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Abstract - Multithreading aims to tolerate latency by overlapping
communication with computation. This report explicates the multi-
threading capabilities of the EM-X distributed-memory
multiprocessor through empirical studies. The EM-X provides hard-
ware supports for fine-grain multithreading, including a by-passing
mechanism for direct remote reads and writes, hardware FIFO
thread scheduling, and dedicated instructions for generating fixed-
sized communication packets. Bitonic sorting and Fast Fourier
Transform are selected for experiments. Parameters that character-
ize the performance of multithreading are investigated, including the
number of threads, the number of thread switches, the run length,
and the number of remote reads. Experimental results indicate that
the best communication performance occurs when the number of
threads is two to four. FFT yielded over 95% overlapping due to a
large amount of computation and communication parallelism across
threads. Even in the absence of thread computation parallelism, mul-
tithreading helps overlap over 35% of the communication time for
bitonic sorting.

1 Introduction

In a distributed-memory machine, data needs to be distributed so
there is no overlapping or copying of major data. Typical distribut-
ed-memory machines incur much latency, ranging approximately
from a few to tens of micro seconds for a single remote read opera-
tion {2,20]. The gap between processor cycle and remote memory
access time becomes wider, as the processor technology improves
and rigorously exploits instruction level parallelism. IBM SP-2 in-
curs approximately 40 psec to read data allocated to remote
processors [2,24}. Considering that the microprocessors are running
at over 66.5 MHz (15 nano sec cycle time) for the SP-2 590 model,
the loss due to a remote read operation is enormous; A single remote
read operation would cost 40 usec/15 nsec, or 2667 cycles.

Various approaches have been developed to reduce/hide/tolerate
communication time, as well as to study communication behavior
for general purpose parallel computing {8]. Data partitioning in HPF
is a typical method to reduce communication overhead [10]. While
data distribution can be carefully designed to minimize the number
of remote reads for the given problem, this approach is effective for
specific applications where data partitioning can be well tuned. Ap-
plications such as computational fluid dynamics change their
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computational behavior at runtime. The initial data distribution is of-
ten found invalid and inefficient after some computations.

Multithreading aims at tolerating memory latency using context
switch. Through a split-phase read transaction, a processor switches
to another thread instead of waiting for the requested data to arrive,
thereby masking the detrimental effect of latency [14]. The Hetero-
geneous Element Processor (HEP) designed by Burton Smith
provides up to 128 threads [21]. A thread switch occurs in every in-
struction with 100 nsec switching cost. Threads are usually ended by
remote read instructions since those may incur long latencies if the
requested data is located in a remote processor [14]}. The Monsoon
data-flow machine developed at MIT switches context every in-
struction, where a thread consists of a single instruction [15].

The EM-4 multiprocessor, the predecessor of EM-X, provides
hardware support for multithreading [17,18,19]. Thread switch
takes place whenever a remote read is encountered. Threads can also
be suspended with explicit thread scheduling. The Alewife multi-
processor provides a hardware support for multithreading [1].
Together with prefetching, block multithreading with four hardware
contexts has been shown to be effective in tolerating the latency
caused on cache misses for shared-memory applications such as
MP3D. The Tera multithreaded architecture (MTA) provides hard-
ware support for multithreading [3]. The maximum of 128 threads
are provided per processor. Context switch takes place whenever a
remote load or synchronizing load is encountered.

An analytic model for multithreading is studied in [16]. The study
indicated that the performance of multithreading can be classified
into three regions: linear, transition, and saturation. The perfor-
mance of multithreading is proportional to the number of threads in
the linear region while it depends only on the remote reference rate
and switch cost in the saturation region. The Threaded Abstract Ma-
chine studied by Culler et al. exploits parallelism across multiple
threads {7]. Fine-grain threads share registers to exploit fine-grain
parallelism using implicit switching.

Simulation results on the effectiveness of multiple hardware con-
texts indicated that multithreading is effective for programs which
are optimized for data locality by programmers or compilers [25].
Some experimental results on EM-4, however, indicated that sim-
ple-minded data distribution can give performance comparable to
that of the best performing algorithms with hand-crafted data distri-
bution but no threading [23]. The Cilk Project builds a software-
based distributed shared memory programming environment using
a multithreaded runtime system [5]. Threads specified in the high-
level language Cilk are automatically scheduled by the runtime sys-
tem and execute in a machine-independent multithreaded fashion.

