
Abstract

The paper presents PowerMANNA - a distributed-memo-
ry parallel computer system based on the 64-Bit PowerPC
processor MPC620. The PowerMANNA node architecture
supports all the sophisticated features of the MPC620 and
incorporates important architectural concepts that allow us
to exploit the performance of modern superscalar micropro-
cessors in the context of massively parallel supercomputing.
The two-way processor nodes of PowerMANNA are embed-
ded in a powerful communication system supporting low-
latency communication and maximum connectivity. Process-
ing and communication performance of an eight-node proto-
type are shown and compared with shared-memory machines
and clusters. In the course of the presentation, experience
gained with the PowerPC MPC620 processor is discussed.

1. Introduction

The high-performance parallel processing market is cur-
rently dominated by symmetric-memory processing (SMP)
systems – such as SGI Origin or SUN UE10000. SMP sys-
tems with up to 128 processors (more typical are 16) are
powerful compute servers. They are easy to program and
benefit from the high interaction speed between processors
as a result of the tight integration. However, shared-memory
systems have the fundamental disadvantage of being of lim-
ited scalability. Thanks to an improved understanding of
parallel programming, applications in the field of high-per-
formance scientific computing are being increasingly
designed to run parallel computers with distributed-memory
architectures that are scalable to massive parallelism (MPP).

The best price/performance ratio for distributed-memory
machines is provided by massively parallel clusters built
from off-the-shelf hardware components of workstations or
high-end PCs (even using standard packaging and power
supplies) and fast standard networks such as Myrinet, SCI
or Gigabit Ethernet. 

In the current TOP500 list [1], the most powerful super
computers are highly parallel MPP systems. These systems
are specifically designed for optimal performance and dense
packaging. Using components like microprocessors, mem-
ory modules and communication devices produced for the
larger market of high-end workstations or servers and stan-

dard networks, these systems have a price/performance ratio
somewhere between high-end vector machines and PC clus-
ters. The preferred building blocks of these high-end MPP
systems will be very powerful SMP nodes, the communica-
tion hardware being an integral part of the node or even the
processor architecture. By avoiding additional interfaces
and protocol conversions like the PCI and IP protocols com-
monly used in PCs and workstations, minimum latency and
maximum throughput is attainable. Achieving better than
Teraflops performance from current technology requires up
to a thousand powerful SMP nodes and thus a sufficiently
scalable communication network. 

PowerMANNA is a highly scalable massively parallel
computer system. Considerable effort has been made to
obtain the best possible sustained performance from its
hybrid SMP/MPP architecture. The computing nodes are
based on two-way processor nodes with Motorola’s
MPC620 superscalar processors. Thus, both features – the
scalability of the MPPs and the cost-effectiveness of small
SMPs – are exploited by the PowerMANNA architecture. 

The MPC620 implements the PowerPC architecture as
specified for 64-bit addressing. The superscalar processor
provides sophisticated support for shared-memory multipro-
cessing, distinguishing it from other processors. In summary,
the PowerPC MPC620 was one of the most promising pro-
cessors when the PowerMANNA project started. The new
Power3 processor from IBM, the successor of the MPC620,
demonstrates the viability of its design concepts [2]. 

The distinguishing features of PowerMANNA are its
hierarchical scalable interconnect, its duplicated communi-
cation network with two separate link interfaces on each
node, and the short message start-up times based on a sim-
plified network interface (NI). In addition, the nodes sup-
port shared-memory processing by specifically designed
address and datapath switches resulting in multiple point-to-
point connections instead of a single shared-bus system.

The topology of PowerMANNA’s interconnect is
formed by a hierarchy of crossbars. The nodes are connected
to the duplicated scalable communication system via two
bidirectional communication links, providing a total band-
width of up to 240 Mbyte/s and less than 4 µs latency for
small messages. Nodes connected to crossbars form clusters
that, again, can be interconnected in a hierarchical manner
to create arbitrary configurations with hypercube communi-
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cation interconnectivity. 
The paper presents important architectural features of the

node and the communication system, and evaluates Power-
MANNA’s performance in comparison with pure SMPs and
clusters. In particular, the scalability of the two-way node
and the performance of the communication system are
explored and compared with other systems. The perfor-
mance evaluation aims mainly to validate the architectural
design. The concrete results suffer to some extent from the
fact that the PowerPC MPC620’s technology is no longer
quite state-of-the-art and the successor Power3 has not been
made generally available by IBM. 

