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Abstract

The increasing performance gap between processors and
memory will force future architectures to devote significant
resources towards removing and hiding memory latency. The
two major architectural features used to address this grow-
ing gap are caches and prefetching.

In this paper we perform a detailed quantification of the
cache miss patterns for the Olden benchmarks, SPEC 2000
benchmarks, and a collection of pointer based applications.
We classify misses into one of four categories correspond-
ing to the type of access pattern. These are next-line, stride,
same-object (additional misses that occur to a recently ac-
cessed object), or pointer-based transitions. We then pro-
pose and evaluate a hardware profiling architecture to cor-
rectly identify which type of access pattern is being seen.
This access pattern identification could be used to help guide
and allocate prefetching resources, and provide information
to feedback-directed optimizations.

A second goal of this paper is to identify a suite of chal-
lenging pointer-based benchmarks that can be used to fo-
cus the development of new software and hardware prefetch-
ing algorithms, and identify the challenges in performing
prefetching for these applications using new metrics.

1 Introduction

One of the most important impediments to current and future
processor performance is the memory bottleneck. Proces-
sor clock speeds are increasing at an exponential rate, much
faster than DRAM access time improvements [21]. Cache
memory hierarchies and data prefetching are the two primary
techniques used in current processors to try and hide or elim-
inate memory latency. Memory latency can be removed if
data is found to be in the cache. For data not in the cache,
data prefetching is used to hide the latency by beginning the
fetch before it is needed.

Several models have been proposed for prefetching data
to reduce or eliminate load latency. These range from in-
serting compiler-based prefetches to pure hardware-based
data prefetching. Compiler-based prefetching annotates
load instructions or inserts explicit prefetch instructions to
bring data into the cache before it is needed to hide the

load latency. These approaches use locality analysis to
insert prefetch instructions, showing significant improve-
ments [14]. Hardware-based prefetching approaches are able
to dynamically predict address streams and prefetch down
them in ways that may be hard to do using compiler anal-
ysis. In [18], we presented a prefetching architecture that
uses a predictor-directed stream buffer to prefetch down data
miss streams independent of the instruction stream being ex-
ecuted. Other hardware schemes attempt to pre-compute the
computation kernel on a separate thread or co-processor to
reduce the memory latency [1, 6, 12].

We first show how to classify load miss streams into dif-
ferent classes based on their miss access patterns. We show
for a large number of programs what types of accesses are
causing misses so that they may be targeted for future re-
search. We further show how this classification can be done
efficiently in hardware with a high degree of accuracy, so
that architectural structures such as the caches or prefetch-
ing engines can be made access pattern aware. We classify
these loads into four types of access patterns or streams – (1)
next-line, (2) stride, (3) same-object (additional misses to a
recently referenced heap object), or (4) pointer-based misses.

Out of these four types of cache miss streams, pointer-
based streams can be the most difficult to eliminate using
existing hardware and software prefetching algorithms. To
better understand the behavior of these loads and their appli-
cations we examine two new metrics. The first metric, Ob-
ject Fan Out, is used to quantify the number of pointers in an
object that are transitioned and frequently miss in the cache.
The second metric, Pointer Variability, quantifies how many
pointer transitions are stable versus how many are frequently
changing. A pointer transition is a load that loads a pointer.
Pointer variability shows how many times a pointer transi-
tion for a given address loads a pointer different from the
last pointer that was loaded from that address. Programs with
low object fan out and pointer variability will be much easier
to prefetch, in comparison to programs that have high object
fan out and variability, and we show that a large percentage
of misses in real programs fall into this second category.

An additional goal of this paper is to compare the be-
havior of Olden, SPEC 2000, and set of additional pointer-
based benchmarks. This is to identify a suite of challeng-
ing pointer-based benchmarks that can be used to focus the
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Program Description

burg A program that generates a fast tree parser using BURS
technology. It is commonly used to construct optimal in-
struction selectors for use in compiler code generation.
The input used was a grammar that scribes the VAX in-
struction set architecture.

deltablue A constraint solution system implemented in C++. It has
an abundance of short lived heap objects.

dot Dot is taken from the AT&T’s GraphViz suite. It is a tool
for automatically making hierarchical layouts of directed
graphs. Automatic generation of graph drawings has im-
portant applications in key technologies such as database
design, software engineering, VLSI and network design
and visual interfaces in other domains.

equake Equake is from the SPEC 2000 benchmark suite. The
program simulates the propagation of elastic waves in
large, highly heterogeneous valleys, such as California’s
San Fernando Valley, or the Greater Los Angeles Basin.
The goal is to recover the time history of the ground mo-
tion everywhere within the valley due to a specific seis-
mic event. Computations are performed on an unstruc-
tured mesh that locally resolves wavelengths, using a fi-
nite element method.

mcf Mcf is from the SPEC 2000 benchmark suite. It is
a combinatorial optimization algorithm solving a mini-
mum cost network flow problem.

sis Synthesis of synchronous and asynchronous circuits. It
includes a number of capabilities such as state mini-
mization and optimization. The program has approxi-
mately 172,000 lines of source code and performs a lot
of pointer arithmetic.

vis VIS (Verification Interacting with Synthesis) is a tool
that integrates the verification, simulation, and synthe-
sis of finite-state hardware systems. It uses a Verilog
front end and supports fair CTL model checking, lan-
guage emptiness checking, combinational and sequential
equivalence checking, cycle-based simulation, and hier-
archical synthesis.