This paper investigates the performance of multithreading with
the EM-X multiprocessor. Critical parameters in multithreading are
investigated, including the number of threads, the run length, the
number of remote reads, and the number of switches. The interplay
between the parameters is explained with experimental results. Bi-
tonic sorting and Fast Fourier Transform are selected and their
multithreaded algorithms are developed. Data and workload distri-
bution strategies are developed to explicate their performance. The
ultimate goal of multithreading is to tolerate communication time. In
this respect, the experiments are carried out to identify how multi-
threading helps overlap communication with computation.
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2 Multithreading Principles and Its Realization
2.1 The principle

A thread is a set of instructions which are executed in sequence. A
multithreaded execution model exploits parallelism across threads
to improve the performance of multiprocessors [9,11]. Threads are
usually delimited by remote reads which may incur long latency if
the requested data is located in a remote processor. Through a split-
phase read mechanism, a processor switches to another thread in-
stead of waiting for the requested data to arrive, thereby masking the
detrimental effect of latency. Figure 1 illustrates the basic principle.

Processor 0, Py, has three threads, TO, T1,and T2, ready to exe-
cute in the queue. Py indicates that TO is currently being executed
which is indicated by a thick dark line. Py starts executing the first
thread, TO. As TO is executed, a remote read operation is reached,
denoted by a dotted line. The processor switches to T1 while the re-
mote memory read request RRO is pending. The processor again
switches to T2 when another remote memory read occurs in T1. Af-
ter T2 completes, TO can resume its execution assuming the
requested data has arrived.

The parameters which characterize the performance of multi-
threading include: (1) the number of threads per processor, (2) the
number of remote reads per thread, and (3) the number of instruc-
tions in a thread, or thread granularity, (4) context switch cost, (5)
remote read latency, and (6) remote read servicing mechanism. The
number of active threads determines the amount of parallelism and
is often bound by hardware. The number of remote read operations
determine the frequency of thread switching. Thread granularity is
determined by the number of instructions per thread. While there is
no clear agreement on thread granularity, fine-grain threading typi-
cally refers to a thread of a few to tens of instructions while coarse-
grain threading refers to thousands of instructions per thread.

Two types of context switch are possible: explicit switching and
implicit switching. Explicit switching uses a thread per activation
frame while implicit switching uses multiple threads per activation
frame. Explicit switching does not require register sharing while im-
plicit switching does since multiple threads may simultaneously
exist in an activation frame. EM-X supports explicit switching. A re-
mote read operation causes the suspension of a thread and in turn
context switches if there is any. This thread switching requires sav-
ing registers to memory as no register sharing across threads is
allowed. The remote read servicing mechanism can be an important
factor. While some machines such as SP-2 and AP1000+ service re-
mote read requests concurrently with program execution, the EM-4
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Figure 1: Multithreading on P processors. f.; = context switch
time, ¢, = remote read time, RR = remote read.
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which is the predecessor of EM-X, treats a remote read as another 1-
instruction thread which consumes processor cycles. This consump-
tion adversely affects the performance. Details are presented in {18].

2.2 The EM-X multithreaded multiprocessor

The EM-X is a multithreaded distributed memory multiprocessor,
built and operational at the Electrotechnical Laboratory since De-
cember 1995 [12,13]. Two types of computational principles are
employed in designing the multiprocessor. The upper level uses the
data-flow principles of execution for executing multiple threads si-
multaneously. The low level employs the conventional RISC-style
execution to exploit program locality. The current prototype of EM-
X has 80 EMC-Y processors, connected through a circular Omega
network. Figure 2 shows an overview of the prototype EM-X multi-
processor. The network is the same as Omega network, except that
each processor is attached to a switch box. Communication in the
EM-X is done with 2-word fixed-sized packets.

A processing element is a single chip pipelined RISC-style pro-
cessor, called EMC-Y, designed for fine-grain parallel computing.
Each processor runs at 20 MHz with 4 MB of one-level static mem-
ory. The EMC-Y pipeline is designed to combine register-based
RISC execution with packet-based dataflow execution for synchro-
nization and message handling support. The processor consists of
Switching Unit (SU), Input Buffer Unit (IBU), Matching Unit (MU),
Execution Unit (EXU), Output Buffer Unit (OBU) and Memory
Control Unit (MCU).

