
Using Internal Redundant Representations and Limited Bypass to Support
Pipelined Adders and Register Files

Mary D. Brown Yale N. Patt

Electrical and Computer Engineering
The University of Texas at Austin
fmbrown,pattg@ece.utexas.edu

Abstract

This paper evaluates the use of redundant binary and
pipelined 2’s complement adders in out-of-order execution
cores. Redundant binary adders reduce the ADD latency
to less than half that of traditional 2’s complement adders,
allowing higher core clock frequencies and greater execu-
tion bandwidth (in instructions per second). Pipelined 2’s
complement adders allow a higher clock frequency, but do
not reduce the ADD latency. Machines with redundant bi-
nary adders are compared to machines with 2’s comple-
ment adders and the same execution bandwidth and bypass
network complexity. Results show that on the SPECint95
benchmarks, the average IPC of an 8-wide machine with 1-
cycle redundant binary adders is 9% higher than a machine
using 2-cycle pipelined adders.

Pipelined functional units and multi-cycle register files
may require multi-level bypass networks to guarantee that
an instruction’s result is available any cycle after it is pro-
duced. Multi-level bypass networks require large fan-in in-
put muxes that increase cycle time. This paper shows that
one level of bypass paths in a multi-level bypass network
can be removed while still achieving within 3% to 1% of the
IPC of a machine with a full bypass network.

1. Introduction

Future microprocessors require greater execution band-
width for higher performance. The first step towards in-
creasing the bandwidth is to reduce the ALU latency—
along with the things that feed the ALUs, such as the
scheduling logic and bypass networks—so that the execu-
tion core can be clocked at higher frequencies. Taking this
first step increases execution bandwidth and reduces the la-
tency for executing chains of dependent instructions. In the
Intel Pentium 4, the core clock frequency was set by the
ALU and bypass network latency [10]. Other parts of the

chip, such as the fetch engine, could provide the required
execution bandwidth at lower clock frequencies.

To further increase the execution bandwidth, it is neces-
sary to pipeline the functional units or increase the number
of functional units. The three execution core configurations
shown in Figure 1 all provide an execution bandwidth of
2 instructions per cycle. Configuration A shows 2 ALUs,
each with 1-cycle latency. Configuration B shows 2 ALUs,
each pipelined over 2 cycles. Dependent instructions cannot
execute in back-to-back cycles in this configuration. Con-
figuration C also shows 2 ALUs pipelined over 2 cycles, but
it allows intermediate results to be forwarded from the first
stage of the ALU. This allows a dependent chain of instruc-
tions to execute in consecutive cycles.

In each configuration, the bypass mux for one input of
one ALU is shown. The ALU inputs for Configurations A
and B can receive data from the register file or the outputs of
either ALU. The ALUs in Configuration C can receive the
data from the register file or either stage of either ALU. The
outputs of Stages 1 and 2 are used as inputs to Stage 1, but
only the outputs of Stage 2 are written back to the register
file. For one-cycle operations, forwarding from Stage 1 is
necessary so that dependent operations can execute in con-
secutive cycles. For multi-cycle operations, the output from
Stage 1 is an intermediate result. Because results are avail-
able from multiple stages but only written to the register file
in Stage 2, a multi-level bypass network is used.

Programs with a large amount of exposed ILP can ex-
ploit high execution bandwidth. Programs with little ex-
posed ILP benefit from low execution latency. Given a con-
stant cycle time, all three configurations provide the same
bandwidth. Configuration A is the best as it provides low
latency. Configuration B has a long latency. Configuration
C has long latency for final results, but also provides low-
latency intermediate results.

Our results show that for machines with an execution
bandwidth of 8 instructions per cycle, an ideal machine us-
ing 1-cycle adds will have an average IPC 8% higher than

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



FILE
REGISTER

TO

REGISTER
FILE

FROM

(C)

STAGE 2STAGE 1

(A)

REGISTER
FROM

FILE

FILE
REGISTER

TO

(B)

FILE
REGISTER
FROM

FILE
REGISTER

TO
STAGE 2STAGE 1

Figure 1. Three ALU configurations.

a machine with 2-cycle adds on the SPECint2000 bench-
marks, and 11% higher on the SPECint95 benchmarks. A
machine with redundant binary adders and the same by-
pass network complexity can be used to reach within 1%
of the IPC of the ideal machine. Because the multi-level
bypass networks for pipelined adders and register files may
increase the cycle time, this paper also investigates limited
bypass networks and the schedulers to support them. One
level in a multi-level bypass network can be removed while
still achieving within 3% to 1% of the IPC of a machine
with a full bypass network.

Section 2 discusses some background and related work.
Section 3 reviews redundant binary arithmetic and discusses
which operations can be performed with redundant binary
inputs. Section 4 discusses execution cores with redundant
binary adders and limited bypass networks. Section 5 shows
experimental results, and Section 6 concludes.

2. Background and Related Work

One technique for pipelining adders is to use pipelined
digit-serial adders [6]. An example of this concept, called
staggered adds, was implemented in the Intel Pentium
4 [10]. When staggering a 32-bit add over two cycles, the
carry-out of the 16th bit and the lower half of the result are
produced in the first cycle, and the upper half of the result is

produced in the second cycle. Back-to-back dependence ex-
ecution is possible by forwarding the lower half of the result
and its carry-out in the first stage, and then forwarding the
second half of the result in the second stage. Conventional
2’s complement carry-lookahead adders have a critical path
that grows logarithmically with respect to the number of bits
in the data. Using a 2-stage, staggered adder is unlikely to
cut the effective add latency in half unless the latency is set
by control signal propagation.

