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Abstract

A parallel computer Cenju-4 is a cache-coherent
non-uniform memory access (ccNUMA) multiprocessor
and designed to be scalable up to 1024 nodes. For scal-
ability, Cenju-4 adopts a bit-pattern directory. This
scheme enables more precise representation than other
imprecise schemes, such as a coarse vector scheme.
Cenju-4 utilizes multicast and gathering functions of
the network for delivering invalidation request mes-
sages and for collecting replies. This enables store ac-
cess latency to be scalable, even when the block is shared
among all nodes. Cenju-4 also prevents starvation and
deadlock by queuing certain types of messages in the
main memory. This enables a full solution to the star-
vation problem with centralized directory scheme, and
to the deadlock problem with one physical or virtual net-
work. The bu�er sizes required for queuing messages at
each node are only 32K bytes and two 64K bytes on a
1024-node system.

In this paper, we present the design of the DSM ar-
chitecture and some performance results.

1. Introduction

A parallel computer Cenju-4 is a non-uniform mem-
ory access (NUMA) multiprocessor and consists of up
to 1024 nodes. The goal of Cenju-4 is to combine the
ease of programming of Symmetrical Multi-Processor
(SMP) systems with the high performance of Massively
Parallel Processor (MPP) systems. This is achieved by
means of hardware support of both message passing
and distributed shared memory (DSM). By using both
in combination, users can write parallel programs more
exibly and attain higher performance.

In this paper, we present DSM architecture of
Cenju-4. On a large system, DSM is required to be
scalable in both performance and hardware cost. It is
also an important requirement that a system guaran-
tees forward progress of memory access to DSM, i.e.,
shared-memory access will �nish in �nite time.

Cenju-4 implements the DSM with the use of coher-
ent caches and a directory-based coherence protocol.
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Figure 1. Cenju-4 architecture overview

In order to achieve the above-mentioned requirements
for a large DSM system, Cenju-4 has the following four
characteristics:

� A directory which dynamically switches its rep-
resentation from a pointer structure and a bit-
pattern structure

� Multicast and gathering functions of a network

� A cache coherence protocol that prevents starva-
tion

� A deadlock-free mechanism with one network

In order to achieve hardware-cost scalability, the
memory requirement for the directory that keeps a
record of all nodes caching a block should not increase
with the number of nodes. Cenju-4 adopts a direc-
tory scheme which dynamically switches its represen-
tation from a pointer structure to a bit-pattern struc-
ture. This scheme achieves the constant memory re-
quirement and an e�cient record of nodes.

In order to achieve performance scalability, an in-
crease in the number of nodes must not degrade mem-
ory access latency in direct proportion to the increase.
When a node issues a store access to a memory block



shared by a number of nodes, it is necessary for in-
validation requests to be sent to all nodes caching
the memory block and for replies to be collected from
those nodes to maintain coherency. This implies that
store access latency may increase with the number of
nodes. Cenju-4 avoids such an increase in store access
latency by utilizing multicast and gathering functions
of the network to deliver requests and to collect replies.
Cenju-4 also adopts a directory which can specify all
nodes caching a block with one memory access.

Cenju-4 guarantees forward progress of shared-
memory access by preventing starvation and deadlock.
In order to prevent starvation, Cenju-4 adopts a block-
ing protocol for cache coherence: requests which can
not be processed immediately are queued in the main
memory for later processing. The size of bu�er required
for queuing requests is 32K bytes in a 1024-node sys-
tem. In order to prevent deadlock, Cenju-4 has a mech-
anism which queues certain types of messages for cache
coherence in the main memory. This scheme is imple-
mentable without multiple physical or virtual channels
in the network. The bu�er size required for queuing
messages is 128K bytes in a 1024-node system.

The rest of the paper is organized as follows: the
next section gives an overview of the architecture of
Cenju-4. Section 3 describes the implementation of
DSM on Cenju-4. Section 4 presents DSM system per-
formance with respect to memory access latencies and
parallel applications (NAS Parallel Benchmarks V2.3).

2. Cenju-4 Architecture

Figure 1 illustrates Cenju-4 in block diagram form.
Cenju-4 contains a multi-stage network that can

connect up to 1024 nodes. This network is constructed
by crossbar switches which have four input ports and
four output ports. The network includes the following
features:

� In-order message delivery between any two nodes

� Support for the multicast and gathering functions

� Freedom from deadlock

Cenju-4 is a NUMA multiprocessor. Each node con-
sists of one R10000 [11] processor, a 1M-byte secondary
cache controlled by the processor, a main memory up
to 512M bytes, a PCI bus and a controller chip. The
controller chip uses the network for user level message
passing and for DSM access.

The operating system manages the main memories,
each of which can be accessed either as a private mem-
ory by its own processor or as a DSM by all processors.
The system distinguishes each attempted access by the
MSB of its 40-bit physical address. Only 29 o�set bits
are used for access to private memory. When an access
to a main memory is shared, 10 bits are used as the
node number of the main memory and 29 bits are used
as o�set.

map of nodes which cache the line

structure of map

the state of the line

pointer structure
   (<= 4 nodes)

valid bits
node # node # node #

bit-pattern structure
    (> 4 nodes) base pattern(32 bits)

hierarchy patterns(4, 4 and 2bits)

decode and or

2 2 1 5

node #

244

reservation bit

Figure 2. Directory entry

Node 0

Node 4

Node 5

Node 32

Node 164

0001 0101 11 00000000 00000000 00000000 00110001

Node 0 00 00 0 00000

Node 4 00 00 0 00100

Node 5 00 00 0 00101

Node 32 00 00 1 00000

Node 160 00 10 1 00000

Node 36 00 00 1 00100

Node 37 00 00 1 00101

Node 164 00 10 1 00100

Node 165 00 10 1 00100

b) Directory
     (bit-pattern
             structure)

