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A b s t r a c t  

PASM is a multifunction p_o,r titionable 
~IMDfkIIMD system being designed at Purdue for 
parallel image understanding. It is to be a large-scale, 
dynamically reeonfigurable multimicroprocessor system, 
which will incorporate over 1,000 complex processing 
elements. Parallel algorithm studies and simulations 
have been used to analyze application tasks in order to 
guide design decisions. A prototype of PASM is under 
construction (funded by an equipment grant from IBM), 
including 30 Motorola MC68010 processors, a multistage 
interconnection network, five disk drives, and connec- 
tions to the Purdue Engineering Computer Network (for 
access to peripherals, terminals, software development 
tools, etc.). PASM is to serve as a vehicle for studying 
the use of parallelism for performing the numeric and 
symbolic processing needed for tasks such as computer 
vision. The PASM design concepts and prototype are 
overviewed and brief examples of parallel algorithms are 
given. 

I .  I n t r o d u c t i o n  

This is an overview of the design for the thousand- 
processor PASM system and the 25-processor prototype 
being built to validate the system design concepts. One 
way to do image processing faster is through the use of 
parallelism. Different modes of parallelism can be 
employed in a computer system. The SIMD (st'ngle 
instruction stream - multiple data stream)mode [FIyB6 l 
typically uses a set of N processors, N memories, an 
interconnection network, and a control unit (e.g., IIliac 
IV [Bou72], STARAN [Bat77], CLIP4 [Fou81], MPP 
[Bat82]). The control unit broadcasts instrueiions to 
the processors and all active :(enabled} processors exe- 
cute the same instruction at  the same time. Each pro- 
cessor executes instructions using data taken from a 
memory with which only it is associated. The  intercon- 
nection network allows interprocessor communication. 
An MSIMD (multiple-SIMD) system is a parallel process- 
ing system which can be structured as one or :more 
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independent SIMD machines of various sizes (e.g., MAP 
[Nut77]). The Illiac 1V was originally designed as an 
MSIMD system [Bar68]. The MIMD (multiple instruc- 
tion stream - multiple data stream)mode [Fly66J typi- 
cally consists of N processors and N memories, where 
each processor can follow an independent instruction 
stream (e.g., C.mmp ![WuB72], Cm* [SwF77], Ultraeom- 
puter [GoG83]). As with SIMD architectures, there is a 
multiple data stream and an interconnection network. 
A partitionable SIMD/MIMD system is a parallel pro- 
cessing system which can be structured as one or more 
independent SIMD and/or  MIMD machines of various 
sizes (e.g., T R A C  [SeU80]). 

PASM is a p~.~rtitionable SIMD/MIMD machine 
being designed at Purdue University to be a large-scale 
dynamically reeonfigurable multimicroprocessor system 
iSiS81]. It is a special-purpose system aimed at exploit- 
mg the parallelism of image understanding tasks. 
PASM is being developed using a variety of problems in 
image processing and pattern recogniiiotl to guide the 
design choices. It can also be applied to related areas 
such as speech understanding and biomedical signal pro- 
cessing. 

PASM is to serve as a research tool for experiment- 
ing with parallel processing. The design attempts to 
incorporate the needed flexibility for studying large- 
scale SIMD and MIMD parallelism while keeping sys- 
tem costs "reasonable." Portions of PASM have been 
simulated and a prototype is under development. 

In Section II, the PASM architecture is overviewed. 
Section IIl gives some examples of ]low PASM can be 
used for image processing. The PASM prototype is 
described -in Section IV. The advantages of some of the 
features of PASM are discussed in Section V. Selected 
references for further reading about PASM appear at 
the end of this paper. 

H. T h e  P A S M  A r c h i t e c t u r e  

A block diagram Of the basic components of PASM 
is shown in Fig 1. The Parallel Computation Unit IFig. 
2) contains N~-2 'z processors, N mevaory modules, ~and 
an interconnection network. The processors are 
microprocessors that perform the actual SIMD and 
MIMD computations. The memory modules are used by 
the processors for data storage in SIMD mode and both 
data and instruction storage in MIMD mode  Each PE 
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Fig. 1. Block diagram overview of PASM. 
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Fig. 2. Parallel Computation Unit. 

can operate in both the SIMD and MIMD modes of 
parallelism. A memory module is connected to each 
processor to form a processor - memory pair called a 
Processing Element (PE). The N PEs are numbered 
from 0 to N - I  and each PE knows its number (address). 
A pair of memory units is used for each memory module 
to allow data to be moved between one memory unit 
and secondary storage (the Memory Storage System) 
while the processor operates on data in the other 
memory unit, A PASM N = I 6  prototype will use 
Motorola MC68010 processors: the final N =  1024 system, 
which the architecture is designed h)r. will employ cus- 
tom VLSI processors specially designed for parallel 
image processing. The interconnection network provides 
a means of communication among the PEs. Two types 
of. multistage intereonneetion networks are being con- 
sidered for PASM: the Generalized Cube [SiM81b] and 
the Augmented Data Manipulator (ADM) [SiM81a]. 
The ADM network is more flexible, but is more com- 
plex. The Extra Stage Cube network {ADS82] is a 
fault-tolerant variation of the Cube which is planned for 
inclusion in the PASM prototype. Features of the Gen- 
eralized Cube network will be described to familiarize 
the readers with the properties of multistage networks. 

