
ZeroCopy: Techniques, Benefits and Pitfalls

Eduard Bröse

washuu@cs.tu-berlin.de

Abstract: We discuss various approaches intended to improve the data processing
performance in OS kernels/drivers commonly described as ZeroCopy techniques. The
main principle of ZeroCopy is to avoid completely or at least minimize unnecessary
data copy operations by the CPU while processing I/O data in kernel drivers such as
networking stacks and disk storage drivers. Modern CPU and memory architectures
provide many interesting features to implement such techniques efficiently, however
their advantages are often overestimated. The complexity of the memory architecture
as well as necessary data processing in networking protocols may impose many prob-
lems and sometimes nullify the advantages of a promising ZeroCopy technique. We
will try to take a closer look at various existing and proposed implementation and an-
alyze their weak points. This paper will mostly concentrate on the modern UNIX-like
operating systems such as Solaris and Linux with an emphasis on ZeroCopy perfor-
mance and implementation issues in networking stacks.

1 Introduction

While demand for computing performance grows, and current CPU designs have almost
reached the edge of possible miniaturization, switch to parallelization with introduction
of multicore CPUs is often considered the only feasible option. However, what is often
forgotten, is that doubling of the CPU performance (which is also in no way guaranteed for
parallel systems and requires redesign of software) doesn’t mean an adequate increment in
overall system performance, especially when it comes to processing large amounts of data.
The performance of system memory, as well as the bus interface to it were not developing
as fast as the CPU performance, with sustainable memory bandwidth attaining an average
35% increment per year, while CPU processing power increasing about 50% in the same
time. Memory and bus bandwidth are thus the major limiting factors for the data-intensive
applications, most notable of them is the networking.

The fundamentals of many modern operating systems including memory management and
networking subsystems were created quite a long time ago, when network speeds were
quite low and the CPU-to-memory performance ratio was still a relatively minor issue.
The steady increase of network speeds, with gigabit Ethernet already being widely adopted
in consumer sector calls for revision of the traditional data processing design in operating
systems with the goal of eliminating unnecessary memory access overhead [1]. Even a
brief analysis of the data processing paths in kernel reveals many such issues, where data
is unnecessarily moved multiple times from one buffer to another.

1



Measurements of processing cost in networking stacks have shown that memory operations
are responsible for a significant amount of processing costs, as compared to the per-packet
processing which involves interrupt handling, context switches and buffer management.
Processing of a single packet may cause four memory bus accesses and per-byte cost
starts to dominate processing cost with packets longer than 128 bytes, linearly increasing
with packet size. Estimations for different networking protocols in regard to their maxi-
mal packet length (Maximum Transmission Unit, MTU) show that about 18-25% of the
performance were attributed to per-byte operations for Ethernet (MTU=1500), 35-50% for
FDDI (MTU=4352) and 55-65% for IP over ATM (MTU=9180). Since data from network
packets not only needs to be copied, but also checksummed, these operations are usu-
ally combined, with checksumming being accountable for about 20-30% of total per-byte
cost. Benchmarking tests showed for example that a typical Athlon 1.2GHz system would
barely handle just I/O related processing when exposed to 1Gbit/s Ethernet traffic on an
unoptimized BSD TCP/IP stack [2].

ZeroCopy is a common name for various techniques and design improvements aimed at
reduction of unnecessary memory accesses, usually involving avoidance of data copying.
In the following chapters we present various ZeroCopy concepts and analyze their benefits
but also their implementation and performance problems, often not realized through the
general concept description.

1.1 Example of a Typical Data Transfer with read/write

First we will take a look at the typical file transfer operation as performed by some kind of
server. Normally, the user application would allocate a buffer of suitable size to hold the
data to transfer, read the data from a file and transfer it over the network connection to the
client. From the application’s point of view, the transfer is accomplished using two system
calls, read and write (or sendto) and doesn’t require any copying. However, if we look at
the inner workings of the kernel parts involved in such transmission, we will see that such
approach is quite inefficient, even with hardware support for DMA transfers.

