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Java has been widely adopted as one of the software platforms for the seamless integration of
diverse computing devices. Over the last year, there has been great momentum in adopting Java
technology in devices such as cellphones, PDAs, and pagers where optimizing energy consumption
is critical. Since, traditionally, the Java virtual machine (JVM), the cornerstone of Java technol-
ogy, is tuned for performance, taking into account energy consumption requires reevaluation, and
possibly redesign of the virtual machine. This motivates us to tune specific components of the vir-
tual machine for a battery-operated architecture. As embedded JVMs are designed to run for long
periods of time on limited-memory embedded systems, creating and managing Java objects is of
critical importance. The garbage collector (GC) is an important part of the JVM responsible for the
automatic reclamation of unused memory. This article shows that the GC is not only important for
limited-memory systems but also for energy-constrained architectures.

This article focuses on tuning the GC to reduce energy consumption in a multibanked memory
architecture. Tuning the GC is important not because it consumes a sizeable portion of overall
energy during execution, but because it influences the energy consumed in the memory during
application execution. In particular, we present a GC-controlled leakage energy optimization tech-
nique that shuts off memory banks that do not hold live data. Using two different commercial GCs
and a suite of thirteen mobile applications, we evaluate the effectiveness of the GC-controlled en-
ergy optimization technique and study its sensitivity to different parameters such as bank size, the
garbage collection frequency, object allocation style, compaction style, and compaction frequency.
We observe that the energy consumption of an embedded Java application can be significantly more
if the GC parameters are not tuned appropriately. Further, we notice that the object allocation pat-
tern and the number of memory banks available in the underlying architecture are limiting factors
on how effectively GC parameters can be used to optimize the memory energy consumption.
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1. INTRODUCTION

Java is becoming increasingly popular in embedded/portable environments. It is
estimated that Java-enabled devices such as cellphones, PDAs and pagers will
grow from 176 million in 2001 to 721 million in 2005 [Takahashi 2001]. One of
the reasons for this is that Java enables service providers to create new features
very easily as it is based on the abstract Java Virtual Machine (JVM). Thus,
it is currently portable to 80 to 95% of platforms and lets developers design
and implement portable applications without the special tools and libraries
that coding in C or C++ normally requires [Paulson 2001]. Second, Java has
important security features for downloadable code [Knudsen 2001]. In addition,
Java allows application writers to embed animation, sound, and other features
within their applications easily, an important /advantage in web-based portable
computing.

Running Java in an embedded/portable environment, however, is not with-
out its problems. First, most portable devices have very small memory capaci-
ties. Consequently, the memory requirements of the virtual machine should be
reduced and, accordingly, the application code should execute with a small foot-
print. Second, along with performance and form factor, energy consumption is
an important optimization parameter in battery-operated systems. Since, tra-
ditionally, the virtual machine is tuned for performance [Smith et al. 1998],
taking into account energy consumption requires reevaluation, and possibly
redesign of the virtual machine from a new perspective. Third, the JVM in a
portable environment is not as powerful as the JVM in a general-purpose sys-
tem as many native classes are not supported. All these factors motivate us to
tune specific components of the JVM (e.g., garbage collector, class loader) for a
portable environment.

As embedded JVMs are designed to run for long periods of time on limited-
memory embedded systems, creating and managing Java objects is of critical
importance. The JVM supports automatic object reclamation, removing ob-
jects that are no longer referenced. Existing embedded JVMs such as Sun’s
KVM [KVM; Riggs et al. 2001] and HP’s ChaiVM [chaivm] are already finely
tuned to conform with three important requirements of embedded systems:
soft real-time, limited memory, and long-duration sessions. However, currently,
there is little support for analyzing and optimizing energy behavior of such
systems. This is of critical importance for more widespread adoption of this
technology in battery-constrained environments. In particular, the energy con-
sumption in the memory system is a significant portion of overall energy ex-
pended in execution of a Java application [Vijaykrishnan et al. 2001]. Thus,
it is important to consider techniques to optimize memory energy consump-
tion. There are two important components of memory energy: dynamic energy
and leakage energy. Dynamic energy is consumed whenever a memory array
is referenced or precharged. Recent research has focused on the use of memory
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banking and partial shutdown of the idle banks in order to reduce dynamic
energy consumption [Delaluz et al. 2001; Lebeck et al. 2000]. However, leakage
energy consumption is becoming an equally important portion as supply volt-
ages and thus threshold voltages and gate oxide thicknesses continue to become
smaller [Chandrakasan et al. 2001]. Researchers have started to investigate ar-
chitectural support for reducing leakage in cache architectures [Kaxiras et al.
2001; Yang et al. 2001]. In this article, we show that it is possible to also reduce
leakage energy in memory by shutting down idle banks using an integrated
hardware–software strategy.

The garbage collector (GC) [Jones and Lins 1999] is an important part of
the JVM and is responsible for automatic reclamation of heap-allocated stor-
age after its last use by a Java application. Various aspects of the GC and
heap subsystems can be configured at JVM runtime. This allows control over
the amount of memory in the embedded device that is available to the JVM,
the object allocation strategy, how often a GC cycle is triggered, and the type
of GC invoked. We exploit the interaction of these tunable parameters along
with a banked-memory organization to effectively reduce the memory energy
(leakage and dynamic) consumption in an embedded Java environment. Since
garbage collection is a heap-intensive (i.e., memory-intensive) operation and
directly affects application performance, its impact on performance has been
a popular research topic (e.g. see Jones and Lins [1999] and the references
therein). In an embedded/portable environment, however, its impact on en-
ergy should also be taken into account. There are three questions we need to
take into consideration when designing garbage collectors for energy sensitive
systems:

— Since garbage collector itself consumes energy, how to reduce energy con-
sumption during GC?

— Since garbage collector scans the memory, very detailed information about
current memory usage can be obtained with a relatively small overhead right
after each GC invocation. How can we make use of this information to reduce
memory energy consumption?

— Some garbage collectors move objects to compact the heap. Is it possible to
relocate objects during compaction phase to further enhance memory energy
savings?

This article studies the energy impact of various aspects of a mark-and-sweep
(M&S) garbage collector (commonly employed in current embedded JVM envi-
ronments) in a multibank memory architecture. The experiments are carried
out using two different (compacting and noncompacting) collectors in Sun’s
embedded JVM called KVM [Riggs et al. 2001; KVM ]. Further, the virtual
machine is augmented to include features that are customized for a banked-
memory architecture. We also measure the sensitivity of energy behavior to
different heap sizes, cache configurations, and number of banks. In order to
investigate the energy behavior, we gathered a set of thirteen applications fre-
quently used in hand-held and wireless devices. These applications include
utilities such as calculator and scheduler, embedded web browser, and game
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programs.1 We observe that the energy consumption of an embedded Java ap-
plication can be significantly more if the GC parameters are not tuned appro-
priately. Further, we notice that the object allocation pattern and the number
of memory banks available in the underlying architecture are limiting factors
on how effectively GC parameters can be used to optimize the memory energy
consumption.