The Generalized Cube network is representative of 
the multistage cube-type class of networks which 
include the baseline [WuF80], delta {Pat81], Extra Stage 
Cube {ADS82] indirect binary n-cube {Pea77], omega 
{Law75], STARAN flip {Bat76], and SW-banyan 
(S=F=2)  [GoL73]. The Cube has N inputs and N out- 
puts. It is shown in Fig. 3a for N=8. PE  i, 0_<i<N, 
would be connected to input port i and output port i of 
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Fig. 3. (a) Generalized Cube topology, shown for 
N=8.  (b) Example one-to-one connection 
(input 2 to output 4). (c) Example broadcast 
connection (input 5 to outputs 2, 3, 6, and 7). 
(d) Example permutation connection (input i 
to output i + 1 mod N). 

the unidirectional network. The Cube topology has 
n = log2N stages, where each stage consists of a set of 
N lines connected to N/2 interchange boxes. Each 
interchange box is a two-input, two-output device. The 
labels of the input /output  (I/O) lines entering the upper 
and lower inputs of an interchange box are used as the 
labels for the upper and lower outputs, respectively. 
Each interchange box can be set individually to one of 
the four legitimate states shown in Fig. 3a. Figs. 3b, c, 
and d illustrate one-to-one, broadcast, and permutation 
connections, respectively. Note that many one-to-one 
and/or  broadcasts can occur simultaneously. 

The connections in this network are based on the 
cube intereonnection functions {Sic77, Sie79]. Let 
P = Pn-I i i o P l P °  be the binary representation of an 
arbitrary line label. Then the n cube interconnec- 
tion functions can be defined as: 

cubei(Pn-I " " " PIP0) = Pn-W'Pi+IPlPH " " " PlP0 
where 0_<i<n, 0 < P < N ,  and Pl denotes the complement 
of Pi. This means that  the cube i interconnection func- 
tion connects P to cubei(P), where cubei(P ) is the I /O  
line whose label differs from P in just the i-th bit posi- 
tion. Stage i of the Cube topology contains the cube i 
interconnection function, i.e., it pairs I /O lines that 
differ only in the i-th bit position. 

Routing tags are used as headers on messages; they 
(l) control each interchange box individually, and (2) 
allow network control to be distributed among the PEs. 
The n-bit routing tag for one-to-one connections is com- 
puted from the input port number and desired output  
port number. Let S be the source address (input port 
number) and D be the destination address (outl)ut porl 
number). Then the routing tag T = S O D  (where " ~ "  
means bitwise "exclusive-or"). Let tnq. . . t l t  0 be the 
binary representation of T. An interchange box in the 



network at stage i need only examine t i. If t i = l ,  an 
exchange is performed, and if ti=0, the straight  connec- 
tion is used_ For  example, if N=8,  S=010, and D=100, 
then T=110.  The corresponding stage settings are 
exchange, exchange, straight (see Fig. 3b). Because the 
exclusive-or operation is commutative,  the incoming 
routing tag is the same as the return tag. Since the des- 
tination PE has the routing tag to the source PE, it is 
easy to perform handshaking if desired. The address of 
the source PE  can be computed by the destination PE 
using S = D O T .  Routing tags that  can be used for 
broadcasting data  are an extension of this scheme 
[SiM81b]. 

The partitionability of a network is its ability to 
divide the system into independent subsystems of 
different sizes. The Cube network can be parti t ioned 
into independent subnetworks of various sizes, where 
each subnetwork of size N' < N  will have all of the con- 
nection properties of a Cube network built to be of size 
N ' .  In PASM, the part i t ioning is accomplished by 
requiring that  the. addresses of all of the 1/O ports in a 
partit ion of size 2' agree (have the same values) in their 
low-order n - i  bit  positions. For  example, in Fig. 4 sub- 
network A consists of ports 0, 2, 4, and 6, and 
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Fig. 4. Cube network of size eight partitioned into 
two subnetworks of size four based on the 
low-order bit position. 

subnetwork B consists of ports 1.3, 5, and 7. All ports 
in subnetwork A have a 0 in the low-order bit  position; 
all ports in subnetwork B have a 1 in the low-order bit 
position. By setting all of the interchange boxes in 
stage 0 to straight,  the two subnetworks are isolated. 
This is because stage 0 is the only stage which allows 
input ports which differ in their low-order bit to 
exchange data.  Each subnetwork can be separately 
further subdivided, resulting in subnetworks of varmus 
sizes. The routing tag scheme can be used to enforce 
the part i t ioning by logically AND-ing the tags with 
masks to force to 0 tag positions which correspond to 
interchange boxes which should be forced to the straight 
state. The network part i t ioning property allows the set 
of PASM PEs to be part i t ioned into independent virtual 
machines of various sizes. 

The Micro Controllers [MCs] (F ig .  5) are a set of 
microprocessors which acl ms the control units for the 
PEs in SIMD mode and orchestrate the activities of the 
PEs in MIMD mode. There are Q--2 q MCs. l)hysically 
addressed (numbered) from 0 to Q - l .  Each MC con- 
trols N / Q  PEs. PASM is being designed for Q=32 
(Q=4 in the prototype).  The MCs are the multiple con- 
trol units needed in order to have a part i t ionable 
SIMD/MIMD system. Each MC memory module con- 
sists of a pair of memory units so that  memory loading 
and computat ions can be overlapped. In SIMD mode, 
each MC fetches instructions and common da ta  from its 
memory module, executing the control flow instructions 
(e.g. branches) and broadcasting the data  processing 
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Fig. 5. PASM Micro Controllers (MCs}. "PCU" is 
Parallel  Computat ion Unit. 

instructions to its PEs. In MIMI) mode, each MC gets 
from its memory instructions and common data  for 
coordinating its PEs. 

The physical addresses of the N/Q processors 
which are connected to an MC must all have the same 
low-order q bits so that  the network can be partitioned. 
The value of these low-order q bits is the physical 
address of the MC. A virtual SIMD machine of size 
RN/Q,  where R = 2  r and 0 < r < q ,  is obtained by having 
R MCs use the same instructions and synchronizing the 
MCs. The physical addresses of these MCs must have 
the same low-order q- r  bits so that all of the PEs in the 
part i t ion have the same low-order q-r  physical address 
bits. Similarly, a virtual MIMD machine of size R N / Q  
is obtained by combining the efforts of the PEs associ- 
ated with R MCs which have the same low-order q- r  
physical address bits. In MIMD mode. the MCs may be 
used to help coordinate the activities of their PEs. Q is 
the maximum number of partit ions allowable, and N/Q 
is the size of the smallest partition. 