First, the kernel would load the data from the disk into its own buffer using DMA, unless
this data is still cached in a kernel buffer after a previous access to the same file. Such
transfer doesn’t require much CPU effort except for the buffer management and DMA
setup and handling. After the file contents were fetched, data needs to be transferred into
location in the user address space specified in the read call, which is done by CPU copy in
a kernel function such as copyout or copy to user.

In the next step, the data again need to be transferred using CPU by user-to-kernel copy
function such as copyin or copy from user, from the user buffer to the kernel buffer asso-
ciated with the network stack. After the copy is completed, the network stack can begin
packetizing it and sending to the network interface card (NIC), using DMA. The applica-
tion can however already return from the system call and continue its operation while data
is still being sent. The write call semantics imply that the contents of the user buffer may
be safely discarded or modified immediately afterwards, since the kernel has its own copy

2



which will be only discarded after successful transmission to the hardware, and if the used
protocol requires it, after confirming successful arrival on the destination peer [3].

As we see, at least 4 copies are necessary for this simple operation, even when using DMA
to communicate with the hardware, CPU is still accessing the data two times. If we go
deeper in the inner workings of kernel parts involved, even more data processing by CPU
may be revealed. In the read step, the data typically doesn’t come directly from the disk,
but must pass the filesystem layer, eventually resulting in data aligning and concatenating
procedures. In the write step of our file transmit operation, the data, the future packet
payload must be split into fragments suitable for packet size, headers must be prepended
and checksum over payload must be calculated.

Figure 1: Typical file transfer with read and write

Modern filesystems and networking stacks already try to optimize these operations. Nor-
mally, the files stored in the file system are aligned to some block size (typically 1 kilobyte)
and the filesystem tries to avoid file fragmentation. In most cases, file contents may be read
into file cache buffers directly without additional alignment corrections.

In case of the networking stacks, appending headers and trailers to the payload by layers of
the stack would require copying of the payload multiple times. Instead, these operations
are replaced by handling a structure representing a complex packet, skbuf in BSD and
Linux, or a more generic mblk in the STREAMS framework [4]. Headers can be appended
in a linked list fashion by allocating an mblk structure that uses the aforementioned kernel
buffer for storage, with pointers “cutting out” the needed portion of the payload, and the
headers being smaller buffers allocated from a pool appended or prepended to it. As
the message passes through the network layers, another blocks can be appended without
copying contents. This concept also allows the reference of the same storage buffer by
multiple packet messages and employs a simple reference counting mechanism, allowing
freeing of the storage buffer as soon as all messages referencing it were discarded after
being successfully sent.

3



The actual CPU copy also doesn’t go to waste, since the most performance loss occurs due
to the memory access and not CRC calculations on the CPU [2, 5], modern stacks use the
opportunity of touching data by the CPU to compute the payload checksum at the same
time. This technique is sometimes described as “SingleCopy” [5].

As such fragmented message reaches the destination driver, another copy might be needed
to flatten it, so the DMA engine of the networking interface can fetch it from the host’s
memory in one turn. Some of the modern hardware supports so-called DMA Gather Copy
that allows reading of multiple data fragments in one DMA session. This feature is further
discussed in the “sendfile with DMA Gather Copy” chapter.

Even with such optimizations, our example will still use 2 CPU copies, which lead to a
total 4 memory bus transfers. In general, almost every traditional system call involving
data transmission would lead to at least one CPU copy between user and kernel space.
Further, a simple file transfer like in our example doesn’t require the data from the file
to be transfered to the user application at all. In the following sections we will examine
various techniques that can avoid or at least optimize such operations.

1.2 ZeroCopy Technique Classes

Traditionally, kernel serves as an abstraction layer between user application and hardware,
brokering the data transfers between them. This basically leads to the need of two data
transfers - from application to kernel and from kernel to hardware, compared to one that
would be needed if the application would access hardware directly. Further, communi-
cation between hardware and software allows usage of DMA that relieves the CPU, but
between two pieces of software, the application and the kernel, there’s no such supporting
feature. Various ZeroCopy techniques approach this problem from different angles.

ZeroCopy techniques can be roughly separated into three classes :

1. Avoidance and optimization of in-kernel data copying - as mentioned in our file
transfer example, in some cases the application doesn’t actually require an access to
the data. This class of techniques aims at implementing new system calls or opti-
mizing the traditional ones in order to achive more performance in such specialized
cases, where data may be processed completely within kernel.