The remainder of this paper is organized as follows. The next section summa-
rizes the K Virtual Machine and its GCs. Section 3 explains the experimental
setup used for our simulations. Section 4 gives the energy profile of the current
KVM implementation and discusses the impact of dividing memory into multi-
ple banks. This section also investigates the energy impact of different features
of our garbage collectors from both the hardware and software perspectives.
Section 5 discusses related work. Finally, Section 6 concludes the article by
summarizing our major contributions and giving an outline of planned future
work.

2. KVM AND MARK-AND-SWEEP GARBAGE COLLECTOR

K Virtual Machine (KVM) [KVM; Riggs et al. 2001] is Sun’s virtual machine
designed with the constraints of inexpensive embedded/mobile devices in mind.
It is suitable for devices with 16/32-bit RISC/CISC microprocessors/controllers,
and with as little as 160 KB of total memory available, 128 KB of which is for the
storage of the actual virtual machine and libraries themselves. Target devices
for KVM technology include smart wireless phones, pagers, mainstream per-
sonal digital assistants, and small retail payment terminals. The KVM technol-
ogy does not support Java Native Interface (JNI). The current implementation
is interpreter-based and does not support JIT (Just-in-Time) compilation.

An M&S collector makes two passes over the heap. In the first pass (called
mark pass), a bit is marked for each object indicating whether the object is
reachable (live). After this step, a sweep pass returns unreachable objects
(garbage) to the pool of free objects. M&S collectors are widely used due to their
ease of implementation and simple interface. As compared to other garbage col-
lectors such as reference counting and generational collectors [Jones and Lins
1999], the M&S collector has both advantages and disadvantages. For example,
no write-barrier overhead is necessary in M&S collectors while reference count-
ing collectors rely on write-barrier mechanism to maintain reference counters.
Similarly, generational collectors rely on write-barriers to keep track of inter-
generational references. Further, in many real implementations of reference
counting and generational collectors, M&S collectors are still used for resolv-
ing cyclic references and for collecting objects in older generations, respectively.

The KVM implements two M&S collectors, one without compaction and one
with compaction [Riggs et al. 2001]. In the noncompacting collector, in the mark
phase, all the objects pointed at by the root objects, or pointed at by objects that
are pointed at by root objects are marked live. This is done by setting a bit in the
object’s header called MARK BIT. In the sweep phase, the object headers of all

1Our applications and GC executables are publicly available from www.cse.psu.edu/∼gchen/
kvmgc/.
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objects in the heap are checked to see if the MARK BIT was set during the mark
phase. All unmarked objects (MARK BIT = 0) are added to the free list and for
the marked objects (MARK BIT = 1), the MARK BIT is reset. While allocating
a new object, the free list is checked to see if there is a chunk of free memory
with enough space to allocate the object. If there is not, then garbage collector
is called. After garbage collection (mark and sweep phases), object allocation
is tried again. If there is still not any space in the heap, an out-of-memory
exception is thrown. Note that since this collector does not move objects in
memory, the heap can easily get fragmented and the virtual machine may run
out of memory quickly.

In an embedded environment, this heap fragmentation problem brings up
two additional issues. First, since the memory capacity is very limited, we
might incur frequent out-of-memory exceptions during execution. Second, a
fragmented heap space means more active banks (at a given time frame) and,
consequently, more energy consumption in memory. Both of these motivate
for compacting live objects in the heap. Compacting heap space, however, con-
sumes both execution cycles and extra energy which also need to be accounted
for.

In the implementation of KVM, some objects (e.g., instances of java.lang.
Class) and internal data structures (e.g., the memory blocks containing byte-
codes of the applications’ classes) are not allowed to move in the memory.
These objects and internal data structures are called permanent objects be-
cause they remain alive till the application terminates. Permanent object do
not require special treatment in the noncompacting mark-and-sweep collector
since the collector does not move any objects in the heap. However, compacting
mark-and-sweep collector may move objects to compact the heap, permanent
objects should be distinguished from nonpermanent objects. In the compact-
ing collector, a certain amount of space from the end of the heap is allocated
for permanent objects and is called permanent space. The permanent space is
not marked, swept, or compacted. The mark and sweep part of this collector
is the same as the noncompacting collector. Compaction takes place on two
occasions:

—after the mark and sweep phase if the size of the object to be allocated is still
bigger than the largest free chunk of memory obtained after sweeping;

—when the first permanent object is allocated, and, as needed, when future per-
manent objects are allocated. Space for a permanent object is always allocated
in steps of 2 KB. If the object needs more space, then another 2 KB chunk is
allocated, and so on until its space requirement is satisfied.

During compaction, all live objects are moved to one end of the heap. While
allocating a new dynamic object, the free list is checked to see whether there
is a chunk of free memory with enough space to allocate the object. If there is
not, then the garbage collector is called. During garbage collection (after sweep
phase), it is checked whether the largest free chunk of memory (obtained after
sweep phase) satisfies the size to be allocated. If not, then the collector enters
compaction phase. After compaction, object allocation is attempted again. If
there still is not any space, an out-of-memory exception is signaled.
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Fig. 1. Operation of garbage collector and compactor.

The default compaction algorithm in KVM is a Break Table-based algorithm.
In this method, instead of using an additional field in the object’s header to store
the new address, a table containing relocation information is constructed in the
free space. Thus, there is no extra space used to maintain the addresses. This
table is called the Break Table. The live objects are moved to one end of the
heap, and as they are moved, an entry is made in the Break Table consisting
of two fields: (i) the old start address of the object and (ii) the total free space
found until then. The Break Table may need to be shifted around if it gets in
the way as live objects get compacted. If the Break Table rolls, it is sorted.
After the objects are shifted, the pointers within the live objects are updated
to point to the new address of the object. Advantages of this algorithm are
that no extra space is needed to maintain the relocation information, objects of
all sizes can be handled, and the order of object allocation is maintained. The
disadvantage is that both sorting the break table and updating the pointers are
costly operations both in terms of execution time and energy.

In the rest of the article, we will refer to these compacting and noncompact-
ing collectors as M&S and M&C, respectively. It should be noted that both the
collectors are not optimal in the sense that they do not reclaim an object imme-
diately after the object becomes garbage (as an object is not officially garbage
until it is detected to be so).

Figure 1 shows the operation of garbage collection and compaction in our
banked memory architecture that contains four banks for the heap. Each step
corresponds to a state of the heap after an object allocation and/or garbage
collection/compaction. Step 0 corresponds to initial state where all banks are
empty (turned off). In Step 1, object A is allocated and in Step 10, two more
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objects (B and C) are allocated. In Step 50, object B becomes garbage and three
new objects (D, E, and F) are allocated. In Step 100, both D and E become garbage
and G is allocated. Note that at this point all the banks are active despite the fact
that Bank 2 holds only garbage. In Step 200, the garbage collector is run and
objects B, D, and E are collected (and their space is returned to free space pool).
Subsequently, since Bank 2 does not hold any live data, it can be turned off.
In Step 500, object C in Bank 1 becomes garbage. Finally, Step 1000 illustrates
what happens when both garbage collection and compaction are run. Object C is
collected, live objects A, G, and F are clustered in Bank 0, and Banks 1 and 3 can
be turned off. Two points should be emphasized. Energy is wasted in Bank 2
between steps 100 and 200 maintaining dead objects. Thus, the gap between the
invocation of the garbage collection and the time at which the objects actually
become garbage is critical in reducing wasted energy. Similarly, between steps
500 and 1000, energy is wasted in Banks 1 and 3 because the live objects that
would fit in one bank are scattered in different banks. This case illustrates that
compaction can bring additional energy benefits as compared to just invoking
the garbage collector.