0001  0001  01  00000000 00000000 00000000 00000001

0001  0001  01  00000000 00000000 00000000 00010000

0001  0001  01  00000000 00000000 00000000 00100000

0001  0001  10  00000000 00000000 00000000 00000000

0001  0100  10  00000000 00000000 00000000 00010000

00 00 0 00000

00 00 0 00100

00 00 0 00101

00 00 1 00000

00 10 1 00100

 or 

 decode 
a) Sharing Nodes

c) Sharing Nodes 
         (represented by the bit-pattern structure)

Node 128 00 10 1 00000

Node 132 00 10 1 00100

Node 133 00 10 1 00100

00 00 & 10 0 &1 00000 & 00100 & 00101

 all combinations 

 encode 

Figure 3. Bit-pattern structure

Cenju-4 supports shared memory and message pass-
ing using private memory. Details of the user-level mes-
sage passing mechanism are described in [6].

3. DSM Architecture

The DSM architecture of Cenju-4 is provided
through the use of coherent caches and a directory-
based invalidation protocol. In this section, we de-
scribe the features of the DSM architecture. Section 3.1
explores the directory which dynamically switches its
representation from a pointer structure to a bit-pattern
structure. Section 3.2 describes multicast and gather-
ing functions of the network. Section 3.3 presents the
cache coherence protocol that prevents starvation. Sec-
tion 3.4 explains the deadlock-free mechanism with one
network.

3.1. Directory

Several directory schemes which are implementable
with scalable hardware cost have been devised previ-
ously. We show the characteristics of these directory
schemes in Table 1. Unfortunately, most of them are
not scalable in performance when the directory is ac-
cessed to specify all nodes caching a block.



(b) sharing within 128-node group(a) sharing within all nodes

Coarse Vector (32) Hierarchical Bit-Map (24) Bit-Pattern (42) Full-Map
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Figure 4. Behavior of imprecise node maps (in a 1024-node system)

Table 1. Characteristics of directory schemes

scalability
hardware access

cost cost
Full Map[2] � �
Chained[5]  �
LimitLESS[3]  �
Dynamic Pointer[12]  �
Originy[8]  
Cenju-4z  
y: Full Map + Coarse Vector[4]
z: Pointer + Bit Pattern

Cenju-4 adopts a directory scheme which dynami-
cally switches its representation from a pointer struc-
ture to a bit-pattern structure. This scheme achieves
scalability in both hardware and performance.

Each cache line size block (128 bytes) of a main
memory is associated with a 64-bit directory entry.
Figure 2 illustrates the directory entry of Cenju-4. The
directory occupies 1/16 of the main memory. The size
of the directory does not increase with the number of
nodes.

The directory entry contains a reservation bit, the
state of the block, and a record of nodes caching the
block. We call this record a node map. We will ex-
plain the reservation bit and the state with the cache
coherence protocol in a later section. In this section,
we explain the node map.

The node map in Cenju-4 is similar to the limited
pointer schemes[3][4] that dynamically switch their rep-
resentations from a pointer structure to a di�erent type
of structure. In these schemes, in the most common
case of a block being shared among a small number
of nodes, the directory is maintained in a structure
comprising several pointers (four pointers on Cenju-4),
called a `pointer structure'. When the number of nodes
sharing a block exceeds the number of pointers avail-
able, the directory switches its representations to a dif-
ferent type of structure, such as a coarse vector struc-

ture. Cenju-4, however, adopts a `bit-pattern struc-
ture' that is more suitable for maintaining a record of
a large number of nodes than a coarse vector scheme.
This bit-pattern structure is similar to a hierarchical
bit-map scheme[10]. This hierarchical bit-map scheme
strongly depends on the hierarchical structure of a net-
work, and this negatively inuences the preciseness of
the node map.

In the bit-pattern structure, a node is represented by
four, four, two and thirty-two bit �elds, which are made
by encoding two, two, one and �ve bits of a 10-bit node
number. The values found by logical OR operations on
all sharing nodes are stored in the node map. Figure 3
shows one example. If nodes 0, 4, 5, 32 and 164 cache
the block, the values shown in Figure 3(b) are stored.
This structure does not depend on the structure of the
network.

With this scheme, the node map keeps a precise
record of nodes in:

(a) Memory blocks which are shared by a number of
nodes less than or equal to four even in a 1024-
node system with a pointer structure

(b) All memory blocks in systems of 32 nodes or less
with a bit-pattern structure

Preciseness is lost in other cases represented by a bit-
pattern structure. In the case shown in Figure 3, even
though the actual number of sharing nodes is �ve, the
directory represents that twelve nodes share the block.