The Switch Unit sends/receives packets to/from the network. It
consists of three types of components: two input ports, two output
ports and a three-by-three cross-bar switch. Each port can transfer a
packet, which consists of a word of address part and a word of data
part, at every second cycle. A packet can be transferred in k+1 cycles
to the processor k hops beyond by a virtual-cut-through routing. The
message non-overtaking rule is enforced by this unit.
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The Input Buffer Unit receives packets from the switch unit. It has
two levels of priority packet buffers for flexible thread scheduling.
Each buffer is an on-chip FIFO, which can hold up to 8 packets. If
the buffer becomes full, the packets are stored to on-memory buffer,
and if not, they are automatically restored back to on-chip FIFO. The
IBU operates independent of the EXU and the memory unit. Packets
coming in from the network are immediately processed without in-
terrupting the main processor. The path between IBU and MCU,
called by-passing direct memory access, is one of the key features of
EM-X. This by-passing DMA together with the path which connects
IBU to OBU is the key to servicing remote read/write requests with-
out consuming the cycles of Execution Unit.

The Matching Unit (MU) fetches the first packet in the IBU FIFO.
If the packet requires matching, a sequence of actions will take place
to prepare for thread invocation by direct matching. Actions include
(1) obtaining the base address of the activation frame for the thread
to be invoked, (2) loading mate data from matching memory, (3)
fetching the top address of the template segment, (4) fetching the
first instruction of the enabled thread, and (5) signaling the execu-
tion unit to execute the first instruction. Packets are sent out through
the OBU which separates the EXU from the network. The MCU
controls the access to the local memory off the EMC-Y chip.

The Execution Unit is a register-based RISC pipeline which exe-
cutes a thread of sequential instructions. It has 32 registers,
including five special purpose registers. All integer instructions take
one clock cycle, with the exception of an instruction which exchang-
es the content of a register with the content of memory. Single
precision floating point instructions are. also executed in one clock,
except floating point division. Packet generation is also performed
by this unit, which takes one clock. Four types of send instructions
are implemented, including remote read request for one data and for
a block of data.

The Output Buffer Unit receives packets generated by the EXU or
IBU. Again, the buffer can hold up to 8 packets. As we have briefly
described above, the key feature of the OBU is to process packets
generated by IBU. Remote read requests received by other proces-
sors are processed by the IBU which uses the by-pass DMA to read
data from the memory. When the data fetched by the IBU is given to
OBU, it will be immediately sent out to the destination address spec-
ified in the read request packet. This internal working of IBU and
OBU is the key feature of EM-X for fast remote read/writes without
consuming the main processor cycles.

2.3 Architectural support for fine-grain multithreading

The EM-X distributed-memory multiprocessor supports multi-
threading both in hardware and software. Hardware supports include
thread invocation through packets, FIFO hardware scheduling of
threads, and by-passing one-sided remote read/write. Software sup-
ports for multithreading include explicit context switch, global-
address space, and register saving. Thread invocation or function
spawning is done through 2-word-sized packets. When a thread
needs to invoke a function (thread), a packet containing the starting
address of the thread is generated and sent to the destination proces-
sor. The thread which just issued the packet continues the
computation without any interruption unless it encounters a remote
read or explicit thread switching.

As the thread invocation packet arrives at the destination proces-
sor, it will be buffered in the packet queue along with other packets
arrived. Packets stored in the packet queue are read in the order in
which they were received, hence First-In-First-Out (FIFO) thread
scheduling. A thread of instructions is in turn invoked by using the
address portion of the packet just dequeued. The thread will run to
completion unless it encounters any remote memory operations or
explicit thread switching. If the thread encounters a remote memory
operation, it will be suspended after the remote read request is sent
out. Should this suspension occur, any register values currently be-

ing used for the thread will be saved in the activation frame
associated with the thread for resumption upon the return of the out-
standing remote memory operation. The completion or suspension
of a thread causes the next packet to be automatically dequeued from
the packet queue using FIFO scheduling.