In Section 2, we present the node architecture and its
hardware implementation in more detail. Section 3
describes PowerMANNA’s communication system and
Section 4 presents the software environment. In Section 5,
the test results of various benchmarks are discussed. Related
work is considered in Section 6, Section 7 concluding the
paper with a summary.

2. Node architecture

The computing performance of PowerMANNA is based
on dual-processor nodes with two 64-bit PowerPC MPC620
processors. The MPC620 processor implements the Pow-
erPC architecture as specified for 64-bit addressing. The
superscalar processor is capable of issuing four instructions
simultaneously. Its six execution units can operate in paral-
lel, and as many as six instructions can complete execution
in parallel. The MPC620's rename buffers, reservation sta-
tions, dynamic branch prediction and completion unit
increase instruction throughput, guarantee in-order comple-
tion and ensure a precise exception model. 

The MPC620 has separate memory-management units
(MMUs) and separate 32 Kbyte on-chip caches for instruc-
tions and data, and provides support for demand-paged vir-
tual-memory address translation. The MPC620 has a 40-bit
address bus, and it can be configured with either a 64- or
128-bit data bus. The MPC620 interface protocol allows
multiple masters to compete for system resources through a
central external arbiter. Additionally, on-chip snooping
logic efficiently maintains data-cache coherency for multi-
processor applications. The MPC620 supports single-beat
and burst data transfers for memory accesses and memory-
mapped I/O accesses [3].

On the PowerMANNA node computer each processor
has its own 2-Mbyte second-level cache running with the
180 MHz processor clock. The interleaved and pipelined
node memory of up to 1 Gbyte uses cheap standard DRAM
modules and provides an access bandwidth of 640 Mbyte/s.
The PowerMANNA node computer, shown in Figure 1, fits
onto a single 29x23 mm2 board. Each node can, if required,
be extended by a PCI (Peripheral Component Interconnect)
bridge with two PCI mezzanine slots (PMC-P1386.1) to

connect required peripheral devices like disks, 3D graphics
or LAN network controllers. 

Figure 1.  The PowerMANNA node computer

We discuss below how the special features of the
MPC620 processor support an efficient implementation of
SMP nodes and the architectural solutions to cope with the
board complexity of the single-board node computer 

The incorporation of small SMP nodes in MPP systems
is known to be of advantage (and is currently implemented
in many cluster designs) because it reduces overall cost
while at the same time offering a high local communication
bandwidth. Despite the usually high spatial locality of appli-
cations, the communication requirements of SMP nodes
increase according to their higher computing performance
compared with single-processor nodes. In PowerMANNA
this aspect is taken into account by providing two commu-
nication links on the dual-processor nodes. This feature not
only provides sufficient communication bandwidth, it may
also be used to have completely separate communication
networks for system- and user-level communication. 

In the SMP node design, the shared-memory bus typi-
cally becomes the system bottleneck as the number of
installed processors increases. By applying standard archi-
tectural principles like pipelining and interleaving, and by
implementing sufficiently large caches, the required mem-
ory bandwidth can easily be provided. However, the satura-
tion on the processor/memory bus is caused not only by the
traffic between processors and memory, but also by cache-
to-cache transfers and by the data transfers for communica-
tion and I/O. Thus, an efficient sharing of the address and
data path among the connected resources is needed. Here,
the processor bus of the PowerPC MPC620 - supporting
split transactions, pipelining, tagged out-of-order transac-
tions and cache-to-cache transfers - provides optimal sup-
port to achieve maximum parallelism between the compet-
ing transfers. In addition, the MPC620 helps to overcome
the limitations imposed by the bus-based snoop protocol,
which implies that the address phases of the processors need



to be sequentialized. The MPC620 efficiently supports the
full MESI cache-coherence protocol and allows several out-
standing snoop requests to be queued. 

In summary, the features of the MPC620 processor bus
provide – along with its efficient implementation of the
MESI protocol – optimum support for the implementation
of powerful SMP nodes. The current PowerMANNA node
includes only two processors. During the design phase we
performed detailed simulations which showed that the
actual node design would support up to four processors
without their significantly hindering one another [4]. We
found that the limiting factor is not the bandwidth of the
node memory (thanks to its efficient implementation) but
the sequentialization of the address phases enforced by the
snoop protocol of the MPC620 processor. 