Redundant binary arithmetic can be used to further re-
duce the effective ALU latency. When integers are in a
redundant binary representation, they can be added with-
out a carry propagation through the entire length of the data
operands. Hence redundant binary adders have a latency
that is independent of the data size, and a much shorter criti-
cal path than 2’s complement adders. Data can be forwarded
between dependent ADDs in redundant binary representa-
tion. A redundant binary number must be converted back to
2’s complement before it can be stored in memory or used
by some types of instructions.

Redundant binary arithmetic has been a steady area of
computer arithmetic research since the 1950’s [3]. Al-
though the ILLIAC III used a redundant binary adder-
subtractor for fast multiplication and division [2], redun-
dant binary arithmetic has mainly been used in adders that
are internal to hardware multipliers and dividers [12]. The
reason for its limited use is that results of redundant binary
operations must be converted back to 2’s complement using
a conventional (slow) adder with a full carry-propagation.
Hence redundant binary adders only show a performance
improvement relative to 2’s complement adders when these
format conversions can be avoided or moved off the criti-
cal path of program execution. Conversions can be avoided
when executing a chain of dependent redundant binary op-
erations and forwarding the intermediate results in redun-
dant binary representation [7].

Multi-cycle register files and pipelined functional units
that produce intermediate results require extra levels of by-
pass buses for data to be available any cycle after it is com-
puted [5, 17]. Larger, multi-level bypass networks will have
longer forwarding delays. There are several techniques to
reduce forwarding delays. One technique is to interleave
the bit slices of several functional units within a cluster.
The functional units, input multiplexors, and latches within
a cluster are stacked and aligned such that for each bit slice,
the data wires of all functional units are adjacent.

Another technique to reduce forwarding delays is to re-
move selected bypass paths altogether. Ahuja et. al. [1]
demonstrated that certain bypass paths were rarely used.
By removing these buses from an in-order pipeline and
scheduling code to avoid pipeline stalls, performance was
close to that of a pipeline with a complete bypass network.
On the VIPER VLIW microprocessor [8], each functional

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



unit had a bypass path to only itself and its closest functional
unit in order to reduce the bypass network complexity. Na-
garajan et. al. [13] use an array of ALUs with bypass paths
only to nearby ALUs. Instructions are statically assigned to
ALUs such that forwarding delays are reduced.

Cruz et. al. [5] examine removing the first level of a
2-level bypass network used with a 2-cycle register file.
IPC was degraded because dependent instructions could no
longer execute in back-to-back cycles. They point out that if
the second (rather than the first) level of the bypass network
were removed, there would be a ’hole’ in data availability—
that is, results are available the first cycle after they are pro-
duced, then are not available in the following cycle, and
then are later available from the register file. This paper ex-
amines limited multi-level bypass networks that cause holes
in data availability. Section 4.3 will explain how to schedule
instructions around these holes.

3. Redundant Binary Arithmetic

This section presents an overview of the redundant bi-
nary number system that we utilize to make fast adders.
Section 3.1 describes the redundant binary representation.
Section 3.2 describes how to convert between redundant bi-
nary and 2’s complement representation. Section 3.3 de-
scribes how addition works in the redundant binary num-
ber system and implementation of a redundant binary adder.
Section 3.4 discusses the delays of redundant binary adders
relative to carry-lookahead adders. Section 3.5 describes
overflow in the redundant binary system and detection of
2’s complement overflow. These sections are primarily a
review of information presented in previous work [2, 3, 9,
11, 16]. Section 3.6 describes how other operations used in
a modern instruction set, specifically the Alpha ISA, may
be handled in a redundant binary system.

3.1. Overview

Most current ISAs use 2’s complement representation for
integers. Two’s complement representation has several at-
tractive properties: (1) addition and subtraction operations
work the same way regardless of whether the numbers are
positive or negative, (2) there are approximately the same
number of positive and negative values represented with a
given number of bits, and (3) N bits can be used to repre-
sent 2N possible values—that is, each distinct pattern of 0s
and 1s represents only one value, and each distinct value
has only one representation.

Redundant number systems can have more than one rep-
resentation for a given value, so they require more bits for
representing the same range of integers as 2’s complement
representation. However, many redundant number systems
do have an advantage over 2’s complement, which is that

addition can be performed in constant time regardless of
operand size. There are many redundant number represen-
tations; we will limit our discussion to one such representa-
tion called signed digit representation.

Signed-Digit number representations were first de-
scribed by Avizienis [3]. Each digit of a number in signed-
digit representation may be either positive or negative. In
this paper, we will only discuss a specific signed-digit rep-
resentation commonly called redundant-binary representa-
tion where each digit can take on any value from the set f-1,
0, 1g. Because there are three possible values of a digit, two
bits are required to encode each digit.