2. Bypass of the kernel on the main data processing path - analogous to the above,
sometimes kernel doesn’t need to deal with data directly and might be avoided,
allowing direct data transfers between user space memory and hardware, with kernel
only managing and aiding such transfers.

3. Optimization of data transfer between user application and kernel - finally the third
class of techniques concentrates on optimization of the CPU copies between kernel
and user space, which maintains the traditional way of arranging communication
and is more flexible.

4



2 In-Kernel Data Copy

2.1 Using mmap

One simple way to force direct copy within kernel is to memory-map the file being trans-
mitted instead of reading it into the user buffer, then specify the mapped buffer in the write
call. This way, the user application not only saves memory, it avoids data transfer to and
from usermode, as the write call may now directly copy data from one kernel buffer to
another. While being completely POSIX-compatible, this method does not achive ideal
performance. One CPU copy is still required in order to maintain the write semantics, and
the establishment of the mapping is also a costly VM operation that requires page table
modifications and TLB flushes in order to maintain memory coherence, however since
mapping is usually done for a relatively large area (many kilobytes), these costs would
be easily outweighted by CPU copy over the same length. Further, it is subject to excep-
tional situations that need proper handling, for example, truncation of the file while it is
being transmitted will cause signalling of the application that must be caught and handled
properly [3].

Figure 2: Using mmap instead of read

2.2 sendfile

In order to simplify the user interface, while exploiting the CPU copy reduction advan-
tage of mmap/write technique, the sendfile system call was introduced on some operating
systems, including BSD, Solaris, AIX and Linux, first implemented in the kernel 2.1.
Windows NT also has a similar API function TransmitFile.

sendfile interface requires two file descriptors, with the first one being a readable memory-

5



mappable file such as regular file or a block device, the second one can be a writable file
or a network socket. The semantics of the sendfile is to transmit data of the specified
length, or completely, from the first descriptor to another without copying or mapping any
of it to the user address space, which makes it only usable in situations where the user
application is only interested in data copy but not in any processing. Since the transmitted
data should never cross the user/kernel boundary, sendfile greatly reduces costs of memory
management, compared to the mmap solution, it also requires only one system call. send-
file returns once all data was successfully copied from disk buffers to socket buffers while
data may still be transmitted via network, the semantics are therefore similar to that of
the write call. sendfile implementation also fits well in the kernel framework, as it doesn’t
require any changes in the memory and buffer management, this way it is also able to
transparently utilize the page cache (also known as disk cache) parallel to generic file read
functions.

Figure 3: In-kernel file transmission with sendfile

While being a good replacement to the mmap technique, sendfile is very limited in its func-
tionality and is typically only used in file-serving network applications like web servers.
It was stated [6] that the decision to include sendfile in Linux kernel was only made on
demand from Apache project that used it on other platforms, and because of simplicity of
the implementation and good integration with the rest of the kernel. The main problem
is that sendfile requires explicit usage by the applications, is not standardized and has dif-
ferent interfaces on other UNIXes. Due to asynchronity of the network transfers it is also
more difficult to implement the receiving counterpart to sendfile call, leaving the receiver
without such technique. Regarding performance, sendfile is still requiring one CPU copy
from file to socket buffers which also pollutes cache with contents of the data transmitted.

6



2.3 sendfile with DMA Gather Copy

Further improvement of sendfile technique is possible if the CPU copy between the disk
buffer and socket buffer is eliminated. It is possible with some hardware devices that
support so called DMA Gather Copy. The main concept behind it, is that given the
gather/scatter feature is available, the data for DMA transfers do not need to be in a con-
secutive memory area, but may be collected from multiple locations. This way, the data
read from a file (the payload) does not need to be copied to the socket buffer at all. Instead,
only a buffer descriptor is passed to the networking stack, which then constructs packet
headers and trailers in its own buffers, and combines everything to a single network packet
via DMA gather copy. The DMA engine of the networking card will read the headers and
the payload from multiple locations in a single operation.