The aim of achieving maximum node performance by
supporting all MPC620 features requires innovative solu-
tions to handle the resulting complexity. Two major design
decisions allowed the PowerMANNA node to be imple-
mented as a single-board computer without sacrificing per-
formance: (i) Instead of conventional address and data
buses, the node architecture features an integrated imple-
mentation of a multi master bus switch to which all devices
are connected, and (ii) a single central control unit – the dis-
patcher – handles all the complexity of the MPC620’s con-
trol signals and protocols and provides a simplified interface
to all other node devices. 

Figure 2.  Address and data path architecture

We achieved a dense implementation of the multi master
bus switch, despite its wide address and data path, by using
a specially designed ADSP gate array. A single ADSP
(address data path switch) chip contains a 36-bit slice of a
three-way bus switch. Figure 2 shows the address and data
path architecture of the PowerMANNA node based on 11
ADSP slices.

The PowerMANNA dispatcher handles the protocol and
control complexity of the MPC620 processors. Pipelining,

split transactions, intervention, out-of-order bus-transfer
completion as well as the snoop protocols are kept transpar-
ent to the other units of the node, which simplifies their
design significantly. In addition, the concept of the central
dispatcher results in point-to-point connections of the con-
trol lines, thus avoiding long control buses connecting all
the devices. The block diagram in Figure 3 shows the central
PowerMANNA dispatcher with its interfaces to all other
units of the PowerMANNA node. The unique concept of the
central bus dispatcher handling the complex data-transfer
protocols of the processors by controlling the ADPS devices
is the subject of a patent application (patent pending).
 

Figure 3.  The PowerMANNA dispatcher

3. Communication system 

As the performance of parallel computers depends
strongly on the performance of the communication system,
in the past complex and expensive interconnection topolo-
gies such as the hypercube have been employed. Less expen-
sive mesh topologies, however, as used in the PARAGON or
Cray T3E systems, exhibit a poor blocking behavior [5].
Communication networks based on crossbars are able to pro-
vide the favorable blocking behavior of the hypercube at
much lower cost by replacing the link complexity of the
hypercube (expensive connectors and cables) with the
switching complexity of crossbars (inexpensive silicon) [6]. 

The topology of the scalable interconnection network of
PowerMANNA is formed by a hierarchy of crossbars. A
well-known example of crossbar structures is the fat-tree
topology of the CM-5 [7]. The main difference between the
two networks is the limited routability of the CM-5’s 8x8
crossbar. Its input ports can only be routed to output ports of
a different level in the tree. PowerMANNA’s 16x16 cross-
bar device allows each input to be routed to all other output
channels. This provides an almost unlimited flexibility and
scalability and allows the realization of a wide variety of
communication structures, as shown, e.g., in Figure 5b. In
addition, by using newer technology, PowerMANNA’s
byte-wide communication links are three times faster and
the bandwidth of its duplicated network interface is six
times higher than in the CM-5.
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3.1. Crossbar

PowerMANNA’s crossbar device integrates all the FIFO
buffers and the command- and address-decoding logic for
each input channel and the arbiters for the output channels
into a single ASIC. It implements a wormhole routing pro-
tocol and supports soft flow control on each connection. The
setup of a logical connection is initiated by a route com-
mand. If there are no collisions, this through-routing takes
only 0.2 microseconds. The route command (one byte), con-
taining the address of the output channel, is consumed
within the crossbar. Building up a logical connection across
several crossbars therefore requires as many route com-
mands in the message header as there are crossbars
involved. Logical connections are closed by sending a sin-
gle close command at the end of the message.

3.2. PowerMANNA Link Protocol

The PowerMANNA link is a clock-synchronous, byte-
parallel, bidirectional point-to-point connection operating at
60 MHz. Each port simultaneously supports incoming and
outgoing connections at up to 60 Mbyte/s (120 Mbyte/s full-
duplex). This full-duplex protocol improves not only the
overall bandwidth but also simplifies the communication
protocols by excluding deadlocks. 

To achieve an efficient implementation of the communi-
cation channels (links), an extremely lightweight protocol –
suitable for complete implementation in hardware – was
defined. Physically, each link direction consists of a 9-bit-
wide channel for data and control information from the
sender to the receiver, and a stop signal in the opposite
direction (Figure 4). Together with the FIFO buffers on the
receiver side, the stop signal is used for soft flow control. 