In conventional unsigned binary format, the ith digit
represents 2

i multiplied by 0 or 1. In redundant bi-
nary representation, the ith digit represents 2i multiplied
by �1, 0, or 1. An n-digit redundant binary number X
= xn�1; xn�2; :::; x0, where xi 2 f-1, 0, 1g represents
the value

P
n�1

i=0
xi2

i. For example, the 4-digit number
h0; 1; 0;�1i represents 22 � 2

0
= 3. Three could also be

represented by h0; 0; 1; 1i in redundant binary.

3.2. Conversion To/From 2’s Complement

A redundant binary number is converted back to 2’s com-
plement by means of a subtraction with carry propagation.
Suppose the redundant binary number X is represented by
two sets of bits, X+ and X�, representing the positive and
negative powers of 2, respectively, that are added to com-
pute the value. For example, if X = h0; 1; 0;�1i, then
X+

= h0; 1; 0; 0i and X�

= h0; 0; 0; 1i. The 2’s comple-
ment representation of X can be computed by subtracting
X� from X+ in the 2’s complement number system.

The conversion from 2’s complement to redundant bi-
nary is straightforward. All bits except the most significant
bit of the 2’s complement number are assigned to the pos-
itive component, X+. The most significant bit of the 2’s
complement number is assigned to the most significant digit
of X� so that the number will retain the correct sign.

If the values 1, 0, and -1 are encoded as h0; 1i, h0; 0i,
and h1; 0i, respectively (i.e. one bit indicates the digit is
negative, the other indicates it is positive), then converting
from 2’s complement to redundant binary requires no logic;
the path can be hardwired. The conversion from redundant
binary back to 2’s complement requires a 2’s complement
subtraction circuit with full carry propagation.

3.3. Implementation

Redundant binary addition limits carry propagation to at
most two digits. The computation of the ith digit of the sum
is a function of digits i, i� 1, and i� 2 of both inputs.

Several possible logic diagrams for one digit-slice of a
redundant binary adder were shown in previous works [12,

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



16]. One logic diagram is shown in Figure 2. The inter-
mediate output hi is a function of digit i. The output fi is a
function of digit i and hi�1. The sum for digit i is a function
of digit i, hi�1, and fi�1.

+
i

−
i

+
i

−
i

+
i

−
i

x

x

y

y 1

0

sum

sum

ffh i i i

h i−1 i−1 i−1ff

Figure 2. One Digit-Slice

3.4. Delays of Redundant Binary Adders

The critical path through one bit slice of a redundant bi-
nary adder, which is also the critical path through the whole
adder, consists of seven transistors with fan-outs less than
or equal to 4.

Several researchers have compared the delays of re-
dundant binary adders to 2’s complement carry-lookahead
(CLA) and carry-select adders. Makino et. al. [12] fabri-
cated a multiplier that used redundant binary adders. They
simulated several redundant binary adders and CLAs using
SPICE2 with a 0.5-�m CMOS process technology. They
found that a redundant binary adder was 2.7 times faster
than a redundant binary to 2’s complement converter, and 3
times faster than a conventional 64-bit CLA.

Nagendra et. al. [15] compared the delays of 32-bit CLA
and signed-digit adders optimized for performance. They
found that their signed-digit adder, which used a radix-
4 signed-digit representation, was 2.6 times as fast as the
CLA. The same authors found a carry-save adder, which
uses a redundant representation similar to the redundant bi-
nary representation described in this paper, to be twice as
fast as their signed-digit adder [14].

3.5. Overflow

Integer overflow occurs when the result of a computation
is too large to fit within a fixed number of bits. With 2’s
complement, this is easily detected by examining the signs
of the sources and destination.

With a chain of redundant binary additions, carry-outs
can quickly propagate towards the most significant digit
of a number. For example, when the value 1 is repeat-
edly incremented in redundant binary using an adder built

from the circuit in Figure 2, the representations of the re-
sulting values will be h0; 0; 0; 1i, h0; 0; 1; 0i, h0; 1; 0;�1i,
h1;�1; 0; 0i, h1;�1; 1;�1i, and so on. Non-zero digits
propagate left faster in redundant binary than in 2’s com-
plement. It is possible for there to be a carry-out of the
most significant digit, while the value of the number may
still be representable with fewer digits. When this scenario,
called bogus overflow, occurs, either the carry-out is 1 and
the most significant digit is -1, or vice-versa. This can be
easily avoided by using one of several techniques [2]. One
technique exploits the fact that the representations h1;�1i
and h�1; 1i can be converted to h0; 1i and h0;�1i, respec-
tively. When bogus overflow occurs, the sign of the most
significant digit is complemented.

In addition to correcting for bogus overflow, 2’s comple-
ment overflow must still be detected. Two’s complement
overflow will occur if any of the following events occur:

� The carry-out is still -1 or 1 after correcting for bogus
overflow.

� The most significant digit is -1 and the rest of the result
is negative. In order for the result to have the same
value as if it were computed in 2’s complement, the
most significant digit should be set to 1.

� The most significant digit is 1 and the rest of the result
is not negative. In order for the result to have the same
value as if it were computed in 2’s complement, the
most significant digit should be set to -1.

3.6. Other Operations

Not all operations in modern instruction sets can be com-
puted in the redundant binary system. This section dis-
cusses which integer instructions in the Alpha ISA can exe-
cute in redundant binary format.