Figure 4: sendfile with DMA gather copy

This way, CPU would not only avoid the copy, it will theoretically never come in contact
with transmitted data, which can have a positive effect on the CPU performance: first,
cache is not polluted with payload data, second, the cache coherency doesn’t need to be
maintained - caches do not need to be flushed before or after the DMA transfer. In practice
however, the latter is rather difficult to implement, considering how sendfile is integrated
into the memory management framework. As mentioned before, the source buffer may be
a part of the page cache, which means it is available for the generic read functionality and
may be accessed in traditional way as well. As long as the memory area can be accessed by
the CPU, the cache consistency has to be maintained by flushing the caches before DMA
transfer from them.

7



2.4 splice

Another proposal for the fast in-kernel data transfers as a replacement for read and write
system calls that copy data between user and kernel buffers is the introduction of the new
system call splice. splice is meant to be a facility for user applications that allows estab-
lishing of data transfer paths, instead of explicit data copying using buffers located in the
user space. This way, data, as long as it doesn’t require processing by the user application,
but merely transfers from one instance to another, can be moved entirely within kernel,
eliminating most of the copying. Further, these transfers can be done asynchronously,
with user application returning from the system call and continuing its operation while a
kernel thread would control the actual transfer. The concept of splice could be seen sim-
ilar to the STREAMS-based pipe implementation that interconnects two file descriptors
leading to user, while splice interconnects two devices (or protocol stacks) within kernel,
controlled by the user process.

splice interface is very similar to the sendfile, the user application must already have two
file descriptors opened to the input and the output device. Unlike sendfile, splice allows
interconnection of two arbitrary file descriptors, not just file-to-socket transmission. splice
call takes the two file descriptors and desired transmission length (or a constant that defines
transmission to the end of file) as arguments. Depending on file descriptor configuration
(which can be done using fcntl), the call can be blocking for duration of data transfer, or
asynchronous. In latter case user application will be informed of transfer termination with
a signal (SIGIO).

During transfer, splice mechanism will alternately issue reads and writes on associated file
descriptors, and is able to reuse read buffers for the writes. It also employs a simple flow
control by using predefined watermarks for pending write requests.

Performance measurements done by testing file transfers from one disk to another showed
about 30-70% improvement in throughput and almost halving of CPU load during transfer
[8].

3 Kernel Bypass Techniques

3.1 Direct Hardware Control from User Applications

One of the most performant techniques is to allow direct access to device’s memory by
application or libraries running in user mode. This way it is possible for main data pro-
cessing path to bypass the kernel almost completely, with exception of necessary virtual
memory configuration tasks. On part of usermode implementation, it is possible to design
extremely performant networking stacks optimized for a very specific task, for example for
an implementation of the message passing interface (MPI) or remote shared memory in a
cluster computing system [9, 10]. Such library could be designed to prepare buffers for
send and receive in the most efficient way and implement flow control optimized for the
protocol used. On the hardware side, it would be possible to take advantage of recent NIC

8



designs equipped with fully programmable controllers, and use custom firmware to im-
plement not only basic processing tasks like checksumming, but also parts of networking
stacks, thus reducing the main CPU load.

Needless to say that using this technique breaks the hardware abstraction, the one of the
most important aspects of modern operating systems. Further, the NIC controllers usually
utilize a less powerful CPU for example a MIPS-architecture processor with simplified
instruction set (without unnecessary features such as floating point calculations etc.) and
also do not have much memory to hold a complex software. The implementations are
therefore usually restricted to specialized protocols on top of Ethernet with much simplier
design than TCP/IP [11, 10], and are mostly used in the LAN environment, where packet
losses and corruptions are exceptional, which makes complex packet acknowledgement
and flow control unnecessary. Since such an implementation would also require design of
custom NIC firmware, they are hardware-dependant. In order to provide a reliable platform
for design of such implementations, a standard was proposed by a few network interface
manufacturers, the Virtual Interface Architecture (VIA) [12]. VIA defines functions, data
structures and semantics for direct device access and is implemented by few companies
such as GigaNet, ServerNet and Finisar for their hardware.