Figure 4.  Link protocol

The link protocol is defined to connect the Power-
MANNA nodes to the crossbars of the network, but also to
connect the links of the crossbars or of the nodes directly to
each other. Physically, the clock-synchronous link protocol
is limited to short distances, e.g. within a cabinet. To bridge
the greater distance between cabinets (up to 30 m) asynchro-
nous transceivers have been implemented. On the input side
of the transceivers, there are asynchronous FIFO buffers
with 2-Kbyte entries allowing soft flow control over a
longer distance.

 

Figure 5.   PowerMANNA topologies

 Figure 5.a shows the basic interconnect of an eight-node
PowerMANNA system assembled into a desk-side cabinet.
The crossbars, transceivers and connectors are assembled
on the backplane, to which the eight single-board node com-
puters and the cables of the asynchronous links are con-
nected. Figure 5.b gives an idea of how larger systems might
be configured from eight-node systems interconnected by
asynchronous links. Basically, the topology consists of two
permutation networks connecting the clusters of the rows
and the columns of the 128-node system. Note that each line
in Figure 5.b represents a duplicated link connection provid-
ing a total bandwidth of 240 Mbyte/s, and that a logical con-
nection between any two nodes involves at most only three
crossbars. 

Compared to clusters, the backplane-integrated network
of PowerMANNA requires only a small number of addi-
tional cables to build larger systems, and thanks to the smart
single-board nodes, it is easy conceivable that systems with
more than a thousand nodes could actually be handled

sender

receiver

9 x data/cntrl

device X device Y

9 x data/cntrl

1 x stop

1 x stop

sender

receiver

FIFO

FIFOPowerMANNA
           Link

 

= node computer
= 16x16 crossbar

a)  PowerMANNA cluster of 8 nodes, 
 

= transceiver
X

X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

b)  PowerMANNA System with 256 Processors

    2 crossbars, and 8 free asynchronous 
   dual-links for intercluster connections

XX



3.3. Network interface

The main design goal of the network interface was to
minimize the communication overhead, especially for short
messages. Instead of using a complex network interface
controller (NIC), we implemented a simple but fast interface
to the network. 

The interface between the CPU/memory bus of the nodes
and the network is implemented by a special ASIC. As
defined by the link protocol, the sending and receiving of
messages can be performed simultaneously. For each direc-
tion, there is a FIFO buffer of 32 64-bit words to decouple
the different transfer rates. The addressing of the FIFOs and
the control registers of the two link interfaces in a node is
memory-mapped, so the CPUs of the SMP node can provide
all the functionality of a powerful NIC by directly accessing
the link interface. 

We now briefly discuss the arguments supporting our
design decision. A standard microprocessor is always
cheaper than a specially designed network controller of
comparable functionality, and as long as there are no com-
munication requests, the processor contributes to the com-
puting performance of the system. Assuming that the node
CPU is able to copy messages between the network and the
node memory at least at the speed of the network, the DMA
of a separate network controller cannot speed up the transfer
of messages. Here, the network interface of the CM-5,
which implements a very similar concept, suffers from the
slow copy performance of the node CPU. The 32-MHz
SPARC processor utilizes less than 25% of the 20-Mbyte/s
unidirectional transfer rate of the CM-5’s data network [8].

Furthermore, the argument about the possible parallelism
of a separate network controller is no longer a crucial factor
because there is already sufficient parallelism between the
CPUs of an SMP node. In addition, the on-chip MMU of the
CPU allows the data to be transferred directly between user
address spaces without additional copying. Especially in
user-level communication, no system calls are required,
either to translate logical to physical addresses or to pin pages
used for communication, as is necessary, e.g., in Myrinet-
based systems [9]. Also protection can more easily be incor-
porated because the CPU along with its MMU is involved in
all communication. Another issue that has to be considered
are the large caches supported by modern CPUs. The data to
be sent may have be computed beforehand and may therefore
still reside in the cache. Similarly, after a message has been
received by the CPU, the data is already available in the cache
for further computations. By contrast, a dedicated network
controller transfers the data between node memories. The
potential benefits from caching communicated data depend,
of course, on the specific behavior of the application and can-
not be easily quantified by simple benchmarks.