The MC processors and MC memories are con- 
nected by a shared reconfigurable ("shortable"l  bus 
[ArP76, KaK79], as shown in Fig. 6. The MCs must  be 
ordered on the bus in terms of the bit reverse of their 
addresses due to the part i t ioning rules. The MC con- 
nection scheme provides more program space for jobs 
using multiple MCs and provides a degree of fault toler- 
ance, since known-faulty MC memory modules could be 
ignored. 

The PEs within each parti t ion are assigned logical 
addresses. Given a virtual machine of size R N / Q ,  the 
processors and memory modules for this partit ion have 
logical addresses (numbers) 0 to ( R N / Q ) - l  R=2 r, 
0 < r < q .  The logical number of a PE is the high-order 
r + n - q  bits of its physical number. Similarly. the MCs 
assigned to the parti t ion are logically numbered 
(addressed) from 0 to R - l .  For  R > I .  the logical 
number of an MC is the high-order r bits (if its physical 
number.  The PASM language compilers and operating 
system will be used to convert from logical to physical 
addresses, so a system user will deal only with logical 
addresses. 

A masking scheme is used in SIMI) mode for (h,tcr- 
mining which PEs will be active, i.e., execute instruc- 
tions broadcast  to them by their MC. PASM will use 
PE address masks and da ta  conditional masks. 
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Fig. 6. (a) Reconfigurable shared bus scheme for 
interconnecting MC processors and MC 
memory modules, shown for Q=8,  where 
each box can be set to "through" or "short." 
(b) Bus set for MCs 0, 2, 4, and 6 form~.ng one 
vir tual  machine. MCs 1 and 5 forming a 
second virtual machine, MC 3 forming a 
third virtual  machine, and MC 7 forming a 
fourth virtual machine. 

The PE address masking scheme uses an n-position 
mask to specify which of the N PEs are to be activated. 
Each position of the mask will contain either a 0, 1. or 
X ("don ' t  care"} and the only PEs that  will be active 
are those whose address matches the mask: 0 matches 
0, 1 matches 1, and either 0 or l matches X. Square 
brackets denote a mask. Superscripts are used as 
repetition factors. For example. "MASK IXn:10] " 
activates all even-numbered PEs and "MASK [0n-~x~] " 
act ivates PEs 0 to 2i-1. A negative PE address mask is 
similar to a regular PE address mask  except that  it 
activates all those PEs which do not match the mask. 
Negative PE  address masks are prefixed with a minus 
sign to distinguish them from regular PE address masks. 
For  example.,, for N=8,  "MASK [-0X1]" activates all 
PEs except 1 and 3. PE address masks are specified in 
the  SIMD program. 

Data conditional masks are the implicit result of 
performing a condit ional  branch dependent on local 
da t a  in an SIMD machine environment, where the result 
of different PEs '  evaluations may differ. They are used 
when the decision to enable and disable PEs is made at 
execution time. As a result of a conditional where state- 
ment of the form 

where < d a t a - c o n d i t i o n >  do . . -  elsewhere - 
each PE will set a flag to activate itself for either the 

"do" or the "elsewhere," but not both. The execution 
of the "elsewhere" statements must follow the "do" 
statements;  i.e., the "do" and "elsewhere" s ta tements  
cannot be executed simultaneously. For  example, as a 
result of executing the statement:  

where A < B do C ~-- A elsewhere C ~-- B 
each P E  will load its C register with the minimum of its 
A and B registers, i.e., some PEs will execute "C ~ A," 
and then the rest will execute "C ~ B." This type of 
masking is used in such machines as the Illiac IV [Bar681 
and P E P E  [Cra72]. "Where" s tatements  can be nested 
using a run-time control stack. 

There are instructions whi(.h e×~mino the colle(.tive 
status of all of the PEs of a virtual SIMD machine, such 
as "if any," "if all," and "if none." These instructions 
change the flow of control of the program at execution 
time depending on whether any or all processors in the 
vir tual  SIMD machine satisfy some condition. For  
example, if each PE is processing da ta  from a different 
section of an image, but all PEs are looking for enemy 
tanks, it is desirable to know "if any" of the PEs have 
discovered a tank. This requires communication among 
the MCs comprising the virtual SIMD machine. There 
is a set of buses shared by MCs for this purpose. 

Control Storage contains the programs for the MCs. 
The loading of programs from Control Storage into the 
MC memory units is controlled by the System Control 
Unit. 

The Memory Storage System provides secondary 
storage space for the Parallel Computat ion Unit for the 
da ta  files in SIMD mode, and for the data  and program 
files in MIMD mode. It consists of N/Q independent 
Memory Storage Units, numbered from 0 to ( N / Q ) - I .  
Each Memory Storage Unit is connected to Q PE 
memory modules. For  0 < i < N/Q, Memory Storage 
Unit i is connected to t h o ~  PE memory modules whose 
physical addresses have the value i in their n-q high- 
order bits. Recall that .  for 0 < k < Q ,  MC k is connected 
to those PEs whose physical addresses have the value k 
in their q low-order bits. This is shown for N=32 and 
Q=4 in Fig. 7. 