Figure 4 shows the behavior of three imprecise di-
rectory schemes: a coarse vector scheme[4], a hierarchi-
cal bit-map scheme, and a bit-pattern scheme. In the
coarse vector scheme, nodes are divided into several
groups. When representing 1024 nodes with a 32-bit
coarse vector structure, all nodes are divided into 32
groups. Each of the 32 bits represents a group of 32
nodes. In the hierarchical bit-map scheme, the node
map consists of six 4-bit �elds, since the network con-
sists of a six level quadruple-tree structure. Each of
the six �elds represents a level of the tree structure.
And each of the four bits represents a branch of the
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Figure 5. Multicast and gathering functions of
the network

tree structure. The same 4-bit �eld is used at switches
of the same level. In Figure 4, we compare the 32-bit
coarse vector structure, a 24-bit hierarchical bit-map
structure, and a 42-bit bit-pattern structure. Though
the numbers of bits used for these schemes are di�erent
from each other, they are under the equal condition;
the maximum number of bits that can be used for the
node map is 59 bits on Cenju-4.

The �gure shows that the average number of nodes
represented by each directory scheme varies as the
number of nodes sharing a block varies. In Figure 4(a),
the sharers were chosen from 1024 nodes. Even though
there is no di�erence between three schemes with a
large number of nodes, the bit-pattern structure per-
forms well with a small number of nodes. In Figure
4(b), the sharers were chosen from a 128-node group.
The average number of nodes represented by the bit-
pattern scheme is much smaller than that of a coarse
vector scheme or that of a hierarchical bit-map scheme.
This implies that the bit-pattern structure is advanta-
geous in a multi-user environment, where a large sys-
tem might be divided among several programs.

3.2. Multicast and Gathering Functions

Cenju-4 utilizes the multicast and gathering func-
tions of the network to deliver invalidation request mes-
sages and to collect their reply messages. If there is
no multicast function, a node sends invalidation re-
quest messages to nodes represented by the node map

through the use of many singlecast messages. If there is
no gathering function, a node receives all messages sent
from the nodes. In both cases, the latency of the trans-
action of invalidating cache copies becomes unscalable.
Moreover, sending invalidation messages and receiving
reply messages make hot spots, and this negatively in-
uences the latencies of other memory accesses.

Figure 5(a) shows the concept of the multicast func-
tion of the network. The multicast function is used to
transfer invalidation request messages to the nodes rep-
resented by the node map of the directory. A pointer
structure and a bit-pattern structure to specify the
multicast destination similar to those of the node map
are employed. Coinciding the speci�cations of the mul-
ticast destination with the directory structures pre-
vents messages from being delivered to any nodes not
represented by the node map. The switches in the net-
work �nd out which ports to output the messages to
by their own position information in the network, the
system size, and the multicast destination speci�ed by
either the pointer structure or the bit-pattern struc-
ture in the message. Calculation in the switch makes
it possible to support a multicast pattern which is not
dependent on the network structure.

To realize a multicast function, we had to avoid the
deadlock that occurs in arbitration when two switches
try to send multicast messages into the same switch
simultaneously. In order to avoid such deadlock, we
adopt a crosspoint bu�er scheme with which it is un-
necessary to arbitrate among switches when sending
messages, and a virtual cut through ow control. As
shown in Figure 5(a), four bu�ers are needed for a 2 �
2 switch with a crosspoint bu�er scheme, thus sixteen
bu�ers are needed for the 4 � 4 switch in Cenju-4.

Figure 5(b) shows the concept of the gathering func-
tion of the network. The gathering function is used to
gather reply messages corresponding to the multicasted
invalidation messages. Each node speci�es a wait pat-
tern at each switch that a message passes through in
the gathered message. The wait pattern is calculated
from the destination node numbers of the multicas-
ted invalidation message, the destination node number
of the gathered reply message, the own node number,
and the system size. Each gathered message has a 10-
bit identi�er to enable di�erent gathering to be distin-
guished from each other. The switch has a 1024-entry
table to record a wait pattern for each gathering. The
table occupies only 3:6% of the switch chip in gates.

When a gathered message arrives, the switch checks
the entry indexed by the identi�er in the message. If
it is an initially gathered message with its identi�er,
the switch resets the bit of the input port from the
wait pattern and sets it to the entry. The message is
removed from the bu�er and is not sent to the next
switch. When the following gathered messages arrive,
the switch resets the bit of the input port from the wait
pattern in the entry, and all the messages are removed
except the last gathered message. Only the last gath-
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Figure 7. Coherency control sequences with the
Cenju-4 protocol

ered message is sent to the next switch. Thus, the net-
work collects all gathered messages, but outputs only
one message to the destination node.

3.3. Cache Coherence Protocol

In our discussion of the coherence protocol, we use
the following naming conventions. A `master' is a node
that contains the processor originating a memory ac-
cess. A `home' is a node that contains the main mem-
ory and the directory for a given physical memory ad-
dress. A `slave' is a node that caches the data, unless
the node is a master.

A cache coherence protocol consists of a sequence of
operations applied to memories and caches to achieve
data coherency. Operations are mediated by request
and reply messages sent among masters, homes and
slaves. Such a coherence protocol must prevent star-
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(b) If the slave has issued
a writeback request to the
home while the master is
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a nack to the master.

Master B

3‘. req B

(a) If the home forwards request B to
slave B (= master A) receiving reply A
and slave B receives the forwarded
request B earlier than reply A, slave B
sends a nack to master B.

Figure 8. Sequences which cause nack at slave
with the DASH protocol

vation and deadlock in order to guarantee forward
progress of memory access. We describe starvation in
this section, and deadlock in the next section.

Several previously devised coherence protocols have
a negative-acknowledge (nack) sequence. When either
a home or a slave can not process a request, it sends
a nack message to a master and forces the master to
retry the request. A nack sequence occurs when sev-
eral nodes access the same memory block. Figure 6(a)
shows that request C is disturbed by requests A and
B, which target the same memory block as request C,
and a nack sequence occurs repeatedly. This implies
that the nack sequence causes starvation.