Whenever a thread encounters a remote read, a packet consisting
of two 32-bit words is generated. The first 32-bit word contains the
destination address whereas the second 32-bit contains the return ad-
dress which is often called continuation. The read packet will be
appropriately routed to the destination processor, where it will be
stored in the input buffer unit for processing. The remote processor
does not intervene to process the packet. The remote read packet will
be processed through the by-passing mechanism which was ex-
plained earlier. When the read packet returns to the originating
processor, it will be inserted in the hardware FIFO queue for pro-
cessing, i.e., thread resumption. Remote writes do not suspend the
issuing threads. For each remote write, a packet is generated which
consists of two 32-bit words. The first word is the destination mem-
ory address and the second the data to be written. The write
instruction is treated the same as other normal instructions. After
sending out the write packet, the thread continues.

Software supports for multithreading include explicit context
switch, global address space, and register saving. The current com-
piler supports C with thread library. Programs written in C with the
thread library are compiled into explicit-switch threads. Two storage
resources are used in EM-X: template segments and operand seg-
ments. The compiled functions are stored in template segments.
Invoking a function involves allocating an operand segment as an
activation frame. The caller allocates the activation frame, deposits
the argument value(s) into the frame, and sends its continuation as a
packet to invoke the caller’s thread. The first instruction of a thread
operates on input tokens, which are loaded into two operand regis-
ters. The registers can hold values for one thread at a time. The
current version does not share registers across threads. The caller
saves any live registers to the current activation frame before a con-
text-switch. The continuation packet sent from the caller is used to
return results as in a conventional call. The result from the called
function resumes the caller’s thread by this continuation.

The level of thread activation and suspension can be nested and
arbitrary. Activation frames (threads) form a tree rather than a stack,
reflecting a dynamic calling structure. This tree of activation frames
allow threads to spawn one to many threads on processors including
itself. The level of thread activation/suspension is limited only by
the amount of system memory. The EM-X compiler supports a glo-
bal address space. Remote reads/writes are implemented through
packets. A remote memory access packet uses a global address
which consists of the processor number and the local memory ad-
dress of the selected processor. A typical remote read takes
approximately 1 ps.

3 Designing Multithreaded Algorithms
3.1 Multithreaded bitonic sorting

Bitonic sorting, introduced by Batcher [4] consists of two steps: lo-
cal sort and merge. Given P processors and n elements, each
processor holds n/P elements. In the local sort step, each processor
takes in n/P elements and sorts them in an ascending or descending
order depending on the second bit of the processor number. The

merge step consists of O(logzP) steps. In each merge step, elements
are sorted across processors in a pair. As iterations progress, the dis-
tance between the pair of processors widens. The last iteration will
sort elements on two processors with the distance of P/2.

Figure 3 illustrates bitonic sorting of n=32 elements on P=8 pro-
cessors. Consider processors 0 and 1 at i=0, j=0. PO has
L=(5,13,24,32) and P1 has L=(6,14,23,31), resulted from the local
sorting step. PO and P1 will sort 8 elements in an ascending order as
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indicated by shaded circles. Hollow circles indicate that processors
sort elements in a descending order. The line between PO and P1 in-
dicates that the processors communicate. PO sends L to its mate
processor P1 while P1 sends L to its mate PO. When PO receives four
elements from P1, it merges them with L, so does P1. Since PO takes
a lower position than P1, it takes the low half (5,6,13,14) while P1
takes the high half (23,24,31,32). This type of sending, receiving,
and merging operations continues until the 32 elements are sorted
across the eight processors.

A multithreaded version of bitonic sorting divides the inner j loop
into A threads [22]. Each thread is responsible for merging n/hP ele-
ments. The main idea of the multithreaded algorithm is to first issue
remote reads by k threads, called thread communication parallelism,
followed by the computation whenever any n/hP elements are read,
called thread computation parallelism. Read requests for n/P ele-
ments are issued before any merge. Whenever n/hP elements are
read, i.e., whenever each thread finishes reading n/AP elements from
the mate processor, it will merge them with its own list L. This read-
ing (communication) and merging (computation) will take place
simultaneously, to overlap computation with communication.