Arithmetic Operations. Addition, subtraction, and multi-
plication using redundant number systems has been demon-
strated in previous work [2]. The Alpha ISA also has three
additional arithmetic instructions, CTLZ (count the leading
zeros of an operand), CTTZ (count the trailing zeros of an
operand), and CTPOP (count the number of set bits in an
operand). CTLZ and CTPOP require the operand to be in
a unique representation, which means they should be exe-
cuted in 2’s complement format. CTTZ may be executed in
redundant binary by counting the trailing non-zero digits.

Byte Manipulation and Logical Operations. The byte
manipulation instructions extract data from one or more
bytes of their operands. If individual bytes are extracted
from a redundant binary number, the result, when converted
back to 2’s complement, may be incorrect. Hence byte op-
erations are performed in 2’s complement. Bitwise logical

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



operations (e.g. XOR) also require the inputs to be in 2’s
complement to produce the correct result. One exception is
when the two source register operands of a logical operation
are the same register. This is the standard way to implement
the MOVE operation in the Alpha ISA.

Conditional Operations. Conditional moves and branches
test for values greater than, equal to, or less than zero; or
they check to see if the least significant bit of a value is set.
Both number systems require an OR circuit to test for zero.
Testing for positive or negative values in 2’s complement is
straightforward: the value is negative if the most significant
bit is set. In redundant binary, the sign of a number is deter-
mined by the most significant digit with a value other than
zero. If this digit is -1, the number is negative; otherwise it
is positive. Testing the least significant bit of a number in
redundant binary format requires a 2-input OR of the two
bits comprising the least significant digit of the number. In
summary, all conditional move and branch instructions may
be executed in redundant binary format, although an addi-
tional circuit is needed to test for positive or negative values.

Shifts and Scaled Adds. The Scaled Add instruction of the
Alpha ISA shifts one of the inputs to the left by two or three
bits before adding it to an immediate value. Scaled Adds
and Left shifts will work in the redundant binary system by
shifting digits rather than bits. If the most significant bit of
the result is 1, it should be changed to -1 because the number
would be negative in 2’s complement representation. For
example, the number h�1; 1; 0; 1i (-3 in decimal represen-
tation) would become h�1; 0; 1; 0i (-6) when shifted left by
one digit. A right shift may not produce the correct result in
redundant binary. Right shifts are performed with 2’s com-
plement inputs.

Memory Access Instructions. Loads and Stores can com-
pute memory addresses in redundant binary format. The
cache index is formed from a subset of the bits of the 2’s
complement representation of the memory address, and is
not easily formed from the redundant binary representation.
Sum Addressed Memory [9] (SAM) can be used to avoid
converting the address to 2’s complement.

In conventional data caches, the cache index is an input
to a decoder. The output of this decoder is a one-hot vector
that asserts one word line for a row of the cache. SAM uses
a different type of decoder from conventional caches. A
SAM decoder accepts two numbers, a base and a displace-
ment, as input, and produces a one-hot vector of word lines.
The one-hot vector is produced using a separate equality test
for each word line rather than a full carry-propagating addi-
tion. The Sun UltraSPARC III uses Sum Addressed Mem-
ory to avoid the base + displacement calculation normally
needed for address computation [11]. SAM can be used to

index the data cache with a single redundant binary num-
ber by treating the positive and negative components of the
number as the two SAM inputs.

It is also possible to use a modification of SAM to elimi-
nate the base + displacement calculation when the base reg-
ister is in redundant binary format. This modified SAM has
three inputs: the positive and negative components of a re-
dundant binary number and a 2’s complement displacement.
The modified SAM consists of a conventional SAM pre-
ceded by a circuit similar to a carry-save adder. The critical
path through the modifed SAM is, at worst, the critical path
through the conventional SAM preceded by a 3-input XOR
gate. In our experiments, we assume that all machines uti-
lize SAM to avoid the base plus displacement calculation.

Data loaded from memory is already in 2’s complement
format because data is stored in the caches and main mem-
ory in 2’s complement representation.

Quadword to Longword Forwarding. Alpha supports
both quadword (64-bit) and longword (32-bit) data types.
A quadword instruction may forward its result to a long-
word instruction. The lower 32 bits of the quadword are
extracted to form the longword input. In order to extract
the lower half of a quadword in redundant binary format,
the same mechanism used for correcting bogus overflow
and conditions for testing 2’s complement overflow must
be used at the 32nd digit in addition to the 64th digit. When
2’s complement numbers are converted to redundant binary,
the 32nd bit should be hardwired to the negative portion of
the 32nd digit of the redundant binary representation so that
longwords will retain the correct sign.

Summary of Instruction Classifications. Table 1 classi-
fies the fixed-point instructions of the Alpha ISA according
to their input and output formats. If the format is listed
as RB, operands can be in either redundant binary or 2’s
complement format. If the format is TC, operands must be
in 2’s complement format. The fourth column of the table
indicates the fraction of dynamic instructions belonging to
each class. On average, 33% of the instructions with regis-
ter destinations produce results in redundant binary format,
and about 25% of the instructions require at least one input
in 2’s complement format.