In order to prevent starvation, Cenju-4 adopts a
cache coherence protocol, which queues requests that
can not be processed immediately without a nack for
later processing at a home. This cache coherence pro-
tocol is based on the Alewife protocol [1] [3]. Modi�ca-
tions were made mostly to enable queuing and to make
some performance improvements. For performance im-
provements, the Cenju-4 protocol supports an exclusive
cache state (known as one of the states in MESI) and a
write request which enables a store access to a shared
block to be satis�ed without a data transfer. Details
of the cache coherence protocol are shown in the Ap-
pendix.

Figure 7 shows all the sequences taken by the cache
coherence protocol in Cenju-4. As shown in Figure
7(a), a home replies to a master if the home can satisfy
a request. As shown in Figure 7(b), if the home can
not satisfy a request, it forwards the request to a slave.
In order to remove two nack sequences of the DASH[9]
protocol shown in Figure 8, a slave sends a reply to the
home, and the home forwards the reply to the mas-
ter. As shown in Figure 7(c), if a request issued by a
master is a writeback request, the `no-reply' sequence
is taken. A home processes a writeback request even
while the home is processing another request that tar-
gets the same memory block and is waiting for its reply.



This writeback sequence reduces bu�er sizes required
for preventing starvation and deadlock.

Figure 6(b) shows the behavior of the queuing proto-
col. A home does not reply to any request with a nack.
A home queues the request B and C which the home
receives while the home is processing another request
that targets the same memory block and is waiting for
its reply. After receiving the reply, the home dequeues
the requests and processes them.

A home queues requests in the same bu�er, even
though these requests target di�erent memory blocks.
The bu�er is placed in the main memory and is con-
trolled as a FIFO queue. The home uses the reserva-
tion bit in the directory for checking whether a request
is waiting at the top of the queue. When the home
saves the request at the top of the queue, the home
sets the reservation bit of the target directory. If the
home processes a reply and the reservation bit of the
target directory has been set, the home resets the bit
and reads the request at the top of the queue (does not
dequeue yet). If the request is processed, the home de-
queues the request from the queue and reads the next
request in the queue. If there is a request that the home
can not process yet, the home sets the reservation bit
of the target directory, stops processing the requests in
the queue, and waits for a reply. This process continues
until the queue becomes empty.

It is possible for all requests except writeback re-
quests to be saved in the queue. The maximum number
of requests (excluding writeback requests) issued from
one master is four in Cenju-4. And these requests are
represented with 64 bits. Therefore, the bu�er size pre-
pared for queuing requests at each node is 32K bytes 1

on a 1024-node system.
It has been previously reported that a Scalable Co-

herent Interface (SCI)[5] also prevents starvation. The
coherence protocol is formed on SCI by sharing chains
through the caches in order to form a distributed co-
herence directory. This form is also used to link re-
quests from many nodes. The requests are satis�ed
one by one in the same order in which they are linked.
This scheme fully depends on a distributed chained di-
rectory and is not applicable to systems that adopt a
centralized directory, such as Cenju-4.

Both the DASH project and the Alewife[7] project
also addressed the starvation problem, but no imple-
mentable solution that prevented starvation was given
in either work.

3.4. Deadlock Prevention

The previous section shows that the coherence pro-
tocol consists of transmitting request messages and re-
ply messages among a master, a home and slaves. All
physical nodes contain the three modules which act
as master, home and slave. The messages between the

11024� 4� 64bits = 32Kbytes
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Figure 9. Resource dependency graph

modules in the di�erent nodes are transmitted through
the network. Each module starts a service by receiv-
ing a message, and does not start another service while
processing a message.

The network of Cenju-4 is deadlock-free by itself.
The path between two nodes is unique and the mes-
sages through the same path are delivered in the same
order they are transmitted.

Figure 9 shows a resource dependency graph. In
this graph, three modules in each node and network
are resources, and the arrows represent dependencies
between resources caused by the message transmission.
There are many loops in the graph, and this suggests
that deadlock will occur.

One solution to this deadlock problem, employed by
the DASH project, is to prepare two network channels.
Request messages are assigned to one channel and re-
ply messages to the other. This solution is not suit-
able for most cache coherence protocols, since their co-
herence protocols contain dependencies that are more
complicated than simple request-reply ones. There are
request-request dependencies that occur when a home
forwards a request to a slave. To eliminate such depen-
dencies, a home or a slave sends a nack to a master un-
der certain situations in which the bu�er for outputting
to the request network channel is full. Unfortunately,
this solution transforms the deadlock problem into a
starvation problem. Moreover, in order to have two
network channels, the network switch must have dou-
ble bu�ers for each physical path. In Cenju-4, since
bu�ers already occupy 57% of the switch chip in gates
with one network channel, it is hard to have two net-
work channels.

On the other hand, the Alewife project employed a
deadlock prevention scheme with one network. When
a node detects deadlock, the node queues all messages
sent from the network in the main memory under soft-
ware control. However, the bu�er size required for
queuing all messages was not speci�ed.

Cenju-4 also prevents deadlock with one network by
queuing not all but certain types of messages in the
main memory. This scheme enables the bu�er size to
be reduced to 128K bytes, thus �nite, in a 1024-node
system. The rest of this section describes this scheme



in detail.
Cenju-4 prevents deadlock by removing the depen-

dencies represented by white arrows in Figure 9 by in-
troducing bu�ers which can queue all messages that
pass through the arrows. Thus all loops are removed
from the graph. We select these arrows for minimiz-
ing the memory requirements, though there are many
alternative ways to remove loops. Each node prepares
three bu�ers: a bu�er that queues messages received
by the master module, a bu�er that queues messages
received by the slave module, and a bu�er that queues
messages to be transmitted from the home module to
the network.