As shown by the communication benchmarks in Section

5.2, the PowerMANNA node fully exploits the bandwidth
provided by the communication links, while at the same
time requiring minimum setup costs. In addition to the pro-
tocol conversion, the link-interface chip performs genera-
tion and checking of a CRC check sum, ensuring that com-
munication is not only an efficient but also a reliable. 

4. PowerMANNA software

Users’ demands with respect to standard software are
taken into account by providing the LinuxPPC operating
system [10], offering standard software environments for
FORTRAN, C and C++ applications. Interprocess commu-
nication is supported by both the PVM and MPI message-
passing libraries. 

To obtain maximum benefits from the low-latency com-
munication system, an optimized implementation of MPI
offers user-level communication, which reduces the com-
munication overhead significantly. In a first implementa-
tion, one part of the duplicated network is used exclusively
for user-level communication, while the second part is
reserved for Linux. This straightforward implementation
required no modifications for Linux. In future work, we will
implement a low-level protocol to coordinate the link access
between the operating system and the application so that
both links are available for application communication and
the communication bandwidth can be fully exploited. How-
ever, dispensing with a separate control network for Linux
would appear to be acceptable only when a single user is
using the whole machine. 

5. Performance evaluation

In this section, we evaluate the node and communication
performance of PowerMANNA (by real runs on the
machine), comparing its performance with other SMP nodes
and a PC cluster system. The reference machines are a two-
way SUN ULTRA-I and a PC cluster based on two-way
Pentium II nodes connected by Myrinet. Table 2 shows the
characteristics of all three systems.

Table 1.  Configuration of test systems

System Type SUN PowerMANNA PC 

Processor Type UltraSPARC-I PPC620 PENTIUM II

Processor Clock 168 MHz 180 MHz 180/266 MHz

Bus Clock 84 MHz 60 MHz 60/66 MHz

Processors 2 2 2

Primary Cache 16/16 Kbyte 32/32 Kbyte 16/16 Kbyte

Secondary Cache 512/512 Kbyte 2/2 Mbyte 512/512 Kbyte

Cache line 32 byte 64 byte 32 byte

Node Memory 576 Mbyte 512 Mbyte 128 Mbyte

Operating System Solaris 2.5 Linux Linux



To facilitate comparison of the node architecture, we
configured the PC board to run – in addition to the original
speed of 266 MHz – at the same clock speed as the
PowerMANNA node (180 MHz for the processors, and 60
MHz for the board frequency). 

5.1. Node Performance

5.1.1 Single-processor performance. To evaluate single-
processor performance, we use dual processor nodes of
PowerMANNA, the SUN as well as the Pentium PC in order
to establish equal constellations for all three machines (i.e.,
to take into account the slight performance drops potentially
resulting from the coordination of the two processors). We
show the results of the HINT benchmark and of the
NASPAR MatMult benchmark. 

HINT [11] measures the performance of both processor
and memory hierarchy under the assumption that perfor-
mance is basically memory-bound. The benchmark per-
forms a simple calculation (Hierarchical INTegral calcula-
tion) which is – unlike most existing benchmarks – scalable
and linear in computation and memory consumption. The
calculation approximates  by successively
refining intervals (in order of the largest removable error)
into an integer power of two equal subintervals. Then, the
maximum number of inside (lower-bound) and the mini-
mum number of outside (upper-bound) squares are calcu-
lated. The logs describing the intervals and the bounds cal-
culated for them constitute the information potentially
cached, and this is accessed in more complex ways than just
a consecutive order. The quality of the solution is the recip-
rocal of the difference between the upper and lower bounds.
Because of self-similarity properties, the integration method
is linear in its quality improvement. The ratio of operations
to storage is almost one to one – which is lower than in many
other benchmarks and considered by the HINT designers to
be more realistic with respect to real applications’ memory
access. The quality obtained is order N for order N storage
and order N operations. The metric used is progress in work,
measured in so-called QUIPS (Quality Improvement Per
Second) and is given along the runtime of the benchmark.
The left side of the curve shows maximum processor perfor-
mance (all data in the cache), and the right side of the curve
memory bandwidth. The further left the curve starts, the
lower the latency of the system. The performance curve
indicates when specific parts of the memory hierarchy – i.e.,
the L1 and L2 cache – are fully in effect (start phase up to
maximum of curve) or lose their support effect (the sharp
drops in the decreasing phase of the curve) because the cur-
rent working set becomes too large, main-memory access
ultimately dominating. The benchmark can run with differ-
ent data types, partially revealing a machine’s particular ori-
entation toward numerical computation or data processing.
(Data is represented as whole numbers, and either floating-

point or integer arithmetic can be used for the calculations.) 
We used the data types DOUBLE and INT in our tests.