3. EXPERIMENTAL SETUP

3.1 Banked Memory Architecture

The target architecture we assume is a system-on-a-chip (SoC) as shown in
Figure 2. The processor core of the system is based on the microSPARC-IIep
embedded processor. This core is a 100 MHz, 32-bit five-stage pipelined RISC
architecture that implements the SPARC architecture v8 specification. It is
primarily targeted for low-cost uniprocessor applications. The target architec-
ture also contains on-chip data and instruction caches that can be selectively
enabled. Further, it contains an on-chip ROM and an on-chip SRAM. Figure 2
also shows both logical and physical views of the portion of the memory sys-
tem of interest. This portion is divided into three logical parts: the KVM code
and class libraries, the heap that contains objects and method areas, and the
nonheap data that contains the runtime stack and KVM variables. Typically,
the KVM code and the class libraries reside in a ROM. The ROM size we use is
128 KB for the storage of the actual virtual machine and libraries themselves
[KVM ]. Since, not all libraries are used by every application, banked ROMs
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can provide energy savings. We activate the ROM partitions only on the first
reference to the partition. A ROM partition is never disabled once it has been
turned on. This helps to reduce the leakage energy consumption in memory
banks not used throughout the application execution. While it may be possible
to optimize the energy consumed in the ROM further using techniques such as
clustering of libraries, in this study, we mainly focus only on the RAM portion
of memory (SRAMs are commonly used in embedded environments as mem-
ory modules), which holds the heap. The heap (a default size of 128 KB) holds
both application bytecodes and application data, and is the target of our energy
management strategies. An additional 32 KB of SRAM is used for storing the
nonheap data. We assume that the memory space is partitioned into banks and
depending on whether a heap bank holds a live object or not, it can be shutdown.
Our objective here is to shutdown as many memory banks as possible in order
to reduce leakage and dynamic energy consumption. Note that the operating
system is assumed to reside in a different set of ROM banks for which no op-
timizations are considered here. Further, we assume a system without virtual
memory support.

3.2 Energy Models

For obtaining detailed energy profiles, we have customized an energy simulator
and analyzer using the Shade [Cmelik and Keppel 1994] (SPARC instruction
set simulator) tool-set and simulated the entire KVM executing a Java code.
Shade is an instruction-set simulator and custom trace generator. Application
programs are executed and traced under the control of a user-supplied trace
analyzer. Current implementations run on SPARC systems and, to varying
degrees, simulate the SPARC (Versions 8 and 9) and MIPS I instruction sets.

Our simulator tracks energy consumption in the processor core (datapath),
on-chip caches, and the on-chip SRAM and ROM memories. The datapath en-
ergy is further broken into energy spent during execution and energy spent
during GC. The GC energy, itself, is composed of energy spent in mark phase,
sweep phase, and compaction phase (if used). Similarly, the memory energy is
divided into three portions: energy spent in accessing KVM code and libraries,
energy spent in accessing heap data, and energy spent in accessing the runtime
stack and KVM variables. The simulator also allows the user to adjust the var-
ious parameters for these components. Energies spent in on-chip interconnects
are included in the corresponding memory components.

The energy consumed in the processor core is estimated by counting
(dynamically) the number of instructions of each type and multiplying the count
by the base energy consumption of the corresponding instruction. The energy
consumption of the different instruction types is obtained using a customized
version of our in-house cycle accurate energy simulator [Vijaykrishnan et al.
2000]. The simulator is configured to model a five-stage pipeline similar to that
of the microSPARC-IIep architecture. The energies consumed by caches are
evaluated using an analytical model that has been validated to be highly ac-
curate (within 2.4% error) for conventional cache systems [Kamble and Ghose
1997]. All energy values reported in this article are based on parameters for
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0.10 µm, 1 V technology. The dynamic energy consumption in the cache de-
pends on the number of cache bitlines, wordlines, and the number of accesses.
In this article, we model the SRAM-based memory using energy models similar
to those used for caches. The number of banks and size of the banks in the
SRAM-based memory are parameterizable.

In our model, a memory bank is assumed to be in one of three modes (states)
at any given time. In the read/write mode, a read or write operation is being
performed by the memory bank. In this mode, dynamic energy is consumed due
to precharging the bitlines and also in sensing the data for a read operation. For
a write operation, dynamic energy is consumed due to the voltage swing on the
bitlines and in writing the cells. In the active mode, the bank is active (i.e., holds
live data) but is not being read or written. In this mode, we consume dynamic
precharge energy as there is no read or write into the bank. In addition, leakage
energy is consumed in both these modes. Finally, in the inactive mode, the bank
does not contain any live data. Thus, the bank is not precharged. Further, in
this mode, we assume the use of a leakage control mechanism to reduce the
leakage current. Thus, a bank in this mode consumes only a small amount of
leakage energy and no dynamic energy.

In optimizing leakage current, we modify the voltage down converter circuit
[Jou and Chen 1998] already present in current memory chip designs to pro-
vide a gated supply voltage to the memory bank. Whenever the Sleep signal
is high, the supply to the memory bank is cut off, thereby essentially elimi-
nating leakage in the memory bank. Otherwise, the Gated VDD signal follows
the input supply voltage (VDD). The objective of our optimization strategy is
to put as many banks (from the heap portion of memory) as possible into the
inactive mode (so that their energy consumption can be optimized). This can
be achieved by compacting the heap, colocating objects with temporal affin-
ity, invoking the garbage collector more frequently, adopting bank-aware object
allocation strategies, or a combination of these as will be studied in detail in
Section 4. When a bank in the inactive mode is accessed to allocate a new object,
it incurs a penalty of 350 cycles to service the request. The turn-on times from
the inactive mode are dependent on the sizing of the driving transistors. Note
that the application of this leakage control mechanism results in the data being
lost. This does not pose a problem in our case as the leakage control is applied
only to unused (inactive) banks.