Figure 4 illustrates how two processors Px and Py sort 8 elements
in an ascending order. For the illustration purpose we use two
threads in each processor. Four elements are divided into two parts,
each of which is assigned to a thread. Processors X and Y initially
hold (2,5,6,7) and (1,3,4,8), respectively. Thread O of Px is respon-
sible for reading and merging the first half (1,3) of Py while thread
1 does for the second half (4,8). Sorting of the eight elements on the
two processors proceeds as follows:

1. Atr,, ThdO sends out the read request RRO to Py, and suspends
itself.

2. Betweent, and 1, the switch to Thdl takes place, spending sev-
eral clocks.

3. Atty, Thdl sends out the read request RR2 to Py, and in turn is
suspended.

4. Between #, and ¢, there are no threads running. Both threads
are dormant.

5. Att,, RRO returns with value 1 which will be saved in a buffer
for merge. The value resumes Thd0.

6. Atty, RR2 returns with the value 4 but no further activities will
take place since ThdO is currently running.

7. Att,, Thd0 sends out the read request, RR1, to Py, and then sus-
pends itself. Switching to Thdl takes place.

8. At 1, Thdl sends out the read request RR3 to Py, and in turn
suspends itself.

9. Between f; and ¢, there are no running threads. Both threads
are in a suspended status, and therefore no computation takes
place. Even though Thdl has received the value 4, it cannot
perform the merge operation since Thd0 is not complete. Merg-
ing 4 with the list will result in a wrong order. Thdl can
proceed only after Thd0 completes. This is exactly where sort-
ing lacks computation parallelism across threads. As we shall
see shortly, FFT has large computation parallelism across all
threads.

10. At RR1 returns with value 3. Thdl is still in the suspended
status. Thd0 has now read all the necessary elements, and im-
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mediately merges the two elements with its own list.

11. At RR3 returns with value 8 but no actions will take place
since ThdO is currently running.

12. At t;, ThdO completes the merge, resulting in the output of
(1,2,3). Switching to Thd1 now takes place. Since Thdl also
has two elements read from Px, it will immediately proceed to
merging, which will give (1,2,3,4).

The above example assumes that each thread merges only after it
reads n/hP consecutive elements from the mate processor. Bitonic
sorting presents little computation parallelism across threads. Al-
though communication can be done in parallel, computation must
proceed in an orderly fashion so that the output buffer will contain
elements sorted in a proper order. It should also be noted that the
amount of computation for each processor is not the same. Thread 0
performed merge operations with 1 and 3. However, Threadl per-
formed merge operations with only one value, 4. When Threadl
reached 1, the processor has four elements properly sorted. Thread
1 is therefore not required to read the fourth element 8 from the mate
processor. This irregularity in computation occurs because not all
the elements residing in the mate processor need to be read.

3.2 Multithreaded FFT

The second problem used in this study is Fast Fourier Transform
(FFT) {6]. Consider a 16-point FFT on four processors. Using
blocked data and workload distribution methods, the 16 elements are
divided into four groups, each of which is assigned to a processor.
PO has elements 0 to 3, P1 4 to 7, etc. An FFT with » elements re-
quires log rn iterations. The 16-point FFT requires 4 iterations. In
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Figure 4: A multithreaded version of bitonic sorting. Proces-
sors X and y sort 8 elements in an ascending order. Characters
a..j indicate the time sequence. Each processor has two threads,
each of which handles two elements. Communication for Px is
in solid lines and for Py in dotted lines.
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iteration 0, each processor obtains a copy of four elements by find-
ing its mate processor. PO remote reads four elements 8...11 while
P1 does 12...15 from P3. P2 and P3 also obtain necessary data allo-
cated to PO and P1, respectively. Iteration 1 is essentially the same
as iteration 0, except the logical communication distance reduces to
half the first iteration. Iterations 2 and 3 do not requite communica-
tion since the required data are locally stored. In general, an FFT
with blocked data distribution of n elements on P processors re-
quires communication for the first log P iterations. The (log n) — (log
P) iterations are local computations. In this report, only the first log
P iterations are used.

Converting a single-threaded FFT to a multithreaded version is
straightforward. Like bitonic sorting, the data assigned to each pro-
cessor is grouped into h threads to control the thread granularity.
Figure 5 explains the internal working of the multithreaded FFT
with P=4, n=16, and h=2. Those four elements assigned to a proces-
sor are split into two groups. Each processor has two threads, each
of which handles two elements.