The master module receives reply messages that
may contain data. The maximum number of reply mes-
sages received by one master module is the maximum
number of a processor's outstanding requests: four in
our system. Themastermodule has a bu�er su�ciently
large to receive all reply messages.

A slave module receives request messages without
data. The maximum number of request messages re-
ceived by one slave module is found by the maximum
number of a processor's outstanding requests multi-
plied by the number of nodes. In 1024-node systems,
each node allocates a 64K-byte2 region in the main
memory for queuing messages. A slave module also has
a bu�er for receiving several request messages, and uses
the bu�er in the main memory only when the bu�er in
the module is full.

A home module outputs request and reply messages
that may contain data. However, data is always in
the memory block and does not need to be saved in
the bu�er. A home module also outputs invalidation
request messages, which are generated by processing
one request message. In our implementation, one in-
validation request message and a node map that in-
dicates the destination nodes are saved instead of in-
validation messages. Invalidation request messages are
generated from this information. By this means, the
maximum number of messages and node maps queued
in the bu�er is the same as that of messages one slave
module receives. In a 1024-node system, each node al-
locates another 64K-byte3 region in the main memory
for queuing messages. A home module also has a bu�er
in the module and uses the bu�er in the main memory
only when the bu�er in the module is full.

4. Performance

In this section, we discuss the performance of the
DSM system of Cenju-4 using latencies of load accesses
and store accesses. We also measured the performance
by using four applications in the NAS Parallel Bench-
marks V2.3.

21024 (nodes) � 4 (outstanding requests) � 128 bits (one
entry)

31024 (nodes) � 4 (outstanding requests) � 128 bits (one
entry)

Table 2. Load access latencies (ns)

network stages 2 4 6
(no. of nodes) (�16) (�128) (�1024)
a) private 470 470 470
b) shared local(clean) 610 610 610
c) shared remote(clean) 1690 2210 2730
d) shared local(dirty) 1900 2480 3060
e) shared remote(dirty) 3120 4170 5220

  estimated latency when the multicast and gather
functions are not used
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Figure 10. Store access latencies

4.1. Memory Access Latency

In our discussion of the results, we use the following
naming conventions. A `private' memory is a main
memory accessed without the DSM system, while a
`shared' memory is a main memory accessed through
the DSM system. A `local' memory is a shared memory
of its own node, while a `remote' memory is a shared
memory of another node.

Table 2 and Figure 10 show load and store access
latencies, respectively. This is the time from when a
memory access instruction is issued until the memory
access graduates. Table 2 shows latencies of load ac-
cesses that miss the secondary cache. Figure 10 shows
latencies of store accesses that hit a cache block shared
with nodes. The Cenju-4 multistage network changes
the number of stages according to the system size. In
this evaluation, we use a 16-node system that contains
a two-stage network, and a 128-node system that con-
tains a four-stage network. Latencies with a six-stage
network shown in Table 2 and Figure 10 are estimated
from the di�erence between latencies with a two-stage
network and a four-stage network. Latencies when the
multicast and gathering functions of the network are
not used are also estimated by using a logic level sim-
ulator of Cenju-4.

In Table 2, though both a) and b) are accesses to the



(a) ease of programming (b) performance
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Figure 11. DSM vs Message Passing

local memory, the costs of accessing directory are added
to the latencies of b). The di�erence among b), c), d)
and e) arises from the di�erence in cache-coherence se-
quences and from how many times the network is used
to transfer messages in the sequences. The sequence
taken by b) and c) is (a) shown in Figure 7, and the se-
quence taken by d) and e) is (b) shown in Figure 7. The
number of times the network is used to transfer mes-
sages in b), c), d), and e) are zero,two,two, and four,
respectively. In c), d) and e), the latency increases not
with the system size but with the number of network
stages.

Figure 10 shows that store access latency increases
not with the system size but with the number of stages
of the network. Moreover, the store access latencies do
not increase linearly with the number of sharing nodes.
It is estimated that the store access latency will take
6.3 microseconds when the data is shared with 1024
nodes. On the other hand, the estimated results show
that the latency linearly increases with the number of
nodes when the multicast and gathering functions are
not used. It is also estimated that the store access
latency will take 184 microseconds when the data is
shared with 1024 nodes. This result shows that mul-
ticasting invalidation requests and gathering replies to
them is an e�ective approach.

The store access latency greatly increases when the
number of nodes sharing a block exceeds two. This is
because the multicast and gathering functions are used
when the number of target nodes exceeds one, i.e., the
number of nodes sharing a block exceeds two. If the
number of target nodes is one, a singlecast message
is used for sending an invalidation request messages
and collecting a reply message. It is possible to use
singlecast messages in order to improve store access
latency up to a certain number of nodes, though it was
not implemented in Cenju-4.