Table 1: Description of pointer-based benchmarks used.

development of new software and hardware prefetch algo-
rithms.

2 Methodology

We make use of both profiling and detailed cycle accurate
simulation in this study. When performing profiling we use
Compaq’s ATOM [20] tool, to gather miss rates and perform
base line classifications.

The simulator used in this study was derived from the
SimpleScalar/Alpha 3.0 tool set [2], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The timing
simulator executes only user-level instructions, performing
a detailed timing simulation of an aggressive 8-way dynam-
ically scheduled microprocessor with two levels of instruc-
tion and data cache memory. Simulation is execution-driven,
including execution down any speculative path until the de-
tection of a fault, TLB miss, or branch mis-prediction.

To perform our evaluation we collected results from
the complete SPEC 2000 integer benchmark suite, selected

SPEC 2000 floating point benchmarks, the popular pro-
grams from the Olden benchmark suite, and a set of other
pointer intensive programs. The pointer intensive programs
we will examine in detail are described in Table 1. All pro-
grams were compiled on a DEC Alpha AXP-21264 proces-
sor using the DEC FORTRAN, C or C++ compilers under
OSF/1 V4.0 operating system using full compiler optimiza-
tion (-O4 -ifo).

2.1 Baseline Architecture

Our baseline simulation configuration models a next gen-
eration out-of-order processor microarchitecture. We have
selected the parameters to capture underlying trends in mi-
croarchitecture design. The processor has a large window of
execution; it can fetch up to 8 instructions per cycle. It has
a 128 entry re-order buffer with a 64 entry load/store buffer.
To compensate for the added complexity of disambiguating
loads and stores in a large execution window, we increased
the store forward latency to 2 cycles.

To make sure that the load classification speedups we re-
port are from eliminating those load memory latencies and
not from compensating for a conservative memory disam-
biguation policy, we implemented perfect store sets [5]. Per-
fect store sets cause loads to only be dependent on stores that
write to the same memory, i.e when they are actually depen-
dent instructions. In this way loads will not be held up by
false dependencies.

In the baseline architecture, there is an 8 cycle mini-
mum branch mis-prediction penalty. The processor has 8
integer ALU units, 4-load/store units, 2-FP adders, 2-integer
MULT, and 2-FP MULT/DIV. The latencies are: ALU 1 cy-
cle, MULT 3 cycles , FP Adder 2 cycles, FP Mult 4 cycles,
and FP DIV 12 cycles. All functional units, except the di-
vide units, are fully pipelined allowing a new instruction to
initiate execution each cycle. We use a McFarling gshare
predictor [13] to drive our fetch unit. Two predictions can be
made per cycle with up to 8 instructions fetched.

We rewrote the memory hierarchy in SimpleScalar to
better model bus occupancy, bandwidth, and pipelining of
the second level cache and main memory. The L1 instruction
cache is a 32K 2-way associative cache with 32-byte lines.
The baseline results are run with a 32K 2-way associative
data cache with 32-byte lines. A 1 Megabyte unified 4-way
L2 cache is simulated with 64-byte lines. The L2 cache has
a latency of 12 cycles. The main memory has an access time
of 120 cycles. The L1 to L2 bus can support up to 8 bytes per
processor cycle whereas the L2 to memory bus can support
4 bytes per cycle.
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3 Prefetching Focused at the Different Load
Stream Classifications

In this section we categorize and describe prior software and
hardware prefetching research into the classes of next-line,
stride, same-object, and pointer traversals. This classifica-
tion corresponds to an increasing implementation complex-
ity of hardware prefetching techniques.

3.1 Next-Line

The simplest form of prefetching is to prefetch the next cache
block that occurs after a given load. This form of prefetch is
very accurate, since programs have a lot of spatial locality.

Next-Line Prefetching (NLP) was proposed by
Smith [19], where each cache block is tagged with a bit in-
dicating when the next block should be prefetched. When a
block is prefetched, its tag bit is set to zero. When the block
is accessed during a fetch and the bit is zero, a prefetch of
the next sequential block is triggered and the bit is set to one.

Jouppi introduced stream buffers, as a high latency hid-
ing form of a next-line prefetching architecture [9]. The
stream buffers follow multiple streams prefetching them in
parallel and these streams can run ahead independent of the
instruction stream of the processor. They are designed as
FIFO buffers that prefetch consecutive cache blocks, start-
ing with the one that missed in the L1 cache. On subsequent
misses, the head of the stream buffer is probed. If the refer-
ence hits, that block is transferred to the L1 cache.

3.2 Stride-based Prefetching

A logical extension of next-line prefetching is stride-based
prefetching. This scheme allows the prefetcher to eliminate
miss patterns that follow a regular pattern but access non-
sequential cache blocks. This type of access frequently oc-
curs in scientific programs using multidimensional arrays.

