mul-
timicroprocessor system for image processing and pat-
tern recognition." 1979 IEEE Comp. Soc. Conf. Pat-
tern Recognition and Image Processing, Aug. 1979, pp.
214-224.

D. L. Tuomenoksa and H. J. Siegel, "Application of
two-dimensional bin packing algorithms for task
scheduling in the PASM multimicrocomputer sys-
tem," 19th Allerlon Conf. Communication, Control,
and Computing, Oct. 1981. pg. 542.

D. L. Tuomenoksa and H. J. Siegel, "Analysis of the
PASM control system memory hierarchy," 1982 Int'l.
Conf. Parallel Processing, Aug. 1982, pp. 363-370.

D. L. Tuomenoksa and H. J. Siegel, "Analysis of
multiple-queue task scheduling algorithms for
multiple-SIMD machines," 8rd Int'l. Conf. Distributed
Computing Systems, Oct. 1982. pp 114-121.

D. L. Tuomenoksa and H. J. Siegel, "A distributed
operating system for PASM," 17th Hawaii Int 7. Conf.
System Scienes, Jan. 1984, pp. 89-77.

D. L. Tuomenoksa and H. J. Siegel, "Task pretoading
schemes for the PASM dynamically reconfigurable
parallel processing system," IEEE Trans. on Comput-
ers, scheduled to appear in Vol. C-32, 1084.

Prototype Design:

J. T. Kuehn and' H. J. Siegel, "Simulation studies of
PASM in SIMD mode," 1981 IEEE Comp. Soc.
Workshop Computer Architecture for Pattern Analysis
and Image Database Management, Nov. 1981, I)P. 43-
50.

o r . T. Kuehn, H. J. Siegel, and P. D. Hallenbeck,
"Design and simulation of an MC68000-based multim-
icroproeessor system," 198g Int'l. Conf Parallel Pro-
cessing, Aug. 1982, pp. 353-362.

Parallel Programming Language:

P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegel, "A
parallel language for image and speech processing,"
IEEE Comp. Soc. 4th lnt'l. Computer Software and
Applications Conference (COMPSAC 80), Oct. 1980,
pp. 476.-483.

C. Cline and H. J. Siegel, "Extensions of Ads for
SIMD parallel processing," IEEE Comp. Soc. 7lh Int 7.
Computer Software and Applications Conf. (COMP-
SAC 83), Nov. 1983, pp. 366.-372.

C. Cline and H. J. Siegel, "A comparison of parallel
language approaches to' data representation anddata
transferral," Computer Data Engineering (COMP-
DEC)' Conf., Apr. 1984, pp. 60-66.

Parallel Image Processing:

L. J. Siegel, P. T. Mueller, Jr:, and, H. J. Siegel, "FFT
algorithms for SI~MD machines," 17th Allerton Conf.
Communication, Control, and Computing, Oct. 1979,
pp. 1006-1015.

P. T. Mueller, Jr., L. J. Siegel, and H. J. Siegel,
"Parallel algorithms for the two-dimensional FFT,"
5th Int'l. Conf. Pattern Recognition) Dee. 1980, pp,
497-502.

P. H. Swain, H. J. Siegel, and J. EI-Achkar, "Mul-
tiproeessor implementation of image pattern recogni-
tion: a general approach," 5th Int7. Conf. Pattern
Recognition, Dee. 1980, pp. 309-317.

H. J. Siegel and P. H. Swain, "Contextual
classification on PASM," IEEE Comp. Soc. Conf. Pat-
tern Recognition and Image Processing, Aug. 1981, pp.
320-3~5.

L. J. Siegel, E. J. Delp, T. N. Mudge, and H. J. Siegel,
"Block truncation coding on PASM," 19th Annual All-
erton Conf. on Communication, Control, and Comput-
ing, Oct. 1981, pp. 891-900.

L. J. Siegel, "Image processing on a partiti0nable
SIMD machine," in Languages and Architectures for
Image Processing; M. J. B. Duff and S. Levialdi, edi-
toes, Academic Press, London, 1981, pp. 294-300.

T. N. Mudge, E. J. Delp, L. J. Siegel, and H. J. Siegel,
"Image coding using the multimicrop~oeessor system
PASM," IEEE Comp. Soc. Conf Pattern Recognition
and Image Proeessing~ ~une 1982, pp. 200-205.

18

L. J. Siegel, H. J. Siegel, and A. E. Feather, "Parallel
processing approaches to image correlation," IEEE
7¥ans. Computers, Vol. C-31, Mar. 1982, pp. 208-218.

L. J. Siegel, H. J) Siegel, and P. It. Swain, "Perfor-
mance measures for evaluating algorithms for SIMD
machines," IEEE Trans. Software Engineering, Vol.
SE-8, July 1982, pp. 319-331.

M. R. Warpenburg and L. J. Siegel, "hnage resam-
piing in an SIMD environment," IEEE Trans. Com-
puters, Oct. 1982, pp. 934-942.

H. J. Siegel, P. H Swain, and B. W. Smith, ',Remote
sensing on PASM and CDC Flexible Processors," in
Multicomputers and Image Processing: Algorithms and
Programs, K. Preston and L. Uhr, eds. Academic
Press, New York, NY, 1982, pp. 331-342.

L. J. Siegel, H. J. Siegel, P. H. Swain, G. B. Adams HI,
W. E. Kuhn III, R. J. McMillen, T. A. Rice, K. D.
Smith, and D. L. Tuomenoksa, "Distributed comput-
ing for signal processing: modeling of asynchronous
parallel computation, 1983 progress report," Purdue
University, School of Electrical Engineering, Techni-
cal Report No. TR-EE 83-11, Mar. 1983, 292 pages.

D. L. Tuomenoksa, G. B. Adams III, H. J . Siegel, and
O. R. Mitchell, "A parallel algorithm for contour
extraction: advantages and architectural implica-
tions," 1983 IEEE Comp. Soc. Syrup. Computer Vision
and Pattern Recognition, June 1983, pp. 336-344.

L. J. Siegel, H. J. Siegel, P. H. Swain, G. B. Adams III,
G. M. Lin, D. L. Tuomenoksa, and T: A. Rice, "Paral-
lel processing approaches to production scenarios for
mapping applications," Purdue University, School of
Electrical Engineering, Technical Report No. TR-EE
83-27, Aug. 1983, 265 pages.

T. A. Rice and L. J. Siegel, "Parallel algorithms for
computer vision," Workshop on Computer Architec-
ture for Pattern Analysis and Image Database Manage-
ment, Oct. 1983, pp. 93-100.

J. T. Kuehn and H. J. Siegel, "Simulation studies of a
parallel histogramming Algorithm for PASM," 7th
Int'l. Conf. on Pattern Recognition, July 1984, pp.
646-649.

J. T. Kuehn, H. J. Siegel, D. L. Tuomenoksa, and G.
B. Adams III, "The use and design of PASM," in
Image Processing: From Computation to Integration,
edited by S. Levialdi, Academic Press, London, 1984,
to appear.

T. A. Rice and L. Siegel, "Parallel processing for com-
puter vision," in bnage Processing: From Computa-
tion to Integration, S. Levialdi, editor, Academic
Press, London, 1984, to appear.

 'PURDUE
 ALL-

 TAR
 ACHINE

19