The dynamic energy consumption for each of the modes is obtained by using
scaled parameters for 0.10 µm technology from 0.18 µm technology files apply-
ing scaling factors from [Borkar 1999]. An analytical energy model similar to
that proposed in [Kamble and Ghose 1997] is used, and a supply voltage of 1 V
and a threshold voltage of 0.2 V are assumed. We assume that the leakage en-
ergy per cycle of the entire memory is equal to the dynamic energy consumed per
access. This assumption tries to capture the anticipated importance of leakage
energy in future. Leakage becomes the dominant part of energy consumption
for 0.10 micron (and below) technologies for the typical internal junction tem-
peratures in a chip [Chandrakasan et al. 2001]. When our gated supply voltage
scheme is applied, leakage energy is reduced to 3% of the original amount. This
number is obtained through circuit simulation for 0.18 micron technology for a
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Application Brief Description Footprint Base
Energy (mJ)

Calculator Arithmetic calculator 18,024 0.68
www.cse.psu.edu/∼gchen/kvmgc/ 14,279

Crypto Light weight cryptography API in Java 89,748 8.40
www.bouncycastle.org 60,613

Dragon Game program 11,983 5.92
comes with Sun’s KVM 6,149

Elite 3D rendering engine for small devices 20,284 3.67
home.rochester.rr.com/ohommes/Elite 11,908

Kshape Electronic map on KVM 39,684 13.52
www.jshape.com 37,466

Kvideo KPG (MPEG for KVM) decoder 31,996 1.52
www.jshape.com 14,012

Kwml WML browser 57,185 34.97
www.jshape.com 49,141

Manyballs Game program 20,682 6.19
comes with Sun’s KVM 13,276

MathFP Fixed-point integer math library routine 11,060 6.91
home.rochester.rr.com/ohommes/MathFP 8,219

Mini A configurable multi-threaded mini-benchmark 31,748 1.46
www.cse.psu.edu/∼gchen/kvmgc/ 16,341

Missiles Game program 26,855 4.28
comes with Sun’s KVM 17,999

Scheduler Weekly/daily scheduler 19,736 9.63
www.cse.psu.edu/∼gchen/kvmgc/ 17,685

Starcruiser Game program 13,475 4.58
comes with Sun’s KVM 11,360

Fig. 3. Brief description of benchmarks used in our experiments. The two footprint values of each
application are the maximal and effective footprint sizes (in bytes), respectively.

64-bit RAM when using the scheme explained above with driver sizing to main-
tain the same read time.

3.3 Benchmark Codes and Heap Footprints

In this study, we used thirteen applications ranging from utility programs used
in hand-held devices to wireless web browser to game programs. These appli-
cations are briefly described in Figure 3. The first number in the third column
of each application gives the maximum live footprint of the application; that
is, the minimum heap size required to execute the application without an out-
of-memory error if garbage is identified and collected immediately. The actual
heap size required for executing these applications are much larger using the
default garbage collection mechanism without compaction. For example, Kwml
requires a minimum heap size of 128 KB to complete execution without com-
paction. The second number in the third column of each application in the figure
gives the effective live heap size; that is, the average heap size occupied by live
objects over the entire duration of the application’s execution. A more detailed
characterization of the live heap size over the entire application execution is
shown in Figure 4. It should be noted that y-axis in these graphs represents the
total size of live objects currently in the heap, not the actual memory usage of
each application. Lack of variation in some graphs does not necessarily mean
the memory usage of the application remains unchanged. Instead, it means
that the objects of the application die as quickly as they are created. Actually,
y-axis indicates the minimal memory requirement of each application, which
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Fig. 4. Heap footprints (in bytes) of our applications. For each graph, x-axis denotes the time and
y-axis gives the cumulative size of live objects.
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Fig. 5. Energy distribution.

determines the potential of shutting down portions of the heap memory. How-
ever, the ability to exploit this potential depends on various factors. These fac-
tors include the bank size, the garbage collection frequency, object allocation
style, compaction style, and compaction frequency as will be discussed in the
next section.

4. ENERGY CHARACTERIZATION AND OPTIMIZATION

4.1 Base Configuration

Unless otherwise stated, our default bank configuration has eight banks for the
heap, eight banks for the ROM, and two banks for the runtime stack (as de-
picted in Figure 2). All banks are 16 KB. In this base configuration, by default,
all banks are either in the active or read/write states, and no leakage control
technique is applied. The overall energy consumption of this cacheless configu-
ration running with M&S (GC without compaction) is given in the last column
of Figure 3. The energy distribution of our applications is given in Figure 5. The
contribution of the garbage collector to the overall datapath energy is 4% on av-
erage across the different benchmarks (not shown in the figure). We observe that
the overall datapath energy is small compared to the memory energy consump-
tion. We also observe that the heap energy constitutes 39.5% of the overall en-
ergy and 44.7% of the overall memory (RAM plus ROM) energy on the average.

Note that the memory energy consumption includes both the normal exe-
cution and garbage collection phases and is divided into leakage and dynamic
energy components. On average, 75.6% of the heap energy is due to leakage.
The leakage energy is dependent on the duration of the application execution
while the dynamic energy is primarily determined by the number of references.
Considering this energy distribution, reducing the heap energy through leak-
age control along with efficient garbage collection and object allocation can be
expected to be very effective.

We also note from Figure 5 that overall ROM energy is less than the overall
heap energy. This is mainly due to the following reasons. First, the dynamic
energy for accessing a ROM is less than the corresponding value for a same
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Fig. 6. Normalized energy consumption in heap and runtime stack due to mode control (M&S).

size RAM. This difference results from the smaller capacitive load on the word-
lines and bitlines. In the ROM, only the memory cells that store a value of
zero contribute a gate capacitance to the wordline. Further, only these cells
contribute a drain capacitance to the bitline [Angel and Swartzlander 1997].
In addition, the number of bitlines is reduced by half with respect to the RAM
configuration and a single-ended sense amplifier is used for the ROM array as
opposed to a differential sense amplifier in the RAM array. Our circuit simula-
tions show that the per access energy of a RAM array can thus be as large as 10
times that of a ROM array. However, the difference is dependent on the actual
bit pattern stored in the array. In our experiments, we conservatively used a
dynamic energy cost for accessing the ROM to be half that of a corresponding
RAM array access. Since the effective transistor width in the ROM array is also
smaller than that in a correspondingly sized RAM array, the leakage energy
of the ROM is also smaller. Another reason that the ROM energy is less than
the heap energy is because of using a ROM configuration that implements a
simple but effective energy optimization. In particular, we use a banked ROM
configuration and activate the supply voltage selectively to only those banks
that contain libraries that are accessed by the application. Note that this in-
curs a penalty at runtime when the bank is accessed the first time. However,
we found this overhead to be negligible.

Another interesting observation is the relative leakage and dynamic energy
consumption breakdowns in the heap memory and the ROM. We found that
the dynamic energy of the ROM is 63.7% of overall ROM energy which is much
higher than the corresponding value in the heap. This difference is due to high
access frequency of the ROM banks that contain the KVM code as well as class
libraries.

4.2 Impact of Mode Control

Turning off a heap bank when it does not contain any live object can save
energy in two ways. First, leakage energy is reduced as a result of the leakage
reduction strategy explained earlier. Second, the precharge portion of dynamic
energy is also eliminated when the bank is powered off. Figure 6 gives the
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Fig. 7. Percentage distribution of active banks (M&S).

heap energy consumption due to M&S when mode control (leakage control)
is employed, normalized with respect to the heap energy due to M&S when no
mode control is used (i.e., all partitions are active all the time). We observe from
this figure that turning off unused banks reduces the heap energy consumption
by 31% on the average (with savings ranging from 2% to 65%). On average,
90% of these savings come from leakage energy reduction. Figure 7 explains
the energy savings due to leakage control. This figure shows the percentage
distribution of active banks for the applications in our suite. We observe that
many applications execute with a small number of active banks most of the time,
meaning that the remaining banks are turned off. We also observe, however,
that some applications use all eight banks at some point during their executions.
Considering this behavior and the heap footprints of live data shown in Figure 4,
it can be clearly seen how badly live objects can be scattered throughout our
128 KB heap memory (although their cumulative sizes are much smaller than
128 KB).2

Figure 6 also shows the normalized runtime stack energy. This energy gain in
runtime stack is achieved by not activating one of the banks of the runtime stack
when it does not contain any useful data. Since we have two banks allocated
to runtime stack (and the KVM variables) and many applications in our suite
can operate most of the time with one bank only, on the average, we achieve
around 50% energy saving on these banks.