Unlike Bitonic sorting, however, FFT possesses no data depen-
dence between elements within an iteration. This observation leads
to computation whenever any data is remote-read from the mate pro-
cessor. In the above example, the threads compute and communicate
independent of other threads. When Thd0 issues the remote read
RRO, it is suspended. Processor O now switches to Thd1l, which sub-
sequently issues the remote read RR2. As RRO returns value §, Thd0
now proceeds to computation while RR2 is outstanding. As Thd0
completes the computation with the value 8, it sends out RR1, fol-
lowed by its suspension. Thd1 immediately proceeds to computation
with the value 10, which has returned sometime ago. Since the value
10 is the only one returned, the FIFO thread scheduling allows Thd!l
to immediately proceed to computation with the value 10. Unlike bi-
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Figure 5: A multithreaded FFT, showing iteration 0. The figure
is not drawn to scale. Each processor has two threads, each of
which computes two points. No thread synchronization is re-
quired for FFT.



tonic sorting, no threads are synchronized for an orderly
computation in FFT. No time is, therefore, lost for thread schedul-
ing. This computation parallelism across threads will be evidenced
by experimental results which will be shown later.

4 Overlapping Analysis

The multithreaded version of fine-grain bitonic sorting and FFT has
been implemented on the EM-X. They are written in C with a thread
library. To measure the effectiveness of overlapping capability we
forced loops to execute synchronously by inserting a barrier at the
end of each iteration. The terms elements and integers are used in-
terchangeably in this paper. The unit for sorting is integers while that
for FFT is points. An integer is 32 bits. A point consists of real and
imaginary parts, each of which is 32 bits.

Communication times are plotted in Figure 6. The x-axis shows
the number of threads while the y-axis shows the absolute commu-
nication time. The most important observation of the figure is that
the communication time becomes minimal when the number of
threads is three to four. The reason is clear. In bitonic sorting, each
thread reads m elements from the mate processor before merging.
The loop below shows an actual code taken from the program.

for (k=0;k<m;k++) /* m = n/hP = # of elements/thread */
bufter{k] = mem_read(mem_address++);

In each iteration, an element is read from the mate processor, as-
suming mem_address is properly initialized. After each read
request, the thread is suspended and another thread is reactivated un-
til each thread reads m elements. The loop body has 12 instructions,
i.e., an jteration takes 12 clocks to execute, resulting in the run
length of 12. The average remote memory latency, when the net-
work is normally loaded, is approximately 1 to 2 psec, or 20-40

clocks. Thus, each remote read needs two to four threads to mask off
the 20-40 clock latency. This is precisely why the communication
times become minimum when the number of threads is two to four.
The number of threads higher than four does not give a notable ad-
vantage in masking off the latency.

The effect of multithreading is higher for FFT, as evidenced by
the deep valleys. The run length for FFT is much higher than sorting.
As we have explained earlier, bitonic sorting requires thread syn-
chronization to ensure proper merge. However, FFT is free from
thread synchronization. Therefore, the run length for FFT is very
large. The following code shows how multithreading is actually
implemented.

for(i=0;i<m;i++) {  /* m = n/hP = the # of points/thread */
compute real_address and img_address;
mate_real = remote_read(real_address++);
mate_img = remote_read(img_address++);
a lot of instructions with two reals and two imaginaries;

}

Unlike sorting, FFT proceeds to computation for the elements
read from the mate processor. There is a very large number of in-
structions immediately after the second remote read. This large
amount of computations can effectively mask off the latency. This
is precisely why two or three threads simply outperform all other
threads in FFT.

When the two problems are cross-compared, we note that sorting
has much higher communication time than FFT, There are several
reasons for the high communication. Among the reasons is the num-
ber of switches. Sorting requires thread synchronization whereas
FFT does not. This thread synchronization presents a severe bottle-
neck as it limits the amount of computation parallelism across
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Figure 6: Communication time in seconds.
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threads. Second, the sorting presents irregular computation and
communication behavior due to the fact that not all the elements of
the mate processor are needed to complete the merge operation.
FFT, on the other hand, requires all the elements to be read for
computation.

When the two problems are compared across different numbers of
processors, the communication pattern is relatively consistent for
both sorting and FFT. For bitonic sorting, increasing the number of
processors to 64 rarely changes the communication pattern. As we
can see, there is little difference in Figure 6(a) and (b) for sorting, or
(c) and (d) for FFT. This consistency in communication pattern in-
dicates that varying the number of processors is not the main factor
for contributing to communication patterns. It should be noted that
the data size for each processor is the same regardless of the total
number of processors.