A virtual machine of R N / Q  PEs, R = 2 r 
0 < r < n, logically numbered from 0 to ( R N / Q ) - I  
requires only R parallel block loads if the da ta  for the 
PE memory module whose high-order n -q  logical 
address bits equal i is loaded into Memory Storage Unit 
i. This is true no mat ter  which group of R MCs {which 
agree in their low-order q - r  physical address bits) is 
chosen. As an example, consider Fig. 7. and assume a 
virtual machine of size 16 is desired. The da ta  for the 
PE memory modules whose logical addresses are 0 and 1 
is loaded into Memory Storage Unit 0. for memory 
modules 2 and 3 into Unit 1, etc. Assume the partition 
of size 16 is chosen to consist of the PEs connected to 
MCs ! and 3. Given this assignment of MCs. the PE 
memory module whose physical address is 2i + 1 has log- 
ical address i, 0 < i < 16. The Memory Storage Units 
first simultaneously load PE memory modules physically 
addressed I, 5. 9, 13, 17. 21. 25, and 29 (logically 
addressed 0. 2, 4, 6, 8, 10, 12, and 14), and then simul- 
taneously load P E  memory modules physically 
addressed 3, 7. 11, 15, 19, 23. 27. and 31 (logically 
addressed 1, 3, 5, 7, 9, 11. 13. and 15}. No mat ler  
which pair of MCs is chosen (i.e.. MCs 1 and 3. or MCs 
0 and 2), only two parallel block loads are needed. This 
same approach can be taken if only (N/Q) /2  d disl inct  
Memory Storage Units are available, where 
0 _< d < n - q  In this case, however. R2 d parallel block 
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Fig. 7. Organization of the Memory Storage Sys- 
tem. shown for N=32 and Q=4. "MSU" is 
Memory Storage Unit. "PCU" is Parallel 
Computation Unit. 

loads will be required instead of just R to load a virtual 
machine of R N / Q  PEs. 

The Memory Management System controls the 
transferring of files between the Memory Storage System 
and the PEs. It is composed of a separate set of 
microprocessors dedicated to performing tasks in a dis- 
tributed fashion. This distributed processing approach 
is chosen in order to provide the Memory Management 
System with a large amount of processing power at low 
cost. The division of tasks chosen is based on the mare 
functions which the Memory Management System must 
perform, including: (1) generating tasks based on PE 
load/unload requests from the System Control Unit; /~ l 
scheduling Memory Storage System data transfers: 
controlling input /output  operations involving peripheral 
devices and the Memory Storage System; (4) maintain- 
ing the Memory Management System file directory 
information; and (5) controlling the Memory Storage 
System bus. 

The System Control Unit is responsible for the 
overall coordination of the activities of the other com- 
ponents of PASM. The types of tasks the System Con- 
trol Unit will perform include program development, job 
scheduling, and coordination of the loading of the PE 
memory modules from the Memory Storage System with 
the loading of the MC memory modules from Control 
Storage. By carefully choosing which tasks should be 
assigned to the System Control Unit and which should 
be assigned to other system components (e.g., the MCs 
and Memory Management System) the System Control 
Unit can work effectively and not become a bottleneck. 
For the N=1024 PASM. the System Control Unit may 
consist of several processors in order to perform all of its 

functions efficiently. In the N=16 prototype, the Sys- 
tem Control Unit is a microprocessor and the program 
development functions are performed by the host com- 
puter network. 

III. Parallel Image Algorithms 

A number of SIMD and MIMD algorithms to per- 
form common image processing tasks have been 
developed by our group. Image processing algorithms 
which have been structured for parallel execution 
include: image smoothing, histogramming, 2-D F F T  cal- 
culation, local area histogram equalization, local area. 
brightness and gain control, feature extraction, max- 
imum likelihood classification, contextual statistical 
classification, image correlation (convolution, filtering), 
block truncation coding, resampling, rectification, rota- 
tion, translation, sealing, elevation/location determina- 
tion, median filtering, Sobel edge sharpening, clustering 
feature enhancement, scene segmentation. Karhunen- 
Loeve transformation, 3-D shape analysis using Fourier 
descriptors, and a computer vision task including edge 
labeling, perimeter, area, center of mass, and hole count 
computations. These have been analyzed in terms of 
machine-size/problem-size relationships, processor capa- 
bility needed for efficient execution, memory require- 
ments, and inter-PE communication requirements. 
Different algorithm strategies have been explored and 
compared. From these studies, we are assessing the 
ways m which parallelism can be used for VlSmn. 
Current research includes the development of a simula- 
tor for a parallel implementation of a LISP interpreter 
for use in image understanding applications. 

In this section three brief examples of parallel 
image processing algorithms are given. The first is a 
simple SIMD image smoothing a|gorithm, the second a 
more complex SIMD histogramming algorithm, and the 
third an SIMD/MIMD contour extraction algorithm. 
The contour extraction algorithm study was done as 
part of ongoing research at Purdue in the area of 
automatic target recognition [MiK82]. 

As an example of a simple parallel algorithm, con- 
sider the smoothing of an image [SiSSl]. The algorithln 
described here smooths a gray level input image. The 
algorithm has 'T '  as an input image and "S" as an out- 
put image. Assume both l and S contain 512-by-512 
pixels (picture eleme.nts), for a total of 5122 pixels each. 
Each point of I is an eight-bit unsigned integer 
representing one of 256 possible gray le,vels. The gray 
level of each pixel indicates how "dark '  that pixel is, 
where 0 means white and 255 means black. Each point 
in the smoothed image, S(i,j), is the average of the gray 
levels of I(i j) and its eight nearest neighbors, l( i- l , j -1),  
I(i-l,j). I(i~-l,j+l), I(i,j-l), l { i j+ l ) ,  I ( i + l j - l )  
I(i+l,j '), and I ( i + l , j t l ) .  The top, bottom, left. and 
right edge pixels of S are not calculated since their 
corresponding pixels in I do not have eight adjacent 
neighbors. 