These energy savings, however, do not come for free. As discussed earlier, ac-
cessing a powered off bank requires an extra 350 cycles for the supply voltage
to be restored. During this time, a small amount of energy is also expended.
Figure 8 shows the extra execution cycles and extra energy as both absolute
values and percentages of overall execution time and memory energy, respec-
tively. We can see from this figure that both of these overheads are negligible.
Therefore, we can conclude that applying leakage control mechanism to the

2As an example, Figure 7 shows that, for more than 70% of the execution time of Kshape, five or six
banks (16 KB each) are turned on. However, in Figure 4, we find that the total size of live objects of
Kshape never exceeds 40 KB. Some banks cannot be turned off because they contain live objects,
although the total size of live objects contained in this bank is much smaller than the bank size.
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Application Performance Energy

Calculator 211,050 cycles (2.88%) 0.437 nJ (< 0.1%)
Crypto 80,850 cycles (0.10%) 0.167 nJ (< 0.1%)
Dragon 212,450 cycles (0.36%) 0.440 nJ (< 0.1%)
Elite 210,700 cycles (0.60%) 0.436 nJ (< 0.1%)
Kshape 215,600 cycles (0.17%) 0.446 nJ (< 0.1%)
Kvideo 211,750 cycles (1.40%) 0.438 nJ (< 0.1%)
Kwml 253,050 cycles (0.07%) 0.524 nJ (< 0.1%)
Manyballs 245,350 cycles (0.39%) 0.508 nJ (< 0.1%)
MathFP 81,200 cycles (0.12%) 0.168 nJ (< 0.1%)
Mini 22,050 cycles (0.16%) 0.045 nJ (< 0.1%)
Missiles 248,850 cycles (0.59%) 0.515 nJ (< 0.1%)
Scheduler 213,850 cycles (0.22%) 0.443 nJ (< 0.1%)
Starcruiser 250,250 cycles (0.55%) 0.518 nJ (< 0.1%)

Fig. 8. Energy and performance overhead of bank turning-off.

inactive heap banks can reduce energy consumption significantly without too
much impact on execution time.

4.3 Impact of Garbage Collection Frequency

The M&S collector is called by default when, during allocation, the available
free heap space is not sufficient to accommodate the object to be allocated. It
should be noted that between the time that an object becomes garbage and
the time it is detected to be so, the object will consume heap energy as a dead
object. Obviously, the larger the difference between these two times, the higher
the wasted energy consumption if collecting would lead to powering off the
bank. It is thus vital from the energy perspective to detect and collect garbage
as soon as possible. However, the potential savings should be balanced with the
additional overhead required to collect the dead objects earlier (i.e., the energy
cost of garbage collection).

In this subsection, we investigate the impact of calling the garbage collec-
tor (without compaction) with different frequencies. Specifically, we study the
influence of a k-allocation collector that calls the GC once after every k object
allocations. We experimented with five different values of k: 10, 40, 75, 100, and
250. The top graph in Figure 9 illustrates the heap energy (normalized with
respect to M&S heap energy without mode control) of the k-allocation collector.
The impact of pure mode control is reproduced here for comparison.

We clearly observe that different applications work best with different
garbage collection frequencies. For example, the objects created by Dragon
spread over the entire heap space very quickly. However, the cumulative size
of live objects of this benchmark most of the time is much less than the avail-
able heap space. Consequently, calling the GC very frequently (after every 10
object allocations) transitions several banks into the inactive state and reduces
heap energy by more than 40%. Reducing the frequency of the GC calls leads to
more wasted energy consumption for this application. In Kvideo, we observe a
different behavior. First, the energy consumption is reduced by reducing the fre-
quency of collector calls. This is because each garbage collection has an energy
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Fig. 9. Normalized energy consumption in heap and ROM memory when M&S with mode control
is used with different garbage collection frequencies.

cost due to fact that mark and sweep operations access memory. In this ap-
plication, the overhead of calling GC in every 10 allocations brings an energy
overhead that cannot be compensated for by the energy saving during execu-
tion. Therefore, calling the GC less frequently generates a better result. Beyond
a point (k= 75), however, the energy starts to increase as the garbage collec-
tions become so less frequent that significant energy is consumed due to dead
but not collected objects. Applications such as Mini, on the other hand, suffer
greatly from the GC overhead and would perform best with much less frequent
garbage collector calls. Overall, it is important to tune the garbage collection
frequency based on the rate at which objects become garbage to optimize energy
consumption.

The GC overhead also leads to increased energy consumption in the ROM,
runtime stack, and processor core. The energy increase in the ROM is illustrated
on the bottom graph of Figure 9. Each bar in this graph represents the energy
consumption in the ROM normalized with respect to the energy consumption
of the ROM with M&S with mode control. It can be observed that the case with
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k= 10 increases the energy consumption in ROM significantly for many of the
benchmarks. On the other hand, working with values of k such as 75, 100, and
250 seems to result in only marginal increases, and should be the choice, in
particular, if they lead to large reductions in heap energy. We also found that
the energy overheads in the core and runtime stack were negligible and have
less than 1% impact on overall energy excluding cases of k= 10. To summarize,
determining globally optimal frequency demands a trade-off analysis between
energy saving in the heap and energy loss in the ROM. Except for cases when
k = 10, the energy savings in the heap clearly dominate any overheads in the
rest of the system.

A major conclusion from the discussion above is the following. Normally, a
virtual machine uses garbage collector only when it is necessary, as the purpose
of garbage collection is to create more free space in the heap. In an energy-
sensitive, banked-memory architecture, on the other hand, it might be a good
idea to invoke the collector even if the memory space is not a concern. This is
because calling GC more frequently allows us to detect garbage earlier, and
free associated space (and turn off the bank). This early detection and space
deallocation might result in large number of banks being transitioned to the
inactive state.

4.4 Impact of Object Allocation Style

M&S in KVM uses a global free list to keep track of the free space in the heap.
When an object allocation is requested, this free list is checked, the first free
chunk that can accommodate the object is allocated, and the free list is updated.
While in a nonbanked architecture, this is a very reasonable object allocation
policy, in a banked-memory based system it might be possible to have better
strategies. This is because the default strategy does not care whether the free
chunk chosen for allocation is from an already used (active) bank or inactive
bank. It is easy to see that everything else being equal, it is better to allocate
new objects from already active banks.