Palacharla and Kessler [15] suggested a non-unit stride
detection mechanism to enhance the effectiveness of stream
buffers. This technique uses a minimum delta non-unit de-
tection scheme. With this scheme, the dynamic stride is de-
termined by the minimum signed difference between the past
N miss addresses. If this minimum delta is smaller then the
L1 block size, then the stride is set to the cache block size
with the sign of the minimum delta. Otherwise, the stride is
set to the minimum delta.

Farkas et. al. [7] made an important contribution by ex-
tending this model to use a PC-based stride predictor to pro-
vide the stride on stream buffer allocation. The PC-stride
predictor determines the stride for a load instruction by using
the PC to index into a stride address prediction table. This
differs from the minimum-delta scheme, since the minimum-
delta uses the global history to calculate the stride for a given
load. A PC-stride predictor uses an associative buffer to
record the last miss address for N load instructions, along

with their program counter values. Thus, the stride predic-
tion for a stream buffer is based only on the past memory
behavior of the load for which the stream buffer was allo-
cated.

3.3 Same Object Prefetching

Programs make use of different types of data structures to ac-
complish their final goal. Often times, logically related data
are grouped together into an object to enhance semantics.
The amount of data located inside an object does not always
fit into a single cache block, and accesses to various parts of
the same object can cause multiple cache misses. To elimi-
nate these incidental misses, one could trigger the prefetch of
the whole object once a miss occurs to data within the object.
This could require the prefetching algorithm to know/predict
the size of an object.

Zhang and Torrellas [22] recognized the benefit of group-
ing together fields or objects that are used together, and
prefetching these all together as a prefetch group of blocks.
They examined using user added grouping instructions that
allowed the user to group together fields/objects that should
be prefetched together. These groupings are then stored in
a hardware buffer, and as soon as one of them is referenced
and misses, all the cache blocks in the group are prefetched.

3.4 Pointer-Based Prefetching

As logically related data is collected into an object, objects
that are related are also connected to each other via pointers.
Pointer-based prefetching, either predicts or accesses these
pointer values to prefetch the next object that is likely to be
visited after the current one.

The inherent dependency between neighbor objects lim-
its the amount of latency that can be hidden by the prefetch-
ing algorithm. This is known as the pointer-chasing prob-
lem [10]. The imposed serialization of object accesses con-
strain the prefetcher from running enough ahead of the exe-
cution stream to hide the full memory latency.

Luk and Mowry [10] examined prefetching for Recur-
sive Data Structures (RDS). They examined the phenomenon
of using pointer chaining for prefetching to hide latency.
Greedy Prefetching was used to prefetch down all the point-
ers in a given heap object. They also examine adding jump-
pointers to hook up a heap objectX to another heap object Y
that occurs earlier in the pointer chain, by adding an explicit
jump-pointer from Y toX . This approach can hide more la-
tency than their demand based greedy algorithm, but comes
at a cost of adding jump-pointers into their structures. In ad-
dition, this could potentially perform badly if the structure of
the RDS changes radically between traversals over the struc-
ture.

Roth et. al. [16] propose analyzing the producer-
consumer relationship among loads to alleviate the effects
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of the pointer-chasing problem. In this scheme, load instruc-
tions that produce object addresses are linked together to fa-
cilitate a prediction chain. Prefetches read address values
from memory and initiate another prefetch using the value
just prefetched as an address. They examine prefetching one
iteration ahead of the current execution to reduce the num-
ber of useless prefetches. Furthermore, Roth and Sohi [17]
extend the jump-pointer prefetching technique by provid-
ing hardware, software and cooperative schemes to facilitate
linking objects together. These different techniques provide
a variety of trade-off points between prefetch accuracy and
prefetching overhead.

Markov prefetching has been proposed as an effective
technique for correctly predicting pointer-based loads [8].
When a cache miss occurs, the miss address would index into
a Markov prediction table that provides the next set of pos-
sible cache addresses that have followed that miss address in
the past. After these addresses are prefetched, the prefetcher
stays idle until the next cache miss.

Recently we proposed a decoupled architecture for
prefetching pointer-based miss streams [18]. We extended
the stream buffer architecture proposed by Farkas et. al. [7]
to follow prediction streams instead of a fixed stride. Our
Predictor-Directed Stream Buffer (PSB) architecture uses a
Stride-Filtered Markov predictor to generate the next ad-
dresses to prefetch. Predictor-directed stream buffers are
able to achieve timely prefetches, since the stream buffers
can run independently ahead of the execution stream, filling
up the stream buffer with useful prefetches. Different pre-
dictors can be used to direct this architecture making it quite
adept at finding both complex array access and pointer chas-
ing behavior over a variety of applications. The predictor-
directed stream buffer achieved a 30% speedup on pointer-
based applications using only a 4 Kilobyte Markov table
along with a 256 entry stride prediction table.

4 Load Miss Stream Classification

In section 3 we described the types of misses we wish to clas-
sify and how they behave in relationship to prior prefetching
research. In this section we start by defining the different
load miss models and show how the misses for many differ-
ent types of programs are classified into these models. We
then present a hardware technique for quickly and efficiently
classifying cache misses for the purpose of guiding dynamic
prefetching.