Consider how this could be iml)lemented on an 
SIMD machine with N = 1024 PEs. logically arranged 
as an array of 32-by-32 PEs as shown in Fig. 8. Each 
PE stores a 16-by-16 subimage block of the 512-by-512 
image I. Specifically. PE 0 stores the pixels in columns 
0 to 15 of rows 0 to 15, PE 1 stores the pixels in 
columns 16 to 31 of rows 0 to 15, and so on. Each PE 
smooths its own subimage, with all PEs doing this 
simultaneously. At the edges of each 16-by-16 subim- 
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Fig. 8. Data allocation and inter-PE transfers for 
the image smoothing algorithm. 

age, data  must be t ransmit ted between PEs in order to 
calculate the smoothed value. The necessary data  
transfers are shown for PE J in Fig. 8. Transfers 
between different PEs can occur simultaneously; e.g., 
when PE J -1  sends its upper right corner pixel to PE J, 
P E  J can send its upper right corner pixel to PE J + 1, 
PE  J + l  can send its upper right corner pixel to PE 
J + 2 ,  etc. 

In order to perform a smoothing operation on a 
512-by-512 image by the parallel smoothing of 1024 
subimage blocks of size 16-by-16, 162 = 256 parallel 
smoothing operations are performed. As described 
above, the neighbors of the subimage edge pixels must 
be transferred in from adjacent  PEs. Using either the 
Cube or ADM networks, the total  number of parallel 
da ta  element transfers needed is (4 * 16) + 4 = 68 :16  
for each of the top, bottom, left side. and right side 
edges, and four for the corners (see Fig. 8). The 
corresponding serial al$orithm needs no da ta  transfers 
between PEs, but  2 512 = 262.144 smoothing calcula- 
tions must be performed. If no da ta  transfers were 
needed, the parallel algorithm would be faster than the 
serial algorithm by a factor of 262,144/256 = 1024 = N. 
If the inter-PE da ta  transfer time is included and it is 
assumed that  each parallel data transfer requires at 
most as much t ime as one smoothing operation, lhen 
the time factor improvement is 262.144/32.t = 800. 
The  inter-PE transfer time approximation is a cons(q'v:l, 
tive one. Thus, the overhead of the 68 inter-PE 
transfers that  must be performed in the SIMD machine 
is negligible compared to the reduction from 262.144 to 
256 smoothing operations. 

As an example of a parallel algorithm that  is not a 
straightforward decomposition of the corresponding 
serial algorithm (as the smoothing example was), con- 
sider an SIMD algorithm for computing the global histo- 
gram of an image ISIS81]. Assume there are 
B = 2 b = 256 bins in the histogram. N=1024, and the 
image is 512-by-512 pixels. The B-bin histogram of the 
image contains a j in bin i if exactly j of the pixels have 
a gray level of i, 0 < i < B .  Assume the image is equally 
distr ibuted among the 1024 PEs, i.e.. each PE has 
5122/1024 pixels, and B _< 5122/1024. Since the image 
is distributed over 1024 PEs, each PE will calculate a 
B-bin histogram based on its subimage. Then these 
"local" histograms will be combined using the method 
described below. 

In the next b steps, each block of B PEs performs 
B simultaneous recursive doublings [StoB0] to compute 
the histogram for the portion of the image contained in 
the block (see Fig. g). In the first step, each block of 
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Fig. 9. Histogram calculation for N=16  PEs, B=4 
bins. (w,...,z) denotes that bins w through z 
of the part ia l  histogram ar(, ill the PE. 

PEs is divided in half such that  the PEs with the lower 
addresses form one group, and the PEs with the higher 
addresses form another. Each group accumulates the 
sums for half of the bins, and sends the bins it is not 
accumulating to the other group. The "lower-numbered 
group" accumulates the sums for tile first half of the 
bins while the "higher-numbered group" accumulates 
the second half of the bins. For  each successive merging 
step, the groups of PEs are re-subdivided with the accu- 
mulated subtotals for each bin being combined into half 
as many PEs at each step. The subdividing process 
continues until there is one PE in each group and each 
PE has the total value for one bin from the portion of 
the image contained in the B PEs in its block. The 
next n - b  steps combine the results of these blocks to 
yield the histogram of the entire image distributed over 
B PEs. The sum for bin i will end up in P E i .  for 
0_<i<B. This is done by performing n -b  steps of a 
recursive doubling algorithm to sum the partial  histo- 
grams from the N/B blocks, shown by the last two steps 
of Fig. 9. The  recursive doubling steps are done for all 
B bins simultaneously. 

A sequential algorithm to eoml)ule the histogram of 
an M-by-M image reqmres M 2 additions. The S1MD 
algorithm uses MZ/N addit ions for each PE to compute 
its local histogram. At  step i in the merging of the par- 
tial histograms. 0 < i < b ,  the number of parallel data 
t ransfer /adds  required is B/2 i+s A total of B - I  
t ransfer /adds  are therefore perfornwd ill the first h st(,l)S 
of the algorithm. Then n -b  parallel transfers and addi- 
tions are needed to combine the block histograms. This 
technique therefore requires B-1 + n - b  parallel 
t ransfer /add operations, plus the M2/N additions 
needed to compute the local PE  histograms. For  exam- 
ple, for N=1024, M--512. and B=256. the sequential 
algori thm would require 262,144 additions: the parallel 
algorithm uses 256 addition steps plus 257 t ransfer /add 
steps. Again. both the Cube and ADM multistage net- 
works can perform each of the required inter-PE data  
transfers in one step. 

Now consider an SIM1)/MIMI) parallel implementa- 
tion of contour extraction [TuA83]. Two algorithms 
from a contour extraction task are edge-guided 
thresholding (EGT} and contour tracing. The E G T  algo- 
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rithm is used to determine a set of optimal thresholds 
for quantizing the image [MiR81]. The contour tracing 
algorithm uses the set of ttlreshoids to segment the 
image and trace the contours. It is assumed that the 
image to be processed is dis tr ibuted among the PEs as 
in the smoothing example. 