4. The Execution Core

This section describes how redundant binary adders and
limited bypass networks can be incorporated in an execu-
tion core. Section 4.1 discusses two possible execution core
configurations. Section 4.2 discusses limited bypass net-
works. Section 4.3 discusses solutions for two scheduling
problems: scheduling in a machine with redundant binary
adders (and hence multiple data formats) and scheduling in

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



Instruction Input Output Fraction of
Formats(s) Format Inst. Stream

ADD, SUB, MUL, RB RB 18.0%
LDA, LDAH, CMOVLBx,
SxADD, SxSUB, SLL
CMOVLT, CMOVGE, RB RB 0.4%
CMOVLE, CMOVGT y

CMOVEQ, CMOVNE z RB RB 0.5%
Memory Access RB TC 36.6%
CMPEQ z RB TC 0.5%
CMPLT, CMPLE, RB TC 3.9%
CMPULT, CMPULE y

conditional branches y z RB — 14.4%
Other TC TC 25.7%
ytest for positive/negative values requires extra logic tree or wired-OR
ztest requires subtraction for comparison

Table 1. Instruction Classifications

a machine with limited bypass networks.

4.1. Core Configurations

This section discusses two possible execution core con-
figurations. The first uses a physical register file that stores
data in 2’s complement representation. The second uses two
or more copies of the physical register file: some using 2’s
complement representation and some using redundant bi-
nary representation. Although each entry in a redundant
binary register file requires twice as many bits of state as an
entry in a 2’s complement register file, fewer bypass paths
are needed when redundant binary register files are used.

Only TC Register Files. If register files only store data in
2’s complement, the output of the ALUs producing redun-
dant binary results (i.e. the RB-output ALUs) must be con-
verted back to 2’s complement before it can be stored. Fig-
ure 3 shows an example of an RB-output ALU, an ALU that
accepts only 2’s complement inputs (i.e. a TC-input ALU),
and part of the bypass network.1 Three bypass levels are
required for any RB-output ALU. The paths in bold hold
data in redundant binary format. The first two bypass levels
(BYP-1 and BYP-2) of the RB-output ALU can be used by
any RB-input functional unit, but they cannot be used by
TC-input functional units.

Consider the dependency graph and pipeline diagram in
Figures 4 and 5. The ADD gets the result of the SLL (Shift
Left Logical) from the first bypass path (BYP-1). The AND
gets the result of the SLL in 2’s complement format from
BYP-3. The SUB gets the ADD’s result from BYP-1 and

1This example and all further examples in this section assume the re-
dundant binary addition and logical operations take one cycle, the format
conversion takes two cycles, and the register file access takes one cycle.
Bypass paths needed to bypass values from the register file write stage to
the register file read stage are not shown in the figures.

TC
REG
FILE

(copy 2)

TC
REG
FILE

(copy 1)

A
L

U

B
Y

P
−1

BYP−2

B
Y

P
−3

RB to TC
conversion

−

+

R
B

 
T

C
A

L
U

B
Y

P
−1

Figure 3. ALUs with TC Register Files

SLL

AND

SUB

ADD

Figure 4. Dependency Graph

CV1 CV2RF WBEXE

CV1 CV2RF WBEXE
RF EXE WB

CV1 CV2RF WBEXE

SLL
AND
ADD
SUB

(RB ALU)
(TC ALU)
(RB ALU)
(RB ALU)

Cycle: 1 2 3 4 5 6 7

Figure 5. Pipeline Diagram.

the SLL’s result from BYP-2.

TC and RB Register Files. In the second configuration, the
inputs to TC-input functional units come from 2’s comple-
ment register files and 2’s complement bypass paths. The
inputs to other functional units come from redundant binary
register files and bypass paths in either representation. Fig-
ure 6 shows an example with one TC-input ALU and one
RB-output (and TC or RB-input) ALU. This configuration
requires the same number of bypass paths as a machine with
only TC ALUs. There is no second-level bypass, and BYP-
3 is only used by the TC-input ALU and TC register file.
The timing of operations is the same as when using all TC
register files.

4.2. Limited Bypass Networks

The number of bypass levels, and hence the number of
bypass paths, required in a full bypass network increases
linearly with the number of cycles between execution and

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



+

 −

A
L

U
T

C
 

TC
REG
FILE

(copy 1)

RB
REG
FILE

(copy 2)

B
Y

P
−1

B
Y

P
−1

A
L

U
R

B B
Y

P
−3

RB to TC conversion

Figure 6. ALUs with TC and RB Register Files

the last stage of register file write-back. This section ex-
plains how bypass levels can be removed.

Most instructions execute as soon as their last (or only)
source operand is available. When an instruction exe-
cutes immediately when its last source operand becomes
available, the input comes from a first-level bypass path
(i.e. BYP-1). Hence the first-level bypass paths are used
more often than any others. An instruction would only need
a second-level bypass in the following cases:

� it had a second source that became available the cycle
before the last available source

� it was stalled for one cycle because another instruction
was granted execution

� it was just recently placed in the scheduling window
and was scheduled at its earliest opportunity.

None of these situations occur very frequently.
The machine with only TC register files was modeled

with a limited bypass network: the second bypass level
(BYP-2) was removed, and the output of BYP-3 was not
used as a bypass for the RB-input ALUs. For RB-input in-
structions, the result of an RB-output instruction is available
in redundant binary format immediately after it is produced,
and then there is a 2-cycle hole in data availability. After
that, the result is available from the register file. For TC-
input instructions, the result is available from BYP-3, and
then from the register file.