To experiment with such a strategy, we implemented a new bank allocation
method where each bank has its own private free list. In an object allocation
request, first, the free lists of active banks are checked and, only if it is not
possible to allocate the space for the object from one of these lists, the lists of
inactive banks are tried. This strategy is called the active-bank-first allocation.

Figure 10 gives the energy consumption for three different versions. M&S
with leakage control (denoted Mode Control), active-bank-first allocation (de-
noted Active Bank), and a version that combines active-bank-first allocation
with a strategy that activates the GC only when the new object cannot be allo-
cated from an already active bank (denoted Active Bank+). All values in this
figure are normalized with respect to the heap energy consumption of M&S
without mode control. We see from these results that Active Bank does not
bring much benefit over Mode Control in most cases (except that we observe a
6% heap energy improvement in MathFP).

This can be explained as follows. Objects with long lifetime are typically al-
located early (before the first GC is invoked) and occupy the first few banks.
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Fig. 10. Normalized energy consumption in heap (active bank allocation versus default allocation).

The younger objects that occupy banks with higher addresses seldom survive
the next garbage collection. From the traces of bank occupation, we observe
that after each GC, the banks with lower address are always occupied and the
higher addresses are typically free. Consequently, the default allocation acts
like active-bank-first allocation. MathFP is an exception to this allocation be-
havior. In MathFP, after each GC, the occupied banks are not always contiguous.
In this case, active-bank-first allocation can save energy by postponing the turn-
ing on a new bank. In contrast, in benchmarks such as Kwml and Scheduler, the
energy overhead of maintaining multiple free lists shows up as there is almost
no gain due to the allocation strategy itself.

Thus, it is important to modify the default garbage collection triggering
mechanism in addition to changing allocation policy to obtain any benefits.
Active Bank+ combines the active-bank-first allocation mechanism along with
a strategy that tries to prevent a new bank from being turned on due to allo-
cation. As it combines an energy aware allocation and collection policy, Active
Bank+ can lead to significant energy savings as shown in Figure 10. The causes
for these savings are three fold. First, Active Bank+ invokes the GC more fre-
quently, and thus banks without live objects are identified and turned off early.
Second, during allocation, it reduces the chances of turning on a new bank.
Third, it colocates permanent objects more densley, thereby increasing the
opportunities of turning off banks.

4.5 Impact of Compaction

As explained earlier in the article, the compaction algorithm in KVM performs
compaction only when, after a GC, there is still no space for allocating the
object. In a resource-constrained, energy-sensitive environment, compaction
can be beneficial in two ways. First, it might lead to further energy sav-
ings over a noncompacting GC if it can enable turning off a memory bank
that could not be turned off by the noncompacting GC. This may happen as
compaction tends to cluster live objects in a smaller number of banks. Sec-
ond, in some cases, compaction can allow an application to run to completion
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Fig. 11. Energy consumption in heap due to mode control (M&C) normalized with respect to M&C
without mode control.

(without out-of-memory error) while the non-compacting algorithm gives an
out-of-memory error. In this subsection, we study both these issues using our
applications.

Let us first evaluate the energy benefits of mode control when M&C (the de-
fault compacting collector in KVM) is used. The results given in Figure 11 indi-
cate that mode control is very beneficial from the heap energy viewpoint when
M&C is employed. Specifically, the heap energy of the M&C collector is reduced
by 29.6% over the M&C without mode control. The top graph in Figure 12 com-
pares heap energy of M&S and M&C with mode control. Each bar in this graph
represents heap energy consumption normalized with respect to M&S without
mode control. It can be observed that M&C does not bring significant savings
over M&S (denoted Mode Control in the graph). First, moving objects during
compaction and updating reference fields in each object consumes energy. In
addition, compacting may increase the applications running time, which also
means more leakage energy consumption. Therefore, a trade-off exists when
compaction is used. In our implementation, to lessen the performance impact,
compaction is performed only when the object to be allocated is larger than
any of the available free chunks, or if it can turn off more banks. Kwml is one
of the benchmarks where compaction brings some energy benefits over M&S
with mode control. The execution trace of this code indicates that there are
many scenarios where Mode Control does not turn off banks because all banks
contain some small-sized permanent objects. M&C, on the other hand, turns
off some banks after garbage collection due to the fact that it both compacts
fragmented live objects with short lifetimes and clusters permanent objects in
a smaller number of banks. In some benchmarks such as Dragon, on the other
hand, M&C does not create sufficient number of free banks to offset the extra
energy overhead due to additional data structures maintained.

The original allocation policy in the compacting version distinguishes be-
tween permanent and dynamic objects as mentioned earlier. In the banked-
memory architecture, the default allocation policy is slightly modified to allocate
the permanent objects and regular objects in separate banks. This eliminates
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Fig. 12. Top: Comparison of M&C and M&S. Bottom: Comparison of different compacting collec-
tors.

the need to move the already allocated dynamic objects when a new permanent
object is allocated. However, this strategy requires activating at least two banks
when both permanent and dynamic objects are present. The active-bank-first
allocation strategy, on the other hand, colocates both the permanent and dy-
namic objects together and saves energy. However, it incurs the cost of moving
the already allocated dynamic objects to a new bank when a new permanent ob-
ject is allocated. Fortunately, this operation is very infrequent. Consequently, as
opposed to the case without compaction, the Active Bank version (that is, allo-
cating object from an already active bank if it is possible to do so) combined with
M&C generates better results than M&C with default allocation, and consumes
10% less heap energy on the average. That is, compacting the heap improves
the energy impact of the active-bank-first allocation strategy. Finally, as before,
the Active Bank+ outperforms other versions for most of the cases.

The bottom graph in Figure 12 compares heap energy consumption of three
different compaction algorithms. M&C is the default compactor in KVM. The
M&C+ version differs from M&C in that it performs compaction after each
garbage collection (whether or not it is actually needed from the viewpoint
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of free space). Our results show that in some benchmarks such as Kshape and
Scheduler, it generates better results than both M&S (denoted Mode Control in
the figure) and M&C. This result means that unlike general-purpose systems, in
an energy-sensitive system, extra compactions might bring energy benefits for
some applications. M&C2, on the other hand, is a collector that uses the Lisp2
Algorithm, as opposed to the default break table-based algorithm in KVM. In
the Lisp2 algorithm, during compaction, first, the new addresses for all objects
that are live are computed. The new address of a particular object is computed as
the sum of the sizes of all the live objects encountered until this one, and is then
stored in an additional “forward” field in the object’s header. Next, all pointers
within live objects that refer to other live objects are updated by referring to
the “forward” field of the object they point to. Finally, the objects are moved to
the addresses specified in the “forward” field, and then the “forward” field is
cleared so that it can be used for the next garbage collection. The advantages
of this algorithm are that it can handle objects of varying sizes, it maintains
the order in which objects were allocated, and it is a fast algorithm with an
asymptotic complexity of O(M ), where M is the heap size. Its disadvantage is
that it requires an additional four-byte pointer field in each object’s header that
increases the heap footprint of the application.