The E G T  algorithm consists of three major steps. 
First ,  the Sobel edge operator [DuH73] is used to gen- 
erate an edge image in which gray levcls indicate the 
magnitude of the gradient. A figure of merit, which 
indicates how well a given threshold gray level matches 
edges in the edge image is then computed for every pos- 
sible threshold. Finally, the maximum value of the 
figure of merit  function is chosen to determine the thres- 
hold level. This is done for each PE's  subimage 
independently; thus, the threshold levels may differ from 
one subimage to the next. The window-based Sobel 
operator calculations and inter-PE communications used 
in the SIMD E G T  algorithm are very similar to those 
discussed earlier for the image smoothing algorithm. 

The MIMD contour tracing algorithm has two 
phases. In Phase I, PEs segment their subimages based 
on the threshold value each calculated using the EGT 
algorithm. All local contours (both closed and partial) 
are traced and recorded. In Phase II, part ial  contours 
traced during Phase I are connected. 

In Phase I there is no PE-to-PE communication. 
Each PE creates a segmented subimage for a particular 
threshold T by assigning a value of one to subimage 
pixels having a grey level greater than or equal to T, 
and a value of zero to the others. Contour tracing 
begins with each PE scanning the rows of its segmented 
subimage beginning with the first pixel of the top row. 
Scanning stops when a start  point of a new contour is 
found. A s tar t  point is a pixel with value one which has 
a zero-valued neighbor to either or both sides. Contours 
are traced in either a clockwise or counter-clockwise 
direction and the Freeman direction codes [Fre61] of the 
"chain" of pixels are recorded. When a pixel from an 
adjacent  subimage would be required to determine the 
next direction of the contour, a point of indecision is 
reached. Such a point is recorded as an end point, and 
the algorithm returns to the s tar t  point to trace the 
contour in the opposite direction until another point of 
indecision is reached. Closed contours that  are con- 
tained within a subimage are traced completely (luring 
Phase I. 

In Phase If, each PE a t tempts  to connect its partial 
contours to those located in neighboring PEs. l)Es con- 
sider each part ial  contour's end point in turn and try to 
find a possible extending contour in a neighboring PE. 
Once such an extending contour is found, the process is 
repeated, if necessary, by following the contour to the 
next PE until the contour is closed or cannot be 
extended. A protocol is necessary to prevent more than 
one P E  from trying to use the same partial contour as 
an extending contour at  the same time. Phase II is 
complete when all of the contours have been connected. 

The contour extraction task demonstrates the 
advantages of several features of PASM. The local 
neighbor inter-PE transfers needed for the SIMD E G T  
algorithm can be performed by all PEs simultaneously, 
as was discussed for the SIMD smoothing algorithm. 
The global inter-PE communications for the MIMD con- 
tour tracing can be performed efficiently by either the 
multistage Cube or ADM networks. Lastly, the ability 
of the PEs to operate in either SIMD or MIMD mode 

allows the most appropriate  type of parallelism to be 
employed by each algorithm in the task. 

IV. The PASM Prototype Design 

A prototype of the PASM system is currently being 
constructed (see Fig. 10). All processors in the system 

ECN 

PASM ~ _ _ ~  
Prototype 

I I I I 

Storage 
System 

ECN 

Fig. 10. The PASM parallel processing'system proto- 
type. 

are based on the Motorola MC68010 16-bit microproces- 
sor. Only off-the-shelf components are used; this elim- 
inates the need for VLSI chips and reduces development 
time and construction costs. By using a modular design 
concept, only five different types of physical boards are 
needed: a CPU board containing the MC68010 
microprocessor, a dynamic memory board with up to 1 
Mbyte of memory, an I /O  board, a network interchange 
box board, and a specialized board used in the MCs. 
The System Control Unit, MCs. PEs. Memory Manage- 
ment System processors, Control Storage and Melnory 
Storage Unit processors, and the PE interconnection 
network can all be implemented by using these boards 
in different configurations. 

The Parallel  Computat ion Unit will consist of 16 
PEs, connected by an Ext ra  Stage Cube interconnection 
network. The Parallel Computat ion Unit is controlled 
by four MCs. The  prototype could be readily extended 
to 8 MCs and 8 PEs per MC (pending the availability of 
funding). The System Control Unit (SCU) for tile pro- 
totype is a dedicated microprocessor rt,sl)onsible for tile 
overall orchestration of the activiiics of the syst(,m. It 
shares its mass storage device (D) wilh the MCs. ']'he 
device m managed by the Control Storage (CS) 
microprocessor. In order to allow a larger group of users 
to access PASM, the System Control Unit will s~.rve as a 
link between PASM and the Engineering Computer  Net- 
work (ECN). ECN is a local network of about twenty 
DEC VAX and P D P - I I  computers at Purdue Univer- 
sity. The user s terminal will be physically connected to 
an ECN host computer.  The host will provide the 
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environment for the development, compilation, and 
debugging of SIMD and MIMD programs to prevent the 
System Control Unit microprocessor from being bur- 
dened. Commands (jobs) initiated by users are sent by 
the host to the System Control Unit, which schedules 
the jobs to be run on the parallel machine. The proto- 
type system console is used for system startup and mon- 
itoring of PASM activities. Mass storage for the PEs is 
provided by four high capacity Winchester technology 
disk drives (D), each controlled by a Memory Storage 
Unit (MSU) microprocessor. The Memory Storage Units 
are managed by the Memory Management System, con- 
sisting of a Directory Lookup Processor (DP), a Memory 
Scheduling Processor (MSP), a Command Distribution 
Processor (CDP), and an Input /Output  and Reformat- 
ting Processor (IOP). User programs and data can be 
received from or sent to ECN peripherals such as addi- 
tional mass storage or image input /output  devices. 