Figure 6 shows the results obtained for the PowerMANNA
node, the SUN and the Pentium cluster node. In the case of
the Pentium, we present performance for both its original and
its reduced clock rate. For data type DOUBLE, HINT perfor-
mance is slightly better for PowerMANNA than for the
reduced-clock-rate Pentium PC as long as caches are in
effect, but the reverse is true for the memory-access region.
The main reasons for this are the missing load/store pipeline
and lower benefits from the cache (explained below). For
data type INT, PowerMANNA and the Pentium PC perform
almost equally well, both outperforming the SUN. Generally
speaking, PowerMANNA and the Pentium PC perform even
better for INT than for DOUBLE, the SUN’s performance
being lower. On the basis of the results, PowerMANNA (and
the PC cluster, too) can truly be considered machines for both
numeric and nonnumeric processing.   

Figure 6.  Performance of the three machines’ nodes
for HINT benchmark and data types a) DOUBLE and
b) INT. Performance in QUIPS along time in seconds.

As HINT is unable to differentiate subtle features like
floating-point instruction sequences, memory-access pat-
terns or cache-line sizes, we use the MatMult matrix-multi-
plication benchmark to evaluate the processor and cache
features in more detail. MatMult is run in two versions: a)
naive matrix multiplication with both matrices allocated in
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row order, and b) transposition of the second matrix (to allo-
cate it in column order) and multiplication of the first by the
transposed second matrix (runtime includes the transposi-
tion). These two versions show the specific features of the
PowerMANNA caches (see Figure 7). 

Figure 7.  Single-processor performance of the three
machines’ nodes for MatMult benchmark, odd strides.
a) naive version and b) transposed version. Perfor-
mance is measured in MFLOPS along increasing ma-
trix sizes.

 Note that the PowerMANNA’s cache line is twice as
long as the cache lines of the SUN and the PC. Here, we
used the reduced-clock-rate Pentium PC. It is important to
mention, too, that the PowerPC MPC620 is specially
designed to support floating-point pipelining, but it does not
support load pipelining (the follow-up processor Power3,
however, incorporates this). Thus, the available memory
bandwidth of PowerMANNA cannot be fully exploited.

In case b), the cache and the cache-line prefetching can
be fully exploited, accesses then being to a large extent to
data in the cache. Here, PowerMANNA clearly outperforms
the other machines. In case (a), accesses are spread across
memory and caches are able to offer much less support. In
particular, the large amount of prefetching resulting from
the longer cache lines of PowerMANNA is not effective
here and transfers superfluous data. Performance for all

machines is significantly worse than in case (b). However,
the difference is largest for PowerMANNA: a factor of
approx. 2.5 for small matrices and a factor of approx. 6 for
large matrices. The Pentium PC performs best here. How-
ever, as long as caches are effective, the difference between
the Pentium PC and PowerMANNA is small in case (a),
while the absolute performance advantage of
PowerMANNA in case (b) is much larger.

5.1.2 SMP performance. Next, we evaluate the SMP
scalability of the three architectures and investigate
potential conflicts of the two processors on memory access.
We use, again, the MatMult benchmark and measure it
when started on both processors. Figure 8 shows the
speedups obtained. 

Figure 8.  Dual-processor speedup of the three ma-
chines’ nodes for MatMult benchmark, odd strides. a)
Naive version and b) transposed version.

As expected from the split-phase transaction feature of
the MPC620 processor, performance for PowerMANNA
exactly doubles when running the benchmark on both pro-
cessors of the node. In other words, there is no memory-
access contention. For the SUN, there is a loss of about 5%,
i.e., speedup is about 1.9 for nontrivial matrices. For the
Pentium PC, the loss is 15% (naive version) and 20% (trans-
posed version), i.e., the speedup is about 1.7 or 1.6, respec-
tively, for nontrivial matrices.
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5.2. Communication performance

We compared the communication performance of
PowerMANNA and the PC cluster in terms of set-up times,
one-way latencies, unidirectional and bidirectional through-
put on a two-communicating-node basis. For the PC cluster,
we employed the user-space communication libraries BIP
and FM (cf. [9] and [12]). BIP (Basic Interface for Parallel-
ism) is a minimal library that aims to provide raw hardware
performance to its users. FM (Fast Messages) provides soft-
ware flow control. Performance data for BIP and FM are
taken from [9] because the data obtained from our Linux
2.2, for which only the GM library currently offers support,
were too slow for a fair comparison. Data taken from [9] is
measured under the same test conditions, i.e. on a cluster
with Myrinet interconnect and Pentium Pro processors run-
ning at 200 MHz.