4.1 Miss Classes Defined

As described in section 3, there are four major types of mem-
ory access behavior prevalent in most programs that can be
captured by hardware. Listed in order of increasing com-
plexity they are: next-line, stride, access within an object,
and dereferencing of pointers.

Next-line accesses are the simplest to capture with hard-
ware, a simple stream buffer is very efficient at capturing this
type of behavior. The stream buffer can identify accesses to
sequential cache blocks and use this information to fetch se-
quentially down the stream. While this type of access is very
simple, it is also very common in a multitude of applications.
We classify a cache miss as being a next-line access if it is
an access to a cache block that is adjacent to a cache block
that was recently fetched.

Stride accesses are the next easiest to capture in hardware
and many different prefetching architectures exist to capture
this type of behavior. Farkas et. al. [7] showed that the most
efficient way to capture this sort of behavior is by examining
access patterns on a per static load basis. We use this obser-
vation to help us define stride access behavior. We define a
cache miss to be stride miss if the same stride has been seen
twice in a row for the static load that performed the access.

So far we have concerned ourselves with regular access
patterns, the type that may be commonly found in programs
dominated by large multidimensional arrays. The next two
classes may not fall into this category. The class of misses,
which we call Same-Object, are non-sequential, non-striding
accesses going within a single object. We define a Same-
Object cache miss as a miss to an object that has already had
a miss recently. These misses may possibly be prevented
if whenever we access an object we fetch the whole object,
or at least those cache blocks of the object that will soon
be referenced. These misses can also be targeted by field
reordering [4].

The final hardware classification that we make is the
Pointer class. The Pointer class represents misses to objects
that are accessed via the dereference of a pointer. Pointer
misses can constitute a large portion of total cache misses
due to the accesses having very little conventional spatial
locality. This has led to many recent hardware and soft-
ware schemes that attempt to capture their behavior for the
purpose of prefetching. These misses can be targeted by
the software techniques of object reordering [11], smart
object placement [3], software prefetching [10], or hard-
ware schemes such as jump pointer prefetching [16, 17] and
predictor-directed stream buffers [18].

We classify all cache misses into one and only one of
these categories. If there is a cache miss that can fit into
more than one category, such as loads with a stride of 1, we
classify them into the simplest category possible, which in
this case would be next-line.

In the description of the classifications please note the
use of the term “recently”. In order to capture the recent be-
havior of the loads we use a profiling technique called Win-
dowing. We build a window of the last cache misses and
loads, and use only this information when classifying sub-
sequent loads. Using windowing prevents all loads being
classified as “next-line”, since only a fixed amount of his-
tory is kept track of. The window models the recent working
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set of load misses that could potentially trigger a prefetch of
the load that missed. The window size is limited, because
the prefetched block could only reside in a prefetch buffer or
cache without being used for a window of time before being
evicted. For the results presented in this section we capture
the last 200 cache misses and the last 500 loads for pointer
tracking.

4.2 Miss Classification Results

The first thing to look at before we begin discussing the clas-
sification of loads is the cache miss rates for the various
programs. Tables 2, 3, and 4 show the data input used to
run each program, the L1 and L2 cache miss behavior, and
the percent of loads executed by each program. The L1 and
L2 cache misses are both in terms of the average number of
cache misses that occurred per 1K of executed instructions.

The programs consist of the full set of SPEC 2000 in-
teger programs, a subset of the SPEC 2000 floating point
programs that have been used in recent prefetching and pre-
computation papers, the Olden benchmark suite, and a set
of pointer intensive programs. We chose the Olden bench-
marks that have shown performance improvements from
prior prefetching papers.

We now show the results of applying the classification
technique described above over several suites of programs.
Figure 1 shows the classification of the loads that miss in the
L1 cache for the SPEC 2000 benchmarks. The four programs
of interest from the SPEC 2000 suite that have a significant
amount of cache misses include art, ammp, equake and
mcf, and all of these have 80% or more of their misses clas-
sified, with mcf having the largest pointer behavior of these
applications.

The classification of the programs from the Olden suite
can be seen in figure 2. Health has by far the largest
miss rate of all the programs, and is also the most domi-
nated by the pointer behavior. The other programs have less
significant miss rates and are more balanced in the types of
misses that they exhibit. The one counter example to this
is treeadd which is dominated by next-line prefetchable
structures. All treeadd does is allocate a tree in depth-
first order, and then traverse the tree in depth-first order. This
results in the tree being created where every left child is al-
located in memory right after its parent node, and therefore
almost all of the cache misses would be covered by next-
line prefetching. For that reason, treeadd has almost no
pointer misses.