For the dependency graph shown in Figure 4, this lim-
ited bypass network would result in the pipeline schedule
shown in Figure 7. The AND gets the result of the SLL
from BYP-3. The SUB is delayed by three cycles and re-
trieves both source operands from the register file (or a by-
pass path within the register file, depending on the register

file design). Performance results of this machine and a con-
ventional 2’s complement machine with a limited bypass
network are discussed in Section 5.2.

CV1 CV2RF WBEXE

CV1 CV2RF WBEXE

SLL
AND
ADD
SUB CV1 CV2RF WBEXE

(RB ALU)
(TC ALU)
(RB ALU)
(RB ALU)

RF EXE WB

Cycle: 1 2 3 4 5 6 7 8 9 10

Figure 7. Pipeline Diagram.

This paper only investigates the removal of entire lev-
els of bypass paths. Further restrictions in bypass networks
may be made with little loss in IPC with the help of instruc-
tion steering. This topic remains an area of future work.

4.3. Scheduling

The use of multiple data formats can present scheduling
problems due to variable times for result availability. For
example, a SUB dependent on an ADD may be scheduled
one cycle after the ADD, but a logical instruction dependent
on an ADD must wait 3 cycles (1 for the addition, 2 for the
format conversion) before it can be scheduled.

There are many scheduling techniques to handle this
problem. One technique is to use separate schedulers for
the different classes of operations identified in Table 1. The
result tag broadcasts, or wakeup signals, from a scheduler
for RB-output instructions to a scheduler for TC-input in-
structions can be latched for 2 cycles to account for the for-
mat conversion. The use of separate schedulers is warranted
since these two classes of instructions execute on differ-
ent functional units. Another technique is to associate the
result of a redundant binary operation with two resources
(i.e. physical register numbers or tags): one resource indi-
cates that the result is available in redundant binary format;
the other indicates the result is available in 2’s complement.

The limited bypass network described in Section 4.2
will create holes in data availability. Wakeup array-style
scheduling logic [4] can be used to schedule around these
holes. Figure 8 (a) shows a block diagram of this schedul-
ing logic. The wakeup logic contains information about
each instruction that specifies which resources (i.e. source
operands or functional units) are needed. One input to the
wakeup logic is a wire for each resource, called the RE-
SOURCE AVAILABLE line, which is asserted if that re-
source is available. The wakeup logic for an instruction
monitors the RESOURCE AVAILABLE lines for the re-
quired resources. When all required RESOURCE AVAIL-
ABLE lines are asserted, the instruction requests execution.
When it is granted execution by the select logic, a shift reg-
ister that acts as a countdown timer to count the instruc-
tion’s latency is enabled. The output of the shift register is
the RESOURCE AVAILABLE line for that instruction, and

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



it indicates when dependent instructions may be scheduled.
For example, the timer in Figure 8 (b) would be used for a 2-
cycle instruction (assuming the scheduling operation takes 1
cycle). To handle holes in data availability, the initial value
in the shift register would interleave 0s and 1s according to
which levels of the bypass network were missing.

1 01 0
AVAILABLE
RESOURCE

1

(shift enable)
Execution Grant

(b) Countdown Timer

WAKEUP
LOGIC

LOGIC
SELECT

TIMERS

(a) Scheduler

Execution
Requests Grants

AVAILABLE lines
RESOURCE

Figure 8. Scheduling logic

5. Experiments

5.1. Machine Model

The SPECint95 and SPECint2000 benchmarks were
simulated using an execution-driven simulator for the Alpha
ISA. All benchmarks were run to completion using mod-
ified input sets to reduce simulation time. Some charac-
teristics of the machine model are shown in Table 2. The
pipeline latency was a minimum of 13 cycles: 6 for fetch
and decode, 2 for rename, 1 for schedule, 2 for register file
read, a minimum of 1 for execution, and 1 for retirement.

Branch Predictor 48KB hybrid gshare/PaS, 4096-entry BTB
2 basic blocks per cycle fetched

Decode, Rename, 8 instructions
and Issue Width
Instruction Cache 64KB 4-way set associative (pipelined)

2-cycle directory and data store access
Instruction Window 128 Reservation Station Entries
Execution Width 4 or 8 functional units
Data Cache 8KB 2-way set associative (pipelined)
Unified L2 Cache 1MB, 8-way, 8-cycle access

contention for 2 banks is modeled
Memory 100-cycle access

contention for 32 banks modeled

Table 2. Machine Configuration

Machines with 4 and 8 functional units were studied be-
cause the effects of execution latency depend on the exe-

cution bandwidth. As execution bandwidth increases, per-
formance is more dependent on the latencies of instructions
on the critical path. All other machine parameters remained
constant so that the amount of exposed ILP changed as lit-
tle as possible. All functional units were homogeneous. The
use of special-purpose functional units would have made it
difficult to make a fair comparison between redundant bi-
nary and conventional execution cores because the classes
of operations that would execute on each type of functional
unit depend on the data representation.

All machines had a 128-entry instruction window and
select-2 schedulers (i.e. schedulers that pick 2 instructions
per cycle for execution on 2 functional units). The 4-wide
machine had two schedulers, each holding 64 instructions.
The 8-wide machine had 4 schedulers, each with 32 instruc-
tions. Groups of two consecutive instructions were steered
to each scheduler in a round robin manner. The 8-wide ma-
chine was partitioned into two clusters, each with 4 func-
tional units. If a result produced on a functional unit in one
cluster had to be forwarded to a functional unit in the other
cluster, there was a 1-cycle propagation delay.