Figure 9. One-way latencies for PowerMANNA and
for BIP and FM on the PC cluster.

Figures 9 and 10 show one-way latencies and message-
sending times at the network saturation point, correspond-
ing to half of the ping-pong time and the gap parameter in
the LogP model [13]. As can be seen, PowerMANNA
clearly outperforms the other systems for short messages.
For instance, 8 bytes are transferred in 2.75 µs, whereas BIP
takes 6.4 µs and FM 9.2 µs. For larger messages, however,
PowerMANNA’s performance is limited by its current net-
work technology to 60 Mbyte/s unidirectional single-link
bandwidth (see Figure 11). 

Figure 12 shows the bidirectional bandwidth, when both
nodes are simultaneously sending and receiving messages.
For short messages, the bidirectional bandwidth is similar to
BIP and Myrinet. For longer messages, however, we did not
obtain the expected bandwidth. Apparently, PowerMANNA
suffers from too small FIFOs in the link interface. The com-
munication driver can send at most 4 cache lines to fill the
send-FIFO. Then the driver has to test the receive-FIFO and
possibly receive the incoming data. After a maximum of 4
cache lines, the receive-FIFO is emptied and the driver must

switch directions again. This overhead could be signifi-
cantly reduced if larger FIFO buffers were implemented.

 

Figure 10. Message-sending times at the network
saturation point for PowerMANNA and for BIP and FM
on the PC cluster.

Figure 11. Unidirectional bandwidth for Power-
MANNA and for BIP and FP on the PC cluster.

Figure 12. Simultaneous bidirectional bandwidth for
PowerMANNA and for BIP and FP on the PC cluster.
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6. Related Systems

An architectural design very similar to PowerMANNA,
and also based on the MPC620 and a hybrid SMP/MPP con-
cept, is START-NG [14]. The processing nodes contain 4
processors, each with its own network interface. The high-
performance and low-latency communication system con-
sists of 4x4 crossbars implemented into the Arctic switch fab-
ric as a central unit to which all nodes are connected. The
memory-mapped communication interface exploits the
MPC620 L2-cache/coprocessor bus, resulting in a light-
weight PIO-based communication comparable to Power-
MANNA. However, owing to the delay in the delivery of the
PowerPC MPC620 processors, this machine was never build.

In terms of the CM-5’s topology and its lightweight com-
munication interface, PowerMANNA takes a similar
approach. In addition to its data network, the CM-5 is
equipped with a sophisticated control network [7].

The processing nodes of the Intel Paragon are SMP
nodes based on up to 3 Intel i860 XP processors. One of the
processors is used as a dedicated communication processor,
supported by a DMA unit. To communicate, the compute
processors of the nodes have to initialize the communication
processor, which in turn has to initialize the DMA unit. This
results in large set-up times and prevents the easy imple-
mentation of user-level communication [15].

 IBM’s SP series also boasts several features similar to
PowerMANNA. The two-way processor nodes are based on
either the Power2, the PPC604, or – not so long ago – the
Power3 processors. The communication system is based on
the SP switch, a permutation network built from 4x4 cross-
bar components. The nodes of the SP series require several
boards: for the processors, memory and the network inter-
face. The network interface board includes a dedicated con-
troller based on an embedded processor [16].

The Cray T3E [17], currently used in many of the
Top100 best-performing systems, demonstrates the perfor-
mance benefits obtainable from integrated parallel distri-
buted-memory machines. The T3E provides single-proces-
sor (DEC Alpha EV5) nodes, sophisticated network-inter-
face controllers, a very-low latency communication network
(3D Torus) yielding a transfer rate of 600MB/s, an addi-
tional synchronization network (barrier and Eureka), as well
as special multicast scatter/gather hardware (vector masks
on the network interface) and software support. Thus, the
T3E specifically supports communication and synchroniza-
tion in SPMD programs, whereas PowerMANNA is not
geared to a specific programming model and can also per-
form well with multithreaded software.