Figure 3 shows the same classification technique applied
to our own set of pointer intensive benchmarks. As the name
suggests, the suite of applications that we have assembled
are dominated by pointer behavior. However this pointer
behavior is not the only form of misses. There is a mix
of access patterns seen, from next-line to pointer behavior,
stride and same-object. The benchmark with the highest miss

benchmark input L1 MissPer1kI L2 MissPer1kI % Loads

ammp ref 14.14 8.42 8.29%
applu ref 28.42 13.57 25.89%
apsi ref 13.70 3.34 21.34%
art 110 15.04 0.01 4.84%
bzip2 graphic 4.49 0.90 17.48%
crafty ref 6.08 0.03 22.32%
eon cook 0.09 0.00 10.06%
equake ref 44.76 16.29 31.91%
galgel ref 24.14 2.39 21.64%
gap ref 1.90 0.88 14.70%
gcc 200 10.30 0.81 21.65%
gzip graphic 7.47 0.11 17.47%
lucas ref 0.92 0.47 4.25%
mcf ref 130.16 91.54 28.34%
mgrid ref 21.81 6.13 29.34%
parser ref 13.00 1.92 19.66%
perlbmk diffmail 4.62 0.08 23.00%
swim ref 45.31 17.23 19.73%
twolf ref 19.81 2.45 20.26%
vortex two 2.38 0.29 21.00%
vpr place 12.77 1.21 20.81%
wupwise ref 6.34 2.94 16.56%

Table 2: SPEC 2000 cache miss behavior. The L1 data cache
is a 32K 2-way associative cache with 32 byte lines. The L2
is a unified 1 Meg 4-way associative cache with 64 byte lines.

benchmark input L1 MissPer1kI L2 MissPer1kI % Loads

burg rrh-vax 15.82 0.89 17.63%
deltablue long 56.12 1.11 27.93%
sis markex 4.58 0.04 36.32%
vis clma 7.67 2.17 19.91%
dot small 90.03 68.85 32.91%

Table 3: Pointer-based programs cache miss behavior. The
L1 data cache is a 32K 2-way associative cache with 32 byte
lines. The L2 is a unified 1 Meg 4-way associative cache
with 64 byte lines.

benchmark input L1 MissPer1kI L2 MissPer1kI % Loads

health 5 500 1 1 122.93 0.36 34.86%
mst 1024 1 9.63 5.53 18.19%
perimeter 12 1 13.58 9.42 17.60%
treeadd 20 1 9.20 4.56 21.30%
tsp 100000 1 1.53 0.65 6.94%

Table 4: Olden cache miss behavior. The L1 data cache is a
32K 2-way associative cache with 32 byte lines. The L2 is a
unified 1 Meg 4-way associative cache with 64 byte lines.
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Figure 1: Classification of SPEC 2000 program load misses into the four prefetching models of next-line, stride, same-object,
and pointer.

rate, dot, is also the program most dominated by pointer be-
havior. The programs sis and vis also show very strong
pointer behavior.

The ability to do this classification in software is useful
to quantify applications allowing researchers to find applica-
tions exhibiting certain behavior or to guide profile-directed
optimizations. However, there are still some questions to be
answered about those loads that are left unclassified.

4.3 Unclassified Loads

As can be seen in figure 1, some programs have a fair num-
ber of cache misses that do not fit into the categories of next-
line, stride, same-object or pointer transition. These cache
misses have arithmetic operations (not captured by stride)
used to calculate their effective addresses. These classifica-
tions are not easily captured by existing hardware prefetch-
ers. For these cache misses, we use three additional types
of cache miss classifications. To determine the classification
we search back over the dependency chain used to calculate
the effective address.

We classify cache misses as Recurrent if there is an in-
struction that is inside of a loop that has the same logical
register definition as one of its operands, and the operand
register being defined has an address stored in it. A load
whose effective address is calculated in this manner is pro-
ducing its effective address each iteration of the loop off of
the prior loop’s address calculation. Cache misses that are
classified as recurrent perform arithmetic operations to pro-
duce the effective address not captured by stride prefetching.

A cache miss is labelled as Base Address if there is an
instruction in the load’s dependency chain that uses the same
address over and over again in a calculation to produce the
load’s effective address. This occurs when the calculation
for the effective address is performed off of the same base
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Figure 2: Classification of Olden program load misses into
the four prefetching models of next-line, stride, same-object,
and pointer.
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Figure 3: Classification of Pointer program load misses into
the four prefetching models of next-line, stride, same-object,
and pointer.
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benchmark % Unclassified % Unclassified % Unclassified
Recurrent Base Address Complex

ammp 6.24% 0.94% 0.95%
applu 14.05% 1.00% 14.54%
apsi 7.91% 3.06% 13.56%
art 0.00% 0.06% 0.02%
bzip2 70.65% 0.03% 0.00%
crafty 79.45% 1.37% 0.01%
eon 23.75% 5.61% 11.85%
equake 10.60% 0.08% 0.02%
fma3d 0.19% 0.03% 1.01%
galgel 9.26% 0.19% 13.89%
gap 8.05% 0.21% 0.00%
gcc 6.52% 0.93% 0.07%
gzip 82.58% 0.13% 0.00%
lucas 1.88% 0.90% 1.08%
mcf 1.19% 0.01% 0.01%
mgrid 17.59% 0.20% 15.76%
parser 6.53% 0.21% 0.05%
perlbmk 12.24% 1.41% 0.09%
swim 13.85% 0.79% 0.11%
twolf 26.76% 0.67% 1.04%
vortex 20.00% 0.78% 0.82%
vpr 29.61% 1.63% 0.03%
vpr 57.53% 5.41% 7.56%
wupwise 1.51% 0.18% 13.77%

burg 19.45% 0.31% 0.00%
deltablue 0.49% 0.07% 0.00%
dot 3.23% 0.02% 0.00%
sis 5.69% 0.85% 0.03%
vis 17.16% 0.38% 0.86%

health 1.58% 0.64% 0.07%
mst 4.55% 0.08% 0.02%
perimeter 1.03% 0.00% 0.00%
treeadd 1.14% 0.01% 0.00%
tsp 0.31% 0.00% 0.25%

Table 5: Detailed classification of unclassified L1 misses.

address every loop iteration.