There are two potential energy benefits due to this compaction style. First,
objects can be relocated accounting for temporal affinities and object lifetimes,
instead of sliding-only compaction as in M&C. For example, clustering objects
with similar lifetime patterns increases the potential for deactivating an entire
bank (when the objects it holds die together). Secondly, reference fields can be
updated more efficiently as compared to M&C and M&C+, where updating each
reference field needs to look up the Break Table. Finally, the extra forward field
can be used as a stack in the marking phase to reduce the overhead during the
scanning phase.

In case that the heap is severely fragmented, M&C2 will out perform M&C+
because it treats each object individually, and does not need to copy the Break
Table (in this case, the Break Table will be large) when moving objects. On the
other hand, when most live objects are placed contiguously, M&C+will perform
better because it can move objects in fewer chunks. Further, the smaller Break
Table reduces the look up cost (whose time complexity increases logarithmically
with respect to the Break Table size) when updating each reference field during
compaction. Obviously, if the total number of reference fields is large, M&C+’s
performance will suffer a lot during the updating phase.

Crypto is an example application with rather big heap footprint that benefits
from M&C2’s cheaper marking and updating. In contrast, Elite is an applica-
tion with very small footprint. Due to the 4-byte’s overhead in each objects,
M&C2 turns on a new bank much earlier than M&C+. Specifically, M&C2
turns on the third bank about 5.6 seconds after program initialization while
the corresponding value for M&C+ is 6.2 seconds. Initializing the forwarding
fields of each objects also consumes some extra energy.

As we mentioned earlier, a compacting GC can run an application in a
smaller heap memory than a corresponding noncompacting version. For ex-
ample, Missiles can run using a 32 KB heap when M&C is employed while
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Fig. 13. Energy distribution in core due to GC. Top: M&C; Bottom: M&C2.

requiring a minimum of 64 KB heap when executing using M&S. Comparing
the energy consumption for systems with these configurations, we found that
the M&S that uses a 64 KB heap with four 16 KB-banks consumes a heap
energy of 1.02 mJ, which is much larger than 0.71 mJ, the heap energy con-
sumed by M&C2 when using a 32 KB heap using two 16 KB-banks. Similarly,
Kwml can run using a 64 KB heap when M&C is employed, while requiring a
minimum of 128 KB heap when executing using M&S. For this application, the
M&S that uses a 128 KB heap with eight 16 KB-banks consumes a heap energy
of 13.15 mJ, which is much larger than 7.66 mJ, the heap energy consumed by
M&C2 when using a 64 KB heap using four 16 KB-banks.

It is also interesting to study how much energy the compaction itself con-
tributes relative to the other portions of the collector. Figure 13 shows the
core energy breakdown due to the garbage collection activity with M&C and
M&C2. Both M&C and M&C2 have four major phases. For M&C the phases
are mark, sweep, relocate, and update. We combine the last two into a part called
“compaction” as they are invoked only during compaction. For M&C2, the
phases are mark and the three phases associated with compaction: compute,
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Fig. 14. Impact of number of banks and heap size (M&S). Note that Crypto and Kwml do not run
with 32 KB and 64 KB heap sizes. Kvideo, Manyballs, Kshape, Missiles, and Mini do not run with
32 KB heap size.

update, and relocate. We see that in M&C that the mark phase consumes the
bulk of the energy, mainly, because it is more expensive than the sweep opera-
tion. The contribution of compact energy varies from application to application
depending on the number of times the compaction is invoked. When we consider
M&C2, however, the energy behavior changes. First, since there is no explicit
sweep activity, the energy consumption is distributed mainly between compact
and mark phases. Second, since this collector performs compaction every time
GC is called (as opposed to M&C that performs compaction only when an object
still cannot be allocated after GC), the compaction energy constitutes a larger
portion in most of the benchmarks.

4.6 Impact of Number of Banks and Heap Size

The heap size and bank size can influence the effectiveness of mode control.
Let us consider the example in Figure 1 once again to illustrate the influence
of bank size. Instead of four banks, if we had only two larger banks (Bank 0 +
Bank1 and Bank 2 + Bank 3), at step 200, the garbage collector would not be
able to turn off any of the banks. Similarly, the heap size would also influence
the frequency of GC invocations in the default version. For example, if the heap
size is reduced by half in Figure 1 (i.e., only Banks 0 and 1 are available), the
garbage collector will be invoked at step 50 to find space to accommodate object
D. Further reducing the heap size will also reduce overall leakage energy as
we have fewer leaking transistors. Thus, it is important to evaluate the energy
impact of varying these parameters.

Figure 14 shows the impact of varying the bank and heap sizes when using
the M&S garbage collector with Mode Control and Active Bank+. It must be
noted that many applications cannot complete with a smaller heap size. Only
six of the applications can execute using both 64 KB and 32 KB heap sizes.
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In general, reducing the heap size reduces the overall energy consumption.
There are two reasons for this behavior. With a smaller heap, the effort ex-
pended in allocating an object and also marking and sweeping the heap during
garbage collection reduce. It must be reiterated that the M&S algorithm uses
a nonstack implementation which means that the cost of garbage collection is
proportional to the size of the heap. However, a smaller heap will also increase
the frequency of garbage collection making the overhead of garbage collection
more significant. As an example, the number of collections increase from 2 to
20, when heap size is reduced from 128 KB to 32 KB when executing Scheduler.
For most cases, this overhead is more than compensated for by the energy sav-
ings due to more frequent garbage collection. In other words, the dead objects
are collected closer to when they become dead.

Secondly, when we increase the number of banks, mode control has the abil-
ity to exploit a finer granularity of turn-off. In addition, a smaller bank has a
smaller capacitive load and hence a smaller per access dynamic energy cost.
This leads to smaller heap energy consumption when using smaller banks.
On the average, for a 64 KB heap, when using 8 KB banks the energy consump-
tion is only 65% of the energy consumed when using 16 KB banks. Similar
trends are observed for a 32 KB heap. We also observe that the Active Bank+
scheme brings energy benefits over simple mode control across all configura-
tions (around 20%, on the average, across all benchmarks and configurations).
We also evaluated the impact of bank and heap sizes on other garbage collection
algorithms. We found similar trends in their behavior.

While smaller banks are found to be beneficial, the overheads of banking
make them unattractive at very small granularities. A more detailed charac-
terization of the influence of number of banks for different size memory arrays
can be found in [Wilton and Jouppi 1994]. In order to achieve additional sav-
ings, it might be important to exploit finer granular turn-offs such as those at
the word level [Kaxiras et al. 2001] instead of the bank level.

4.7 Impact of Cache Memory

The presence of a cache influences the energy behavior in two ways. First, the
number of references to the memory, both the ROM and RAM, are reduced.
This reduces the dynamic energy consumed in the memory. In particular, we
find that the heap energy reduces to 23% of the overall energy in the presence
of the 4 KB data and 4 KB instruction caches. Note that embedded cores typi-
cally have small caches. Second, the cache can account for a significant portion
of the overall system energy. In particular, the instruction cache is a major
contributer as it is accessed every cycle. In the context of this work, it is im-
portant to evaluate how the cache influences the effectiveness of mode control
strategy and the additional gains that energy-aware allocation and collection
provide over pure mode control. Figure 15 shows the normalized heap energy
in the presence of a 4 KB 2-way instruction cache and a 4 KB 2-way data cache
when a 64 KB heap is used. Pure mode control with M&S reduces 15% of heap
energy on the average across all benchmarks. An additional 28% heap energy
saving is obtained through the energy-aware active bank allocation and garbage
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Fig. 15. Impact of cache memory. All numbers are normalized with respect to the heap energy
consumed using the same configuration with no mode control. Note that Crypto does not run with
64 KB heap. Also, Kwml cannot complete using the M&S GC.

collection before new bank activation. The corresponding figures when M&C2
is used are 14% and 25%, respectively. These results show that the proposed
strategies are effective even in the presence of a cache.