Building large PC clusters – e.g., of Pentium-based SMP
nodes connected by a SAN such as Myrinet with several
hundred nodes – requires substantial effort to achieve a reli-
able assembly as regards cabling, cooling and power supply.

In addition the cost of the network is at least in the same
order as the nodes themselves. Thus, the price/performance
ratio of PC clusters as compared with parallel distributed-
memory machines may not be as superior as expected if the
system has to meet the reliability and maintenance require-
ments within an industrial computing center. 

Myrinet is a widely used standard communication system
for cluster computing. Its 1.2 Gbyte/s transfer capability is
exploitable up to 132 Mbyte/s in view of the PCI interface of
the network interface controller (NI). Myrinet uses 8x8 cross-
bar switches and involves extra NI boards. However, Myrinet
incorporates some features previously found only in super
computers, such as variable-length packets, wormhole rout-
ing and hardware backpressure. Messages have to be addi-
tionally transferred between the processor and the NI which
can be performed either via DMA or PIO, but in any case
involves extra setup cost. Transfers from NI to NI always
require setting up a DMA unit because of the slow copying
performance of the NI processor. Separation of processor and
NI also creates the address-translation problem mentioned
earlier. Though dynamic pinning of pages can be used, it is
less flexible and requires an initial system call, some kind of
virtual-address translation and potential NI caching [9].
However, close-to-optimum throughput for large data trans-
fers can be achieved with user-level communication, as per-
formed, e.g., by BIP, FM and PM [9], [12]. 

7. Summary and Future Work

We have described the architectural features of
PowerMANNA, a distributed-memory parallel computer
system based on the PowerPC MPC620. Many features of
the PowerPC MPC620 processor discussed in relation to
PowerMANNA are typical of modern microprocessors that
support the straightforward design of powerful SMP nodes.
Performance evaluation showed ideal scalability of the
PowerMANNA SMP node. Single-processor performance
is superior where the long cache lines can be exploited,
being otherwise comparable to Pentium Pro for same clock
rate. With respect to communication, PowerMANNA out-
performs clusters in terms of setup time and latencies for
short data transfers.

The presented architectural principles of PowerMANNA
are independent of the actual technology and will be able to
benefit from future advanced CPUs, memories and networks.
Thus, the follow-up processor, Power3, could be immedi-
ately plugged in (provided it were made commercially avail-
able). Current performance rates for the PowerMANNA
promise excellent results provided the latest processor and
network technology is used to implement the design.

A distinctive feature of the PowerMANNA architecture
is the smart network interface of the nodes. Its complexity
lies below that of an elaborate communication assist – as in
the Cray T3E – or that of a dedicated message-processing



unit that is based on an embedded processor and interfaced
to the node via a standard I/O bus – as in Myrinet clusters.
By contrast, PowerMANNA benefits from a lightweight
communication protocol that is directly driven by the node
CPUs. This arrangement avoids the cost of a communica-
tion assist and the software overhead of an interface proto-
col between the node and the network controller. Further-
more, it allows advantage to be taken of ever-increasing pro-
cessing power and data-cache size of next-generation CPUs.
In addition, driving the communication protocols directly
with the node CPUs supports the implementation of pure
user-level communication without any involvement of the
operating system. Compared with clusters, the communica-
tion system of the PowerMANNA design is better scalable
because communication cost can be kept lower and cabling
effort is minimal. 

The design of lightweight hardware communication sys-
tems should be accompanied by lightweight communication
software in order to fully exploit the special communica-
tion-cost and scalability benefits. Thus, for the forerunner
MANNA machine, the EARTH system was shown to offer
low communication cost close to the hardware limits [18].
In a cooperation project with the University of Delaware,
EARTH is currently being ported to the PowerMANNA
machine.

The performance of PowerMANNA was evaluated on
the basis of micro benchmarks. To show real-application
performance, we have to port the SMP version of Linux
(which has only recently become available for the Pow-
erPC) and either use EARTH or optimize the MPI user-level
communication protocols. Then, we can, in particular,
investigate to what extent application performance can ben-
efit from caching communicated data and from the short set
up times and low latencies provided by the lightweight com-
munication protocol. 
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