Finally, a load is labelled as Complex if it is not recurrent
nor base-address, and the load’s effective address is calcu-
lated from a prior load in the dependency chain, and that
prior load’s value was an address. The address from that
prior pointer load is used in an equation to produce the ef-
fective address that missed in the cache.

Table 5 presents a detailed look into load misses that
go unclassified as described above. Most of the unclassi-
fied misses are recurrent pointer misses, potentially indicat-
ing that the loop induction variable is updated in a non-linear
fashion. This makes these misses unclassifiable to next-line
or stride predictors.

In the remainder of the paper we concentrate completely
on the next-line, stride, same-object and pointer classifica-
tions, since these are captured by hardware prefetching tech-
niques, and in the next section we will describe an approach
for performing these four classifications in hardware.
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Figure 4: Load Miss Classification Hardware.

4.4 Hardware Classification

In order to take advantage of classification we need to pro-
vide a way for it to be done efficiently in hardware at run
time. To accomplish this we make use of the windowing
technique described in section 4.1, along with a very small
fully associative buffer. The classification hardware keeps
information in the buffer for the last N cache misses and
then performs a lookup on its tables during a cache miss.
Different types of matches mean different classifications for
that load.

Figure 4 shows the proposed classification architecture.
The basic structures in the architecture are small CAMs each
with an update pointer. Every time there is a cache miss,
the CAM is checked for hits for the four different models.
This hit information is used to calculate the classification of
the cache miss. The structure is then updated at the update
pointer and the update pointer is incremented to the next en-
try. The structure is therefore accessed in two ways, a paral-
lel lookup and a rotating register style update using the up-
date pointer.

The structure to find next-line misses is a small CAM
with a list of the past addresses that have missed with one
block size added to them. Figure 4 is drawn showing a CAM
with 4 entries, while each actual CAM has 32 entries in the
architecture we modeled. Whenever a cache miss occurs, we
simply check for a match in the CAM. A hit in any of the
elements of the CAM indicates that the load was of the next-
line type. Then after this information is computed we update
the CAM with the most recent address information.

To find stride misses we add a structure that performs a
parallel lookup as in the CAM before, but this time we at-
tempt to match the PC of the load instruction rather than the
address that is being loaded. If there is a hit in the CAM,
the address seen in the slot is output and the two most recent
addresses for that load are output and subtracted. The out-
put of this subtraction is then added to the first address and
a check for a match is done, with a match indicating a suc-
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cessful classification. This circuit is very similar in behavior
to the arbiter used in the issue stage of an out of order pro-
cessor, but much smaller. It is further simplified by the fact
that the operation can be multicycle and pipelined.

Misses to the same heap object can be easily detected us-
ing the same type of structure used for next-line detection,
but this time we store the base address rather than the pos-
sible next-line address. The base address from a cache miss
is looked up in the CAM, and a hit indicates that this miss is
classified as an access to the same object. On update, each
cache miss stores its base address into this CAM.

To detect pointer based loads we add one last small struc-
ture, which is another CAM. This CAM is updated with the
result of every load using the update pointer associated with
that CAM. Because the result of all recent loads are stored
in the CAM, loads to pointers are captured. When there is
a cache miss we check the CAM to see if we can find the
base address of the missing load. If there is a hit then we
know that a prior load recently loaded the base pointer for
the object that just missed and hence it is a pointer miss.

In using this classification scheme, the first miss to an ob-
ject for a pointer-based application most likely will be classi-
fied as a pointer miss, and all subsequent misses to that same
object would be classified as same object misses.

To test this the hardware scheme we compare it against
the real classifications that were presented in section 4.2.
We use a very small hardware window size, of N=32. This
means that we only need 896 Bytes of storage to implement
this architecture, and this could be further reduced to around
256 Bytes if partial tags are used with a small hash function.

To evaluate the classification hardware, we would like to
predict what the next classification will be for a given load.
To accomplish this we keep a small direct mapped table,
which is indexed by the address of the load. In this table
we store the last known classification of the load, as gener-
ated by the classification hardware. We then compare this
value stored in this table to the true classification of the load.
Figures 5 and 6 show the accuracy of this classification pre-
diction mechanism over the pointer and Olden benchmark
suites if a prediction table of size 128 is used.