5. RELATED WORK

Automatic garbage collection has been an active research area for the last two
decades. The current approaches to garbage collection focus on locality-aware
garbage collection (e.g., D. Grunwald and Henderson [1993] and Chilimbi and
Larus [1998]), concurrent and hardware-assisted garbage collection (e.g. Heil
and Smith [2000]), and garbage collection for Java (e.g. Agesen et al. [1998])
among others. A comprehensive discussion of different garbage collection mech-
anisms can be found in [Jones and Lins 1999]. All these techniques are geared
towards improving performance rather than energy consumption. We showed
in this article that for an energy-aware collection, different GC parameters
should be tuned. Diwan et al. analyzed four different memory management
policies from the performance as well as energy perspectives. Our work differs
from theirs in that we focus on a banked-memory architecture, and try to char-
acterize and optimize energy impact of different garbage collection strategies
when a leakage control mechanism is employed.

As Java is becoming a popular programming language for both high-end and
low-end systems, researchers are focusing on different aspects of Java-based
systems, including Just-in-Time compilation [Cierniak et al. 2000; Lee et al.
2000; Yang et al. 1999], garbage collection [Agesen et al. 1998; Stichnoth et al.
1999], heap allocation behavior of Java codes [Dieckmann and Holzle 1999], and
synchronization optimization. Most of the Java-specific optimizations proposed
so far focus on improving performance whereas we target improving energy
consumption without unduly increasing execution time.

Recently, energy optimization has become a topic of interest in the software
community. Catthoor et al. [1998], Kandemir et al. [2000], and Vijaykrishnan
et al. [2000] show that program transformations can be very effective in reduc-
ing memory energy of array-dominated embedded applications. Lebeck et al.
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[2000] and Delaluz et al. [2001] specifically focused on banked-memory architec-
tures and suggested, respectively, operating system based and compiler/hard-
ware based optimization strategies for reducing dynamic power. Our work dif-
fers from these in that we specifically target embedded Java environments
and focus mainly on exploiting leakage control mechanisms for reducing en-
ergy. We also illustrate how garbage collector can be tuned to maximize the
effectiveness of leakage control. Flinn et al. [2000] quantifies the energy
consumption of a pocket computer when running Java virtual machine. In
[Vijaykrishnan et al. 2001], the energy behavior of a high-performance Java vir-
tual machine is characterized. In contrast to these, our work targets a banked-
memory architecture and tunes garbage collector for energy optimization. Fi-
nally, numerous papers attempt to optimize energy consumption at the cir-
cuit and architectural levels. In particular, the leakage optimization circuit
employed here tries to reduce leakage current and is similar to that used in
[Kaxiras et al. 2001; Yang et al. 2001]. We employ a design that is a simple
enhancement of existing voltage down converters present in current memory
designs. Further, the circuit with the differential feedback stage helps to re-
spond to load variations faster during normal operation.

6. CONCLUSIONS AND FUTURE WORK

As battery-operated Java-enabled devices continue to grow, it is becoming im-
portant to design resource-constrained Java virtual machines. Simply porting
a desktop JVM to run on an embedded device can produce a large fixed memory
overhead and result in a large energy consumption that are unacceptable in
most embedded products. Therefore, it is important to design virtual machines
components afresh for embedded environments. In embedded environments,
memory leaks combined with the limited memory capacity can be potentially
crippling. Thus, garbage collection that automatically reclaims dead objects is a
critical component. In this work, we characterized the energy impact of GC pa-
rameters built on top of Sun’s embedded Java virtual machine, KVM. Further,
we showed how the GC can be tuned to exploit banked memory architectures
for saving energy. The major conclusions from this work are as follows:

— Our characterization of energy consumption shows that the heap energy
consumption is 39.5% of the overall energy consumption of an embedded
system-on-a-chip when executing typical Java applications. Further, we ob-
serve that the leakage energy is the dominant portion, accounting for 75.6%
of the heap energy.

— In an energy-constrained environment, the GC can be used to identify unused
heap memory banks and apply energy control mechanisms. Our results show
that GC-controlled energy mode control can save 31% of the heap energy on
the average.

— The duration between when an object becomes dead and when it is garbage
collected determines the wasted leakage energy in maintaining these dead
objects. Thus, the frequency of garbage collection has a profound impact on
how much of this wasted energy can be reduced. The more frequent the
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garbage collection, the less the wasted energy. Thus, in a banked-memory en-
vironment, it will be beneficial from an energy perspective to invoke garbage
collection even before the traditional invocation time (when space cannot be
found for allocating an object). However, garbage collection itself incurs an
energy cost that must be considered.

— The energy savings of GC-controlled energy optimization are influenced by
both the object allocation and garbage collection policies. In particular, we
find that a strategy that allocates objects only on active banks (if possible) and
activates garbage collection before turning on a new bank provides consistent
improvements over pure mode control.

— Clustering live objects in small number of banks using compaction can re-
duce heap energy. While some applications benefit from this clustering, the
energy overhead of moving the live objects during compaction negates the
potential benefits in others. As in the case of garbage collection frequency,
compacting more often than when only running out of heap space to allo-
cate an object provides energy savings in some benchmarks. The compaction
style also influences the overhead and overall effectiveness of compaction.
Specifically, taking object reference relations into account (M&C2) improves
the energy impact of compaction in some cases.

— The proposed GC-controlled energy management is effective across different
heap, bank, and cache configurations. We observe that while decreasing heap
size can prevent some applications from running to completion, it generally
reduces the overall heap energy consumption. In addition, our experiments
show that smaller bank sizes result in less energy consumption due to re-
duced capacitive load when accessing the banks and the increased potential
for finer granular leakage control. Finally, when caches are enabled, the GC-
controlled energy management is still shown to be effective.

This work opens up many interesting aspects of tuning the memory allo-
cation and management features in battery-operated environments. First, it
would be interesting to design techniques that identify dead objects as soon as
possible. Along this direction, variants of reference counting mechanisms can
be reinvestigated from an energy perspective. It will be interesting to balance
the reduction in wasted energy (during the time between the object becomes
garbage and the time it is detected to be so) with the additional energy over-
heads to implement such a scheme. Second, we plan to investigate collectors
that may require larger heap sizes but can exploit memory bank turn-off more
efficiently. Towards this, we plan to study copying collectors that combine the
phases of collection and compaction. Finally, we plan to adopt more sophis-
ticated leakage control mechanisms that can maintain the actual data when
leakage control mechanism is in use.
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