The PE execution unit is a Motorola MC68010 
microprocessor. Two lfi-bit dynamic memories imple- 
ment the PASM double-buffered memory scheme. Each 
of these memories can store 256 Kbytes of program or 
data. The overall memory capacity can be increased to 
2 Mbytes per PE if needed. The I /O board contains 
parallel ports that interface the PE CPU to the inter- 
connection network. Data can be sent to or read from 
the network by I /O  port read and write instructions. 
This can be done either by the PE CPU directly or by 
using a DMA controller. The M C / P E  communication 
controller is also found on the I /O board. This con- 
troller allows data exchange between an MC and its PEs 
via a shared bus. This data link is necessary to allow 
the MC to coordinate PE activities in MIMI) mode. 

When all active PEs request an instruction in SIMI) 
mode, an instruction word is broadcast from the MC.s 
and placed on all the PE data busses simultaneously. 
Each PE decodes the instruction and performs the 
operation or requests additional operand words. In 
MIMD mode, instructions and data are contained wholly 
within a PE's  memory and no instructions are broadcast 
by the MC. Since the instructions for each PE are 
stored in the PE's  local memory (for MIMD operations ) 
or are broadcast to the PE by its MC {for SIMD opera- 
tions), the interconnection network will be used solely 
for inter-PE data communication rather than both 
inter-PE communication and instruction fetch opera- 
tions. 

The PASM prototype's mterconnection network is 
a circuit switched implementation of the Extra Stage 
Cube network lAdS82] which is a fault-tolerant version 
of the multistage Cube network discussed earlier. This 
network is single-fault tolerant and has been shown to 
be very robust under multiple faults lAdS84]. Circuit 
switching was chosen for its ease of implementation as 
well as its particular suitability (when compared to 
packet switching) for the anticipated large data 
transfers under DMA (direct memory access) control. 
Using a circuit switched network, prior to any message 
transmission between a network source-destination pair, 
a physical path through the network must be made con- 
necting the pair. This path is established through the 
use of a request-grant protocol. This connects the 
source-destination pair for the duration of the message 
transmission. Individual words within the message are 
transferred from the source PE to the destination PE 
using a handshaking protocol between the parallel ports 
that  interface the PEs to the network. 

The PASM prototype network is being constructed 
from readily available SSI/MSI integrated circuits. It is 
anticipated that a full t024 PE system would integrate 
custom designed VLSI components into the network 
design. In its current configuration of 16 PEs, the net- 
work consists of five stages of interchange boxes, with 
eight boxes per stage. It is estimated that a path 
through the network can be established in approxi- 
mately 1000 ns (assuming no delays due to network 
conflicts). The data itself can be transmitted from a net- 
work input port to a network output  port at a rate of 
one 16-bit word every 400 ns. With the PEs themselves 
operating on a 10 Mhz system clock, these transfer 
times are fast enough so that the network will not act 
as a bottleneck in the computation process under execu- 
tion. 

An MC is composed of essentially the same physi- 
cal boards as a PE but has an extra board containing 
specialized logic used for time-critical MC functions. 
The MC execution unit coordinates its PEs in MIMD 
mode; in SIMD mode, it performs program flow opera- 
tions (such as loop counting and branching) and the 
masking operations. 

One of the specialized components of the MC is the 
fetch unit. It is a finite state machine that fetches 
SIMD instructions from fetch unit memory, determines 
if they are MC (control) instructions or PE (computa- 
tional) instructions, and sends them to the appropriate 
unit. A four-bit tag associated with each instruction 
word in the fetch unit memory specifies the sequence of 
actions the fetch unit has to perform on the remaining 
16 bits. 

When the fetch unit encounters PE instructions, it 
enqueues them to a F IFO buffer. When all of the PEs 
associated with an MC request an instruction, one is 
dequeued and broadcast to them. The FIFO buffer 
allows overlap between the operations of an MC and its 
PEs in SIMD mode, thereby improving performance. 

For programming the PASM prototype, a parallel 
assembly language for the MC68010 for SIMD opera- 
tions has already been implemented. Also, an 
MC68010-based SIMD simulation system has been 
developed to allow the exploration of additional PASM 
design features. Work on the simulation system is con- 
tinuing, and it will be expanded for MIMD use. Studies 
of parallel programming languages based on the "C" 
and "ADA" languages are underway. 

V. Summary and Proposed Future Research 

This paper provided an overview of the PASM 
design concepts and prototype and examples of parallel 
image processing algorithms. Table l summarizes the 
PASM design parameters. A reading list for further 
information about PASM is provided at the end of this 
paper. The rest of this section summarizes some of the 
PASM design features and discusses future research 
plans. 

The possible advantages of a rcconfigurable system 
such as PASM include: 
(a) fault tolerance - If a single PE fails, only those vir- 

tual machines (partitions) which must include the 
failed PE need to be disabled. The rest of the sys- 
tem can continue to function. 
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Table 1. 

Number of PEs 
Number of network stages 

(Extra Stage Cube) 
Number of MCs 
Number of PEs per MC 
Number of Memory Storage Units 
Number of Memory Management 

System processors 
Smallest size partition 

The PASM design parameters,  based on 
current plans. 

full t PASM 
general PASM t prototype 

N 1024 16 

Maximum number of partitions 

logzN + 1 1 t 5 

Q 32 4 
N/Q 32 4 
N/Q 32 4 

fixed 4 4 
N/Q 32 4 
q a~ 4 

(b) multiple simultaneous users - Since there can be 
multiple independent virtual machines, there can be 
multiple simultaneous users of the system, each exe- 
cuting a different program. 

(c) program development - Rather  than trying to debug 
a program on, for example, 1024 PEs, it can be 
debugged on a smaller size virtual machine of 32 
PEs. 