The prediction accuracies show that by using the pre-
sented architecture we can correctly classify the majority of
cache misses for the applications examined. The programs
that the predictive classification had the most trouble with
were burg and sis. For burg the predictor is caught
jumping between stride and pointer classifications, this is
because the application happened to allocate some of its’ ob-
jects at a fixed stride from each other. This causes stride to
be predicted when a stride is done, but pointer is the still the
true access type. This is not a problem because either an-
swer is really valid, but it could be fixed with the addition
of a small amount of hysteresis. The classification for Sis
is around 80% because the program performs pointer arith-
metic to load some of its data, and these are not accurately
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Figure 5: Classification prediction accuracy for the suite of
pointer intensive applications.
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Figure 6: Classification prediction accuracy for the Olden
benchmark suite.

classified.

4.5 Performance Results

In order to measure the potential benefit of applying our clas-
sification scheme, we ran detailed performance simulations
using the SimpleScalar model described in section 2. The
goal of these simulation results are to show the potential
IPC performance if all of the cache misses are eliminated
related to one or more of the prior four types of load miss
classifications using the classification hardware presented in
the prior section. Figures 7, 8, 9, and 10 show IPC results
when we assume perfect load latency for these loads. The
first bar shows IPC results for the baseline architecture. The
next bar (NL) shows results when loads classified as next-
line using our hardware classification architecture are given
perfect L1 latency (they do not miss in the cache). The re-
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Figure 7: SPEC’CINT00 integer benchmark suite performance results when assigning perfect load latency for loads that match
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Figure 8: SPEC’CFP00 floating point benchmark suite performance results when assigning perfect load latency for loads that
match the different classifications.

maining bars show the same optimization applied to loads
classified as stride (ST), same-object access (SO), pointer ac-
cesses (Pointer), and combinations of different classes. The
bar (All) shows the IPC where all loads classified (i.e. next-
line, stride, same-object and pointer loads) are assumed to hit
in the cache. The last bar (PerfL1) shows the IPC when there
are no memory stalls. During simulation, each L1 cache miss
is passed to the classification hardware. If the cache miss is
classified as one of the types of misses we are eliminating,
then the cache access is performed with no latency.

For all of the Olden benchmarks, a single load classifica-
tion dominates the misses for health and treeadd. Ap-
plying a single optimization targeting specific loads achieves
very good results. All of Health’s important load misses
are pointer misses. All of the important misses in treeadd
are captured by the next-line classification.

Figure 10 presents the results for a suite of pointer-
intensive applications. No one particular load class domi-
nates the accesses. In this regard, a prefetching algorithm
needs to be able to handle all four of these different classes
of loads at the same time in order to provide significant
speedups. This is shown in burg, deltablue, dot, mcf,
and vis. This is in stark contrast to most of the Olden
benchmarks, in which handling just one of the classifications
provides complete speedups.
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Figure 9: Olden benchmark suite performance results when
assigning perfect load latency for loads that match the differ-
ent classifications.
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Figure 10: Pointer benchmark suite performance results
when assigning perfect load latency for loads that match the
different classifications.

5 Quantifying Object and Pointer Behavior

One of the most challenging types of access patterns to cap-
ture are pointer transition patterns. These are often also the
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Figure 11: Fan Out Example

most critical to capture because of the high degree of de-
pendence typically seen between pointer loads, and the poor
spatial locality exhibited by this type of access.

There are two major factors that make capturing pointer
behavior difficult. Pointer structures often have a high de-
gree of fan out making the path to be traversed more difficult
to choose. In addition, pointer transitions can be dynamic by
their very nature and can change dramatically through the ex-
ecution of the program via insertions or deletions to the data
structure. Applications that have a high degree of fan-out
and pointer transition variability will potentially be harder to
accurately prefetch. In this section we provide an analysis of
these two factors over our set of pointer based programs and
the Olden benchmark suite.

5.1 Object Fan-Out

A given heap object that contains a set of n pointers to other
objects, is said to have a fan-out of n. For example, a binary
tree with a right and left child is said to have a fan-out of 2,
while a tree with three child pointers is said to have a fan-out
of 3. When calculating fan-out for an object, we only count a
pointer to another object as part of the fan-out if it is actually
traversed at least once during execution.

Since we are concerned with memory performance, we
are interested in pointer transitions from objectA to objectB
that result in a cache miss. In this example, we are concerned
with the object fan-out of A, because the fan-out (number of
pointer transitions) out of A will influence the ability of the
hardware to prefetch the cache miss transition to B. Fig-
ure 11 shows an example of this. Suppose that we have the
small tree, where A has one NULL child and one child tran-
sition to B, and node B has two real children. Now suppose
that there is a cache miss when the program attempts to tran-
sition to nodeB, noted as Miss1 in the diagram. This cache
miss will be classified as having a fan-out of 1, because it
was the dereference of a pointer from an object (A) with a
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Figure 12: Object fan-out of the pointer-based programs. A
histogram of object fan-out is shown for L1 cache misses
classified as pointer transitions in section 4.
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Figure 13: Object fan-out of the Olden benchmark suite. A
histogram of object fan-out is shown for L1 cache misses
classified as pointer transitions in section 4.

fan-out of 1. Cache Miss2 on the other hand will be noted
as having a fan-out of 2, because it comes from the derefer-
ence of node B, which has a fan-out of 2.