For both execution widths, four machines were modeled:
a Baseline machine, the RB (redundant binary) machine
with TC register files and a limited bypass network (RB-
limited), the RB machine with both TC and RB register
files (RB-full), and the Ideal machine. The Baseline ma-
chine used 2-cycle, pipelined 2’s complement ALUs. The
RB machines used 1-cycle redundant binary adders with 2-
cycle format converters. The Ideal machine used 1-cycle
2’s complement arithmetic units. The execution latencies
for the machines are given in Table 3. The RB-limited ma-
chine used the bypass network described in Section 4.2. All
machines had the same number of bypass paths.

Instruction Class Base RB (TC result) Ideal

integer arithmetic 2 1 (3) 1
integer logical 1 1 1
integer shift left 3 3 (5) 3
integer shift right 3 3 3
integer compare 2 1 (3) 1
byte manipulation 2 1 (3) 1
integer multiply 10 10 10
fp arithmetic 8 8 8
fp divide 32 32 32
loads, stores (SAM decoder) 1 1 (3 for stores) 1
dcache latency 2 2 2

Table 3. Instruction Class Latencies

5.2. Results

Figure 9 shows the IPC of the 8-wide machines on the
SPECint2000 benchmarks. For each benchmark, the first
bar shows the IPC of the Baseline machine; the next two

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



bars represent the RB machines, and the last bar repre-
sents the Ideal machine. The RB-full machine had an IPC
7% higher than the Baseline machine, and within 1.1%
of the Ideal machine. Figure 10 shows the results on the
SPECint95 benchmarks. The RB machine had an IPC 9%
higher than the Baseline machine, and within 2% of the
Ideal machine. Overall, the RB-limited machine performed
within 2% of the RB-full machine.

The results for 4-wide machines are shown in Figures 11
and 12. Fast functional units have less of an advantage
on the 4-wide machines because the execution bandwidth
is a bottleneck for the amount of exposed ILP in these
benchmarks. On the SPECint2000 benchmarks, the RB-
full machine has an IPC 5% above the Baseline machine,
and within 0.5% of the Ideal machine. On the SPECint95
benchmarks, the RB-full machine has an IPC 6% above the
Baseline machine, and within 1.3% of the Ideal machine.
Overall, the RB-limited machine performed within 2.3% of
the RB-full machine.

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline 
RB-limited 
RB-full 
Ideal 

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

Figure 9. 8-wide machines, SPECint2000.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline 
RB-limited 
RB-full 
Ideal 

co
mp

gc
c go ijp

eg li pe
rl

m88
ks

im

vo
rte

x

Figure 10. 8-wide machines, SPECint95.

Format Conversions. The IPC of the RB machines is
lower than that of the Ideal machine because of the for-
mat conversions that were on the critical path of execution.
There are four cases of data bypasses: (1) a 2’s comple-
ment result is forwarded to a 2’s complement operation, (2)
a 2’s complement result is forwarded to a redundant binary
operation, (3) a redundant binary result is forwarded to a re-
dundant binary operation, and (4) a redundant binary result

0.0

0.5

1.0

1.5

2.0

2.5

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline 
RB-limited 
RB-full 
Ideal 

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n
pe

rlb
mk

ga
p

vo
rte

x
bz

ip2
tw

olf

Figure 11. 4-wide machines, SPECint2000.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline 
RB-limited 
RB-full 
Ideal 

co
mp

gc
c go ijp

eg li pe
rl

m88
ks

im

vo
rte

x

Figure 12. 4-wide machines, SPECint95.

is forwarded to a 2’s complement operation. Only the fourth
case requires a format conversion. Figure 13 shows a dis-
tribution of the four cases for the 8-wide RB-full machine
on the SPECint2000 benchmarks. Only last-arriving by-
passed source operands (i.e. source operands that delay an
instruction’s execution) are included in the distribution. The
number at the top of each bar indicates the fraction of all
dynamic instructions that had at least one bypassed source
operand. The numbers at the bottom indicate the fraction
of the data bypasses that required format conversion (RB to
TC). For example, on the bzip2 benchmark, 2.4% of 69% of
all dynamic instructions were delayed because of a format
conversion. Because a majority of the last-arriving sources
are from memory loads, which produce 2’s complement re-
sults, few last-arriving sources required format conversions.

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr 
Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n 
of

 C
ri

ti
ca

l S
ou

rc
es

TC to RB
TC to TC
RB to RB
RB to TC

  69%   62%   59%   74%   65%   71%   66%   69%   65%   70%   54%   75%

 2.4%  3.6%  1.6%  2.2%  2.2%  5.2%  1.4%  2.8%  2.0%  2.8%  2.4%  2.5%

Figure 13. Potentially critical bypass cases.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 



Limited Bypass Networks. To evaluate the potential of us-
ing a scheduler that can support holes in data availability,
the Ideal machine was modeled with limited bypass net-
works. Because it had a 2-cycle register file, three levels of
bypass paths were required for a full bypass network. Five
limited bypass configurations were modeled: No-1 had no
first-level bypass paths, No-2 had no second-level bypass
paths, No-1,2 had no first or second-level bypass paths, and
so on. The difference between the Ideal machine and the
No-1 machine is the effect of increasing all execution laten-
cies by one cycle. In the Ideal machine, 21% to 38% of the
instructions did not receive any sources off of the bypass
network, 51% to 70% retrieved a source operand from the
first-level bypass bus, and 5% to 14% of the instructions re-
ceived a source operand from another bypass path. Because
the first-level bypass paths are heavily utilized, those ma-
chines that do not remove the first-level bypass paths per-
form the best. The harmonic means of the IPC over all
20 benchmarks for each machine are shown in Figure 14.
The 4-wide No-1,2 machine outperformed the 8-wide No-
1,2 machine because the 8-wide machines are clustered, and
both machines have ample execution bandwidth for the long
execution latencies.