4.2. Applications

4.2.1. Workload

We use four applications in the NPB(NAS Parallel
Benchmarks V2.3 Class A) as workloads. The appli-
cations we use are BT, CG, FT and SP. We measured
the performance of four programs for each application:

seq { a given sequential program

mpi { a given parallel program written with MPI
(Message Passing Interface) library

dsm(1) { a parallel program written with shared mem-
ory library

dsm(2) { an optimized parallel program written with
shared memory library

We made dsm(1) and dsm(2) programs from a seq pro-
gram. The dsm(1) programs are parallelized only on
the outermost loop. The dsm(2) programs are tuned to
optimize memory accesses by loop translations, divid-
ing shared arrays and mapping the arrays to a private
memory. In both the dsm(1) programs and the dsm(2)
programs, data mappings are speci�ed for shared data
to localize memory accesses.

The shared memory library has several functions:
to allocate shared memory, to specify a data mapping,
and so on. We use MPI library for performing synchro-
nization and reduction operations in the shared mem-
ory programs.

With MPI library, the message passing mechanism
achieves 9.1 microsecond latencies on a 128-node sys-
tem, and 169M byte/s throughput.

4.2.2 DSM vs Message Passing

Figure 11 shows the ease of programming and the
performance of the mpi, dsm(1) and dsm(2) programs.



Table 3. Secondary cache miss characteristics
of applications

miss private shared
64/128 nodes ratio local remote
BT dsm(1)y 1.49% 2.4% 1.7% 95.9%
(64) dsm(1) 1.47% 2.2% 63.7% 34.1%

dsm(2)y 0.84% 76.3% 0.6% 23.0%
dsm(2) 0.85% 76.1% 12.7% 11.2%

CG dsm(1)y 1.48% 27.8% 0.6% 71.6%
(128) dsm(1) 1.48% 26.7% 0.7% 72.6%

dsm(2)y 1.48% 28.2% 0.6% 71.1%
dsm(2) 1.44% 25.9% 0.7% 73.4%

FT dsm(1)y 0.84% 30.2% 0.6% 69.2%
(128) dsm(1) 0.81% 30.8% 50.9% 18.3%

dsm(2)y 0.69% 57.2% 0.4% 42.4%
dsm(2) 0.77% 59.2% 23.0% 17.9%

SP dsm(1)y 1.77% 4.5% 1.5% 93.9%
(64) dsm(1) 1.84% 4.3% 36.0% 59.7%

dsm(2)y 1.04% 24.7% 1.9% 73.3%
dsm(2) 1.02% 24.5% 36.9% 38.6%

y: no data mappings

In order to evaluate the ease of programming, we mea-
sured the program rewriting ratios of the mpi, dsm(1)
and dsm(2) programs. The rewriting ratio is calcu-
lated by dividing the number of lines changed from
and added to the lines of the sequential programs by
the number of lines of the sequential program. We also
measured the performance of four applications using a
128-node system. We run BT and SP using 64 nodes,
and run CG and FT using 128 nodes. The performance
is shown by parallel e�ciency (speedup divided by the
number of nodes). Table 3 shows secondary cache miss
characteristics of dsm(1) and dsm(2) programs running
with 64 or 128 nodes. For each program, we give sec-
ondary cache miss ratios and breakdowns of the cache
misses. Cache misses include store accesses to shared
cache blocks. We also evaluate the e�ect of specifying
shared data mappings. The `no data mappings' in Fig-
ure 11 and Table 3 indicates that mapping codes are
removed from programs.

Figure 11(a) shows the program rewriting ratio of
each program. The di�erence in the program rewriting
ratio between mpi and dsm(1) arises from the follow-
ing di�erences. To parallelize sequential programs, we
have to change initial values and end values of induc-
tion variables of loops and insert synchronizations in
both shared memory programs and message passing
programs. Almost all the changed lines of dsm(1) pro-
grams account for these changes. On the other hand,
explicit inter-node communications are added to mpi
programs. Moreover, arrays are divided in a compli-
cated way to minimize the amount of communications
in the given mpi programs. The ratios of dsm(2) pro-
grams increase from those of dsm(1) programs because
of the optimization. However, the ratios of dsm(2)
programs are less than half of those of mpi programs.
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Figure 12. Speedups of applications

On both dsm(1) and dsm(2), specifying data mappings
causes less increase in the program rewriting ratio.

Figure 11(b) shows the performance of each pro-
gram. The dsm(1) programs, that are simply paral-
lelized from the seq programs, do not show high parallel
e�ciency. The e�ciency is only about 20% on BT, CG
and SP, and 40% on FT. However, specifying data map-
pings and optimizing memory access patterns greatly
improve parallel e�ciency to 97% on BT, 81% on FT,
and 71% on SP. Table 3 shows that the optimization
decreases the cache miss ratios and the shared miss ra-
tios, and that specifying data mappings decreases the
remote miss ratios. On CG, optimizing memory access
patterns and specifying data mappings has no e�ect on
secondary cache miss characteristics. This is the rea-
son that the performance of the dsm(2) program does
not improve. On BT and FT, dsm(2) programs achieve
high performance comparable to that of mpi programs.

These results show that we can write shared memory
programs with less rewriting than that of message pass-
ing programs. In addition, some shared memory pro-
grams achieve high performance comparable to that of
message passing programs. Specifying data mappings
and optimizing memory access patterns produces high
performance on many shared memory programs.

4.2.3 Performance scalability of dsm programs

Figure 12 shows the performance of four applications
up to 64 nodes on BT and SP, and up to 128 nodes
on CG and FT. We use dsm(2) programs and specify
data mappings. Though BT, FT and SP show good
speedups, the speedup of CG is saturated. In this sec-
tion, we discuss performance scalability of these shared
memory programs.