The effects of data size on communication pattern are inconsistent
for both problems. For bitonic sorting with P=64, we find that vary-
ing data size rarely affects the communication performance, except
for one thread. However, it becomes apparent for FFT. Note from
Figure 6(d) with P=64 that the small data size of 512K gives a steep-
er curve than that of 8M, except one thread. In other words, the curve
for 512K has a valley deeper than the one for 8M. The reason is that
the data size of 8K for each processor is just too small compared to
128K. This relatively small data size is not significant enough to
provide computations which can help mask off the communication
latency.

To put the communication times into the multithreading perspec-
tive, we identify the efficiency of overlapping. Let Teopm 1 be the
communication time for h threads. We define the efficiency of over-
tapping as E = (Toomm 1 — Teommp) / Tcomm,1- The communication
time with one thread is used as the basis for overlapping analysis.

When only one thread is used, there is no possibility that computa-
tion will overlap with communication since there is no other thread
to switch to. Figure 7 shows the EM-X overlapping capabilities for
the two problems.

Bitonic sorting has given roughly 35% overlapping of communi-
cation with computation. However, FFT has given over 95% of
overlapping for two to four threads. This rather significant differ-
ence is attributed by two factors: First, bitonic sorting is sequential,
presenting little parallelism among threads within an iteration while
FFT is highly parallel. As we have explained in Section 3.1, commu-
nication for sorting can take place in any order but computation must
be done in an ascending order of threads to ensure proper merge.
Thread j cannot proceed to computation before Thread i, where j >
i. Synchronization between threads is required to properly sort num-
bers. Therefore, bitonic sorting provides parallelism in remote
reading only, not in computation. Threads in FFT, on the other hand,
can proceed in any order, i.e., computation and communication can
proceed in any order. Since there is no dependence between ele-
ments within an iteration, thread synchronization is not necessary,
resulting in high parallelism among threads. This parallelism is
clearly revealed in Figure 7(c)-(d).

The second reason FFT shows high overlapping efficiency is due
to the fact that the amount of computation is much higher than that
of communication. The total amount of computations for sorting is
very small, consisting of several comparison and merging instruc-
tions. The computations for each element are not more than 10
instructions excluding loop control instructions. On the other hand,
the computations involved in each element of FFT are large, which
include some trigonometric function computations and a loop to find
complex roots. There is a rather large difference between the two
programs in terms of the computation associated with each element.
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5 Analysis of Switches

Context switches are one of the key parameters which determine the
performance of multithreading. In this section, we shall look further
in to the behavior of multithreading in terms of switches. Figure §
shows the individual execution time of the two problems. The plots
have four timing components: computation, overhead, communica-
tion, and switching, listed from the bottom. There is no apparent
anomaly for the distribution of times, except for one thread. The rea-
son that the relative execution time for one thread is different from
others is because one thread involves no overlapping, which makes
the relative communication time ‘look’ larger. This relatively large
communication time in turn makes the computation time look
smaller.

Computation times for bitonic sorting are less than communica-
tion times. Figure 8(a)-(c) shows that computation times change as
the number of threads changes. In fact, the total amount of compu-
tation must not change. The little change is attributed by the fact that
the timing measurement is done through a global clock. When the
problem size is large, no fluctuation occurs since the time to measure
the global clock is negligible compared to the overall computation
time. The reason bitonic sorting gives a little higher change in com-
putation than FFT is attributed by another factor. Sorting is
implemented in such a way that a processor may or may not have to
read all the elements from the mate processor. As long as each pro-
cessor produces n/P elements, it is done with the computation and
will go into synchronization.

Overhead refers to the time taken to generate packets. It is essen-
tially fixed not only for different numbers of processors but also for
different problems since the total number of elements allocated to
each processor is the same. We measured the overhead by using a

null loop body, i.e., the loop body has no computation but instruc-
tions to generate packets. We tind this was effective to measure the
overhead cost for generating packets.

Switches are classified into three types: remote read switch, iter-
ation synchronization switch, and thread synchronization switch.
Figure 9 shows the three types of switches. The x-axis indicates the
number of threads and the y-axis shows the absolute number of
switches. The plots are drawn to the same scale. The figure reveals
the internal working of multithreading. The remote read switching
cost is in general the dominant factor contributing to the main
switching cost. This is obvious because every remote read causes a
thread switch. The remote read switching cost is fixed regardless of
the number of threads because the number of elements to be read is
indeed fixed. In fact, this switching can be readily derived from the
given n, h, and P.