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 I
P

C

8-wide
4-wide

 1.98

Ideal

 1.67

No-1

 1.92

No-2

 1.42

No-1,2

 1.95

No-3

 1.83

No-2,3

1.87
1.57

1.82
1.46

1.84 1.74

Figure 14. IPC with Limited Bypass Networks.

6. Conclusions

Redundant binary adders have about half the latency of
2’s complement adders. As a result, an execution core built
from redundant binary adders can be clocked at a higher fre-
quency, resulting in greater execution bandwidth and lower
execution latencies. Our results show that redundant binary
adders provide a significant increase in performance for
latency-critical applications. Two’s complement, pipelined
adders are sufficient for throughput-intensive applications.
To further reduce execution and forwarding latency, limited
bypass networks may be used with little loss in IPC.

Acknowledgements

We would like to thank Jared Stark and the anonymous
referees for their comments on earlier drafts of this work.
We would also like to thank Andy Glew, Shih-Lien Lu, and
Chris Wilkerson for their valuable discussions. This work

was supported in part by Intel and IBM. Mary Brown is
supported by an IBM Cooperative Graduate Fellowship.

References

[1] P. S. Ahuja, D. W. Clark, and A. Rogers. The performance
impact of incomplete bypassing in processor pipelines. In
Proc. of MICRO-28, pages 36–45, 1995.

[2] D. E. Atkins. Design of the arithmetic units of ILLIAC III:
Use of redundancy and higher radix methods. IEEE Trans.
on Computers, C-19:720–732, Aug. 1970.

[3] A. Avizienis. Signed-digit number representations for fast
parallel arithmetic. IRE Transactions on Electronic Com-
puters, EC-10(9):389–400, Sept. 1961.

[4] M. D. Brown, J. Stark, and Y. N. Patt. Select-free scheduling
logic. In Proc. of MICRO-34, 2001.

[5] J.-L. Cruz, A. González, M. Valero, and N. P. Topham.
Multiple-banked register file architectures. In Proc. of ISCA-
27, pages 316–324, 2000.

[6] M. D. Ercegovac. On-line arithmetic: An overview. SPIE
Real-Time Signal Processing VII, 495:86–93, Aug. 1984.

[7] A. Glew. Processor with architecture for improved pipelin-
ing of arithmetic instructions by forwarding redundant inter-
mediate data forms. U.S. Patent Number 5,619,664, 1997.

[8] J. Gray, A. Naylor, A. Abnous, and N. Bagherzadeh.
VIPER: A VLIW integer microprocessor. IEEE Journal of
Solid-State Circuits, 28(12):1377–1383, Dec. 1993.

[9] R. Heald, K. Shin, V. Reddy, I.-F. Kao, M. Khan, W. L.
Lynch, G. Lauterbach, and J. Petolino. 64-KByte sum-
addressed-memory cache with 1.6-ns cycle and 2.6-ns la-
tency. IEEE Journal of Solid-State Circuits, 33(11):1682–
1689, 1998.

[10] Intel Corporation. IA-32 Intel Architecture Software Devel-
oper’s Manual With Preliminary Willamette Architecture In-
formation Volume 1: Basic Architecture, 2000.

[11] W. L. Lynch, G. Lauterbach, and J. I. Chamdani. Low load
latency through sum-addressed memory (SAM). In Proc. of
ISCA-25, pages 369 – 379, 1998.

[12] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shino-
hara, and K. Mashiko. An 8.8-ns 54 x 54-bit multiplier with
high speed redundant binary architecture. IEEE Journal of
Solid-State Circuits, 31(4):773–783, Apr. 1996.

[13] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.
Keckler. A design space evaluation of grid processor ar-
chitectures. In Proc. of MICRO-34, 2001.

[14] C. Nagendra, M. J. Irwin, and R. M. Owens. Area-time-
power tradeoffs in parallel adders. IEEE Transactions on
Circuits and Systems, 43(10):689–702, Oct. 1996.

[15] C. Nagendra, R. M. Owens, and M. J. Irwin. Power-delay
characteristics of CMOS adders. IEEE Tran. on Very Large
Scale Integration (VLSI) Systems, 2(3):377–381, Sept. 1994.

[16] N. Takagi, H. Yasuura, and S. Yajima. High-speed vlsi mul-
tiplication algorithm with a redundant binary addition tree.
IEEE Trans. on Computers, C-34(9):789–796, Sept. 1985.

[17] D. M. Tullsen, S. J. Eggers, J. S. Emer, and H. M. Levy.
Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. In Proc. of
ISCA-23, pages 191–202, 1996.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02) 
1503-0897/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