Table 4 gives characteristics of four applications run-
ning with 16 and 64 nodes on BT and SP, and 16 and
128 nodes on CG and FT. For each application, we
give the number of executed instructions, the number
of memory access instructions, and the breakdowns of



Table 4. characteristics of applications

no. execution time executed instructionsz secondary cache missesz
of total mem. shared shared

nodes (sec) system sync. totaly accessy private local remote ratio private local remote
BT 16 203.722 3.26% 3.84% 25542 12027 82.7% 13.8% 3.60% 0.86% 71.9% 22.5% 5.59%

64 56.324 2.94% 7.72% 6386 3007 82.7% 13.0% 4.35% 0.82% 75.0% 13.1% 11.9%
CG 16 5.348 1.93% 7.04% 369.0 141.0 66.4% 2.52% 31.1% 2.73% 90.0% 0.66% 9.31%

128 4.182 0.88% 25.1% 46.61 17.85 66.8% 0.28% 32.9% 2.39% 18.4% 0.73% 80.9%
FT 16 9.222 5.04% 1.67% 1205 419.3 92.5% 4.69% 2.81% 0.77% 47.0% 37.6% 15.4%

128 1.346 4.37% 8.92% 150.8 52.43 92.5% 4.52% 2.98% 0.79% 45.0% 35.7% 19.3%
SP 16 214.763 7.34% 5.42% 17420 6184 49.9% 19.9% 30.2% 1.24% 21.4% 59.3% 19.4%

64 68.064 5.89% 12.8% 4356 1547 50.0% 17.3% 32.8% 1.03% 13.8% 39.8% 46.4%
y: �106 z: system and synchronization phases are not included in measurements

memory accesses as a fraction of all memory access
instructions. Table 4 also shows the total execution
times, the system execution times and the synchro-
nization execution times as a fraction of total execu-
tion times, the secondary cache miss ratios, and the
breakdowns as a fraction of all secondary cache misses.
Except for execution times, system and synchroniza-
tion phases were not considered when measuring these
characteristics. The values given were obtained by tak-
ing the average of all nodes.

The numbers of total executed instructions and
memory access instructions decrease with an increase
in the number of nodes. This implies that all pro-
grams are scalable by themselves and synchronization
cost and average memory access latency will harm per-
formance scalability. Even the synchronization time
subtracted from the execution time does not show lin-
ear speedups. This implies that average memory ac-
cess latency degrades with an increase in the number
of nodes.

There is little di�erence in the memory access break-
downs between 16 nodes and 64 or 128 nodes; only a
slight decrease in local access ratios and a slight in-
crease in remote access ratios are seen. The remote
access ratios increase by 0.75% on BT, 1.82% on CG,
0.17% on FT, and 2.56% on SP. However, there are
signi�cant di�erences in the breakdowns of secondary
cache misses between 16 nodes and 64 or 128 nodes.
In this case, the remote miss ratios increase by 6.34%
on BT, 71.5% on CG, 3.90% on FT, and 27.1% on SP.
These increases degrade the average memory access la-
tency and harm performance scalability. The notably
high increase in the remote miss ratio of CG is the
cause of CG performance saturation.

On CG, shared data is distributed to all nodes, and
each node calculates the data assigned to it. At some
phase of the program, each node accesses all shared
data that is modi�ed at the previous phase for calcu-
lating one data, and repeats accessing all shared data
for all assigned data. This access pattern of shared data
increases the remote memory miss ratio, since the time
that shared data is reused decreases with the increase
in the number of nodes.

To improve the performance scalability of CG, the

system must enable this kind of access pattern to be
scalable. To achieve this, it is not enough for the sys-
tem to make store access latency scalable. It is also
required for the system to make the load access latency
to be scalable, even though all nodes are accessing the
same memory block. Moreover, these load accesses
must be satis�ed at the local memory. One solution to
this problem is for the system to use the main memory
as third-level cache and to use an update-type protocol
for this type of data. When data are modi�ed, data in
third-level caches of all nodes are updated. The load
access at each node is satis�ed by its third-level cache
in the main memory.

5. Conclusion

This paper has described the DSM mechanism of
Cenju-4. This mechanism is designed to be highly scal-
able up to 1024 nodes and has the following features:

� A directory which dynamically switches its repre-
sentation from a pointer structure to a bit-pattern
structure

� The multicast and gathering functions of a net-
work

� A cache coherence protocol that prevents starva-
tion with a centralized directory

� A deadlock-free mechanism with one network

The evaluation result shows that the bit-pattern
structure enables more precise representation than
other imprecise directory schemes, such as a coarse vec-
tor scheme. And by using the multicast and gathering
functions of a network, the system enables the store
access latency to be scalable. Starvation is prevented
by using a 32K-byte bu�er in the main memory for
queuing certain types of messages. Deadlock is also
prevented by using two 64K-byte bu�ers for queuing
certain types of messages.

The performance results we obtained using four ap-
plications show the ease with which shared memory
programming can be performed, and that high-level
performance can be achieved by adjusting the program
so that it can �t a distributed memory system.



The performance results also show that making store
access latency scalable is not enough for some applica-
tions. It is also required that load access latencies are
scalable, even though all nodes are accessing the same
memory block. Moreover, these load accesses must be
satis�ed by the local memory.
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APPENDIX

Requests issued by a master

� A read-shared request which is initiated by a proces-
sor's load access to an invalid cache block

� A read-exclusive request which is initiated by a pro-
cessor's store access to an invalid cache block

� An ownership request which is initiated by a proces-
sor's store access to a shared cache block

� A writeback request when a modi�ed cache block is
replaced

States of a cache block

A cache block in the cache memory may be in one of
four states: modi�ed, exclusive, shared, invalid, known as
MESI. We abbreviate them as M c, Ec, Sc and Ic.