(d) variable machine size for efficiency - If a task 
requires only N /2  of N available PEs, the other N/2 
can be used for another task. 

(e) subtask parallelism - Two independent subtasks that  
are par t  of the same job can be executed in parallel, 
sharing results if necessary. 

(f} multiple processing modes - An algorithm can be 
executed using either the SIMD or MIMD mode of 
parallelism, whichever is more efficient. A task 
requiring algorithms that  use both modes of parallel- 
ism can be executed using the same set of PEs. 

The advantageous features of both the multistage 
Cube and the ADM networks include: 
(a) up to N simultaneous transfers are possible; 
(b) they are part i t ionable into independent subnet- 

works: 
(e) they can be controlled in a distributed fashion 

using routing tags; 
(d) one PE can broadcast to all or a subset of the oth- 

ers; 
(e) there are a variety of implementation options for 

these networks; 
(f) they can be used in SIMD and/or  MIMI) opera- 

tions; and 
(g) they can support efficient global as well as local 

(nearest neighbor) inter-PE communications. 
An additional advantage of the Ex t ra  Stage Cube is 
tha t  it  is singl'e-fauR tolerant. 

Permanent ly  assigning a fixed number of PEs to 
each MC has several advantages over allowing a varying 
assignment such as used in MAP [Nut77]: 
(a) scheduling The operat ing system need only 

schedule (and monitor the "bus)"  s tatus of) Q MCs, 
rather than N PEs (when Q=32 and N=102i ,  this is 
a substantial  savings). 

(b) hardware simplicity - No crossbar switch is needed 
for connecting PEs and control units (such as pro- 
posed for MAP [Nut77]). 

(c) software simplicity - There is no need to do the 
bookkeeping of recording PE to MC assignments. 

(d) network part i t ioning - The fixed assignment sup- 
ports network partitioning. 

(e) secondary storage - The fixed assignment allows the 
efficient use of multiple secondary storage devices. 

The main disadvantage of this approach is that  each 
virtual machine size must be a power of two, with a 
minimum value of N/Q.  However, for PASM's intended 
experimental  environment, flexibility at reasonable cost 
is the goal, not maximum PE utilization. 

Advantages of the MC memory organization 
include: 
(a) the use of the reconfigurable bus for sharing 

memory modules and tolerance of a faulty memory 
module; and 

(b) the abili ty to overlap computation and MC 
memory module loading due to the double- 
buffering. 
The Memory Storage System design allows the 

loading/unloading of a virtual machine of R N / Q  PEs in 
R paralleI block moves. The double-buffered PE 
memory modules permit  this loading/unloading to be 
overlapped with PE execution. The Memory Manage- 
meat  System, which coordinates these memory 
transfers, is implemented with multiple processors, pro- 
viding parallelism at another level. 

The PASM operating system functions will be dis- 
tr ibuted over various system components to prevent the 
System Control Unit from being a bottleneck. These 
components are the System Control Unit, the MCs, the 
Memory Management System, tile Memory Storage Unit 
processors, and the Control Storage processor. 

We have a group of faculty at Purdue who want to 
study a variety of topics relating to the application of 
parallel processing to vision and the implementation and 
use of the PASM prototype. These topics include: 

Parallel Computer Vision: We will continue to study the 
structuring of image understanding tasks for efficienl 
parallel execution. [n particular,  we will investigate 
how to use the reconfigurable PASM system for both 
the numeric and symbolic processing that is necessary 
for vision tasks. Our algorithm studies will involve 
complexity analyses, simulation, and execution on the 
prototype. 

Reliability: Limited fault-tolerance is built into PASM 
due to its parti t ionabili ty,  use of a faul t - tolerant  inter- 
connection network, etc. Fur ther  work includes defining 
the overall system reliability goals and methods for their  
evaluation, and the development of fault detection and 
recovery algorithms and their hardware and software 
requirements. 

Software - Languages: We will investigate programming 
language notations for specifying both implicit, and 
explicit specification of paralMism. Using our algorithm 
studies as a basis, we want, to develop optimizing compi- 
lation techniques for the efficient mapping of applica- 
tions onto parallel architectures. We plan to continue 
our research on parallel LISP, and to develop a LISP 
system for the PASM prototype.  

Software - Operating Systems: The special distributed 
operating system problems which we want to study 
include: mechanisms for the efficient switching between 
the SIMD and MIMD modes of parallelism: automati-  
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cally reconfiguring a task when a fault requires it to run 
on fewer processors than it was compiled for; methods 
for efficiently implementing the distribution and subse- 
quent coordination of operating system functions over 
the various system components; and tools for algorithm 
debugging and hardware supported performance collec- 
tion from many points in the system. 
Hardware: The PASM prototype incorporates the 
MC68010 as the basic building block for the PEs and 
MCs, using external hardware to interface and adopt 
these processors for the prototype. In preparation for 
the construction of larger PASM systems based on our 
experience with the prototype, we wish to study the 
incorporation of these features into custom VLSI proces- 
sor implementations specifically geared towards use in 
multifunction multiprocessors, emphasizing easily exten- 
sible and highly reliable systems. 

Additional topics of interest include: the comparison 
of design and implementation choices for (l) a fault- 
tolerant intereonnection network, (2) communications 
between the PEs and MCs, (3) communications among 
the MCs, and (4) the connection scheme linking the mul- 
tiple secondary storage devices to the PE memories; the 
development of additional operating system and 
hardware features to facilitate the use of one 
reconfigurable system for both the numeric processing 
and symbolic manipulation typical of complete vision 
tasks; and the design of real-time input/output device 
interfaces to PASM. 

In conclusion, the objective of the PASM design is to 
achieve a system which attains a compromise between 
flexibility and cost-effectiveness for a specific problem 
domain. A dynamically reconfigurable system such as 
PASM will be a valuable tool for both image understand- 
ing and parallel processing research. 
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