It is clear that thread synchronization switching cost is not the
main factor for the two problems regardless of the numbers of pro-
cessors. The behavior of thread synchronization switching is
different for the two problems. The thread switching cost for bitonic
sorting is rather high and is close to the iteration synchronization
switching cost. On the other hand, FFT shows that there is a wide
gap between thread and iteration synchronization switching costs.
This gap shows that sorting spends a lot more time synchronizing
threads within a processor. This was expected because threads in
sorting are executed in sequence while FFT threads can execute in
any order. The effects of the presence and absence of computation
parallelism across threads are clearly manifested in the plots.

Iteration synchronization switching can be as high as remote read
switching for the small problem size of 512K, as shown in Figure
9(a) and (c). As the number of threads reaches 16, the synchroniza-
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tion switch cost is in fact higher than the remote read switching cost.
The reason is because the amount of computation is relatively small.
After such small computations, 16 threads check if other threads are
done for the current iteration. In fact, the iteration switching cost in-
creases logarithmically as the number of threads increases linearly.
There is approximately an order of magnitude difference in the num-
ber of iteration synchronization switches. For large problems shown
in Figure 9(b) and (d), the amount of computation is now 16 times
higher, which effectively eliminates the impact of iteration synchro-
nization switching cost.

When the two problems are compared across different numbers of
processors, switching pattern changes. Remote read switch and iter-
ation synchronization switch do not meet. Each processor now finds
more computations which separate the two curves. In fact, the
switching cost no longer increases rapidly for P=64. The fluctuation
for sorting with P=64 again shows that sorting possesses an irregular
computation and communication pattern compared to FFT.

6 Conclusions

Reducing communication time is key to obtaining high performance
on distributed-memory multiprocessors. Multithreading aims to re-
duce communication time by overlapping communication with
computation. This paper has presented the internal working of mul-
tithreading through empirical studies. Specifically, we have used the
80-processor EM-X multithreaded distributed-memory machine to
demonstrate how multithreading can help overlap communication
with computation.

Bitonic sorting and Fast Fourier Transform have been selected to
test the multithreading capabilities of EM-X. The criteria for the
problem selection have been the computation-to-communication ra-
tio and the amount of thread parallelism. Bitonic sorting has been
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selected for its nearly 1-to-1 computation-to-communication ratio
and the small amount of thread computation parallelism. FFT has
been selected because of its high computation-to-communication ra-
tio and the large amount of thread computation parallelism. Both
problems have been implemented on EM-X with blocked data and
workload distribution strategies. The data size of up to 8M integers
for sorting and 8M points for FFT have been used.

Experimental results have presented two key observations. First,
the maximum overlapping has occurred when the number of threads
is two to four for both problems. Sorting has the run length of 12
clocks per thread, and therefore four threads have been found ade-
quate to mask off the latency of 20 to 40 clocks, or 1 to 2 psec.
Larger numbers of threads have adversely affected the amount of
overlapping due to an excessive number of switches. In particular,
iteration synchronization switch has been found the main cause for
excessive synchronization costs among switches and a loop. The
run-length of FFT is very large with hundreds of clocks due to trig-
onometric function computations. This rather high run-length has
been found sufficient to effectively tolerate the latency of 20 to 40
clocks. .

Second, the ratio of computation to communication plays a criti-
cal role in tolerating latency. Bitonic sorting results have shown that
the maximum overlap has reached approximately 35%. The reason
for the low overlapping was because bitonic sorting has small abso-
lute computation time and lacks thread computation parallelism,
requiring thread synchronization. FFT, on the other hand, has shown
over 95% of communication overlapping due to its high computa-
tion-to-communication ratio and the large amount of both thread
computation and communication parallelism. FFT threads can com-
pute and communicate in any order within an iteration, requiring no
thread synchronization.
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The study has indicated that fine-grain multithreading can hold a
key to obtaining high performance on distributed-memory ma-
chines. The fact that multithreading can tolerate over 35% of the
total communication time for sorting in the absence of computation
parallelism clearly demonstrates such a premise. Problems which
possess irregular computation behavior and moderate parallelism
can be a logical target for obtaining high performance through mul-
tithreading. We believe it is a realistic goal to achieve high
overlapping for such irregular problems if the thread scheduling and
synchronization mechanisms are fine tuned to thread computation
and communication parallelism. It is our next goal to fine-tune
mechanisms for hardware thread scheduling and synchronization.
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