Now that we have this measure of fan-out, we wish to see
how the misses are distributed across objects with different
fan-outs. Figures 12 and 13 show the histogram of fan-out
misses for both the pointer-based programs we have chosen
and the Olden benchmarks. The fan-out results are shown for
the L1 cache misses that are classified as pointer transitions
in figures 1, 2 and 3. Looking at the graphs in figure 12, the
fan-out for equake stands out. Equake has all of its misses
coming from objects with a fan-out of 1, such as a simple
linked list. The programs deltablue and burg are split
between objects that have a fan-out 1 or 2 that transition to
a miss, while dot, mcf, sis, and vis have misses from
objects with many transitions to chose from. The dominate
fan-out for dot and mcf is at 5 or greater.

This is in stark contrast to the behavior of the Olden
benchmarks seen in Figure 13, where all of the programs are
dominated by a single fan-out of either 1 or 2. This shows
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that the behavior of the Olden benchmarks is dominated by a
single simple homogeneous data structure which is not rep-
resentative of the complexity inherent in the other pointer
based applications.

5.2 Variability

Another factor that makes prefetching of pointer structures
difficult is the fact that the pointer transitions to other ob-
jects changes over the lifetime of the application. In order to
understand how the pointer structures change over time we
add a new metric called variability.

The variability of a pointer in a program is the number
of different values (addresses) it has over the life time of the
program. In order for a data structure to change, the pointers
within the structure must point to different objects. Every
time we see one of these changes, we record that it changed.
After the program has completed running, we put all of the
cache misses associated with a pointer address into a bucket
based upon the number of different addresses stored in that
pointer (the variability) during execution. From this we make
a histogram, which can be seen in figures 14 and 15. This
shows the percent of pointer classification L1 misses that had
the different degrees of variability.

In analyzing figure 14, equake again shows that the
pointer transitions do not change during the execution after
the initial data structure has been set up. This correlates to
the fan-out results in figure 12, which showed each object
has only one outgoing edge creating misses and that tran-
sition retains its’ value throughout the program. Mcf, sis
and vis also are interesting to look at as most of the misses
are caused by objects with high variability. These programs
are difficult to accurately prefetch as the data stream is con-
stantly changing and hence, is highly unpredictable.

Most of the Olden benchmarks data structures remain
fairly static with little variability, making them suitable for
software based prefetching techniques [10]. The one pro-
gram that is, at least at the surface, counter to this character-
ization is treeadd. The reason why treeadd is shown to
have a high degree of variability is that only 3% of all of its
cache misses were classified as pointer misses as shown in
Figure 2. These 3% of the misses came from a load in mal-
loc which temporarily stores the address of newly allocated
memory, and the pointer is overwritten repeatedly.

6 Summary

That gap between processor performance and memory la-
tency continues to grow at an astonishing rate, and because
of this the memory hierarchy continues to be the target of a
great deal of architectural research. In this paper, we present
both an analysis of cache miss behavior, to help guide re-
searchers in future cache and prefetching research, and a dy-
namic hardware technique to perform classification on the
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Figure 14: Pointer variability for the pointer-based applica-
tions. A histogram of pointer variability is shown for L1
cache misses classified as pointer transitions in section 4.
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Figure 15: Pointer variability for the Olden benchmark suite.
A histogram of pointer variability is shown for L1 cache
misses classified as pointer transitions in section 4.

fly, which will enable architectural structures to be access
pattern aware.

We classify load access patterns into one of four types,
next-line, stride, same-object (additional misses that occur
to a recently accessed object), and pointer-based transitions.
These four access patterns account for more than 90% of all
cache misses in the programs we examined. We then show a
hardware technique that can detect this behavior using very
little on-chip area. The dynamic classification technique pre-
sented can accurately predict more the 77% of cache misses
as being of the correct type for all programs. On average
across all programs, the technique correctly classifies 85%
of all misses.

We also evaluate the potential benefit of correctly iden-
tifying load classes and the effect of removing their mem-
ory latency. This in effect simulates a perfect prefetcher for
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each class of loads. Our results show that a multi-pronged
attack is needed to hide the majority of the memory latency.
Prefetching only a single class of load does not provide no-
ticeable benefits for the pointer-based collection of applica-
tions we examined. In contrast, removing the latency for
only a single load stream classification achieved perfect re-
sults for a few of the Olden benchmarks.

In addition to the hardware classification technique pre-
sented, we further study those misses identified as pointer-
based. Pointer-based misses have become the subject of a
great deal of research in recent years and for future research
it is important to understand their behavior.

To quantify the behavior of pointer loads, we examined
two metrics each weighted by the number of cache misses for
pointer-based loads. We use the fan-out metric of objects to
quantify the branching factor that data structures have. For a
set of programs that are actually used to solve real problems,
the fan-out tends to be both large and non-uniform. In con-
trast, the Olden benchmark suite shows both a very regular
and a very small fan-out.

In addition to fan-out, we also examine how often a
pointer transition changes over the life time of the applica-
tion. To track this we keep a list of every pointer in the pro-
gram and note how many times the pointer’s value changes
over the execution. We found that while about half the pro-
grams simply build and then destroy a large data structure,
the other half change their data structures around quite of-
ten. This can make prefetching techniques that are based on
learning the access pattern much more difficult to implement.
The Olden benchmarks showed very little variability in their
pointer transitions.
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