States of a memory block

As with cache blocks, a memory block in the main mem-
ory may also be in one of �ve states: clean, dirty, pending-
shared, pending-exclusive, and pending-invalidate. We ab-
breviate them as Cm, Dm, Psm, Pem and Pi

m, respec-
tively. The block state Cm indicates that there are many
nodes which cache the data, and that the data in the main
memory is valid. The block state Dm indicates that only
one node caches the data, and the data in the memory block
may be invalid. The block state Psm, Pem and Pi

m are
pending states, while Cm and Dm are stable states.

Read-shared request sequence

The following sequence is initiated by a processor's load
access to a Ic state cache block.

(1) The master sends the read-shared request to the home.

(2) Upon receiving the request, the home checks the di-
rectory.

� If the state is Cm or Dm and no node or only the
master is registered in the node map, the home changes
the state to Dm and sets the node map that indicates
only the master holds the copy. The home sends the
data in the memory block to the home. Go to (3).

� If the state is Cm and nodes other than the master
are registered in the node map, the home adds the
master to the node map. The home sends the data in
the memory block to the home. Go to (4).

� If the state is Dm and a node other than the master
is registered in the node map, the home changes the
state to Ps

m and forwards the request to the slave
registered in the node map. Go to (5).

� If the state is a pending state, the home queues the
request in the main memory until the state becomes a
stable state.

(3) Upon receiving the data, the master puts the given
data into the cache block and changes the state to Ec.
END.



(4) Upon receiving the data, the master puts the given
data into the cache block and changes the state to Sc.
END.

(5) Upon receiving the request, the slave checks the cache
block state.

� If the state is Mc, the slave changes the state to Sc

and sends the data in the cache block to the home. Go
to (7).

� If the state is Ec, the slave changes the state to Sc

and sends the reply to the home. Go to (6).

� Otherwise, the slave sends the reply to the home. Go
to (6).

(6) Upon receiving the reply, the home changes the state
to Cm, adds the master to the node map, and sends
the data in the memory block to the master. Go to
(4).

(7) Upon receiving the data, the home puts the given data
into the memory block, changes the state to Cm, adds
the master to the node map, and forwards the data to
the master. Go to (4).

Read-exclusive request sequence

The following sequence is initiated by a processor's store
access to an Ic state cache block.

(1) The master sends the read-exclusive request to the
home.

(2) Upon receiving the request, the home checks the di-
rectory.

� If the state is Cm or Dm and no node or only the
master is registered in the node map, the home changes
the state to Dm and sets the node map that indicates
only the master holds the copy. The home sends the
data in the memory block to the home. Go to (3).

� If the state is Cm and nodes other than themaster are
registered in the node map, the home changes the state
to Pem, and sends invalidation requests to all slaves
registered in the node map (the invalidation requests
are multicasted in the network). Go to (4).

� If the state is Dm and a node other than the master
is registered in the node map, the home changes the
state to Pe

m and forwards the request to the slave
registered in the node map. Go to (6).

� If the state is a pending state, the home queues the
request in the main memory until the state becomes a
stable state.

(3) Upon receiving the data, the master puts the given
data into the cache block and changes the state to
M
c. END.

(4) Upon receiving the invalidation requests, all slaves
change their cache block states to Ic if they hold copies
and send replies to the home. All replies are gathered
to one reply in the network.

(5) Upon receiving the reply, the home changes the state
to Dm, sets the node map that indicates only the mas-
ter holds the copy, and sends the data in the memory
block to the home. Go to (3).

(6) Upon receiving the request, the slave checks the cache
block state.

� If the state is Mc, the slave changes the state to Ic

and sends the data in the cache block to the home. Go
to (7).

� Otherwise, the slave changes the state to Ic if it holds
the copy, and sends the reply to the home. Go to (5).

(7) Upon receiving the data, the home puts the given data
into the memory block, changes the state to Dm, sets
the node map that indicates only the master holds the
copy, and forwards the data to the master. Go to (3).

Ownership request sequence

The following sequence is initiated by a processor's store
access to a Sc state cache block.

(1) The master sends the ownership request to the home.

(2) Upon receiving the request, the home checks the di-
rectory.

� If the state is Cm and nodes other than the mas-
ter are registered in the node map, the home changes
the state to Pim and sends invalidation requests to all
slave nodes registered in the node map. Go to (3).

� If the state is a pending state, the home changes the
ownership request to the read-exclusive request and
queues the changed request in the main memory until
the state becomes a stable state. (Refer to the read-
exclusive request sequence.)

(3) Upon receiving the invalidation requests, all slaves
change their cache block states to Ic if they hold copies
and send replies to the home. All replies are gathered
to one reply in the network.

(4) Upon receiving the reply, the home changes the state
to Dm, sets the node map that indicates only the mas-
ter holds the copy, and forwards the reply to the mas-
ter.

(5) Upon receiving the reply, the master changes the state
to M c. END.

WriteBack request sequence

When anMc state cache block is replaced, the following
sequence starts:

(1) The master changes the cache block state to Ic, and
sends the data in the cache block to the home.

(2) Upon receiving the data, the home writes back the
given data into the memory block and checks the di-
rectory.

� If the state is Dm, the home changes the state to Cm

and sets the node map that indicates no node holds a
copy.

� Otherwise, the home does not change the directory.