Direct hardware access technique respective VIA impose various limitations on the appli-
cation design compared to the traditional communication design. Since data transfer from
and to device is done with DMA, the user pages containing data buffers must be pinned
by the operating system (prevented from swapping and changing their physical addresses).
The performance tests have shown that pinning the user pages may require about as much
effort as copying the data with CPU [10]. In order to avoid frequent calls to the operating
system, applications must allocate and register a persistent memory pool to be used for
data buffers. This also allows the network adapter to keep track on the receive buffers
of a specific application, since the payload of received packet must be directed to correct
application’s buffer, according to recipient identification in the packet header. From the
application’s point of view, this allocation represent creation of the “virtual interface”,
hence the name of the technology standard.

The buffer management for a single application is implemented in form of a send and
receive queue, where it posts descriptors of buffers filled with data ready to send and
empty buffers ready to receive, to the virtual interface. VIA requires receive buffers to
be present at the time the packet arrives and both receive and send buffers to be of fixed
size. These limitations unfortunately may lead to the need of an additional CPU copy in
user space in order to transfer data between aligned, fixed-size send or receive buffer and
a generic user data buffer unless the messages can be processed in-place. Since receive
descriptors are stored in the host’s memory, these need to be retrieved by the NIC using
DMA accesses which imposes another impact on overall performance.

Performance tests on a 32-node cluster of 450MHz-PentiumII PCs have shown that VIA-
enabled gigabit network interfaces are capable to achieve near 100% of line rate when
transferring MPI or raw data packets with latencies as low as 20 microseconds for small
packets. But it also showed that an additional CPU copy principially needed by applica-
tions using VIA may reduce bandwidth by 20-30% and double the latency [10].

9



The technique of the direct user access to hardware shows high performance, however
its area of application is restricted to very specialized cases like node communication in
clusters or network storage systems. It requires custom hardware and specifically designed
applications, but relatively small changes in the operating system kernel, that can be easily
implemented in form of a kernel module or device driver. Direct access to the hardware
may impose serious safety issues, as buggy applications may deplete limited hardware
resources and indirectly affect other applications using the same device while kernel has
no direct control of it. Virtual Interface Architecture provides a more standardized and
safer API and helps avoiding firmware redesign, but has its drawbacks in area of buffer
management.

3.2 Kernel-Controlled Direct Data Transfers

A more compatible and safer solution that falls in the same class of techniques is the
kernel-controlled direct data transfers between user buffers and hardware. Instead of copy-
ing data between user and its own buffers, kernel may arrange DMA transfers to and from
memory areas of the application buffers. This technique, again implies that the kernel
only acts as a broker between application and devices and doesn’t partake in actual data
processing, which may require massive hardware support in case of networking protocol
stacks. An important advantage is that the call interface and semantics should not change
for the user application, the actual implementation only affects the kernel itself. Should
a requested transfer be impossible due to some implications, the kernel may fall back to
the less performant, traditional way using its own buffers to store the data temporarily,
transparently to the application and the hardware device.

The actual implementation however has to deal with important issues, for example, the
pages of the user process involved in the DMA transfers must be pinned (made non-
swappable) during the transfer and unpinned after it. The cache lines buffering respective
memory locations also must be flushed to ensure the consistency of data before or after the
DMA transfer. These obstacles may lead to significantly lower performance then expected,
as the read/write semantics do not hint the user buffers as memory that can be involved
in DMA transfers, unlike kernel buffers. Since pages of the user buffers may be located
at arbitrary positions in the physical memory, some poorly implemented DMA engines
may have addressing limitations and have trouble accessing those areas. Some technolo-
gies like IOMMU in AMD64 architecture may allow workarounds for these limitations by
remapping DMA address to the physical address in memory, but in turn raise portability
issues, as other architectures, even the Intel’s variant of 64-bit x86 architecture EM64T
does not posess such a unit [15]. Further, other limitations may exist for DMA transfer
alignments, disallowing use of arbitrary buffer address specified by the user application.

The success of such technique also depends on whether the transfers are synchronous or
asynchronous. Former case is usually true when accessing disk storage for read or write
- the application may block on system call until the transfer is completed, and what’s
more important, the buffer is definitely specified by the call semantics. In case of network
transfers however, while write operation may be blocking as well, the read operation is

10



asynchronous - the packets can be received before the read system call is issued and the
kernel doesn’t have other choice but to store the payload in its own buffers and copy it
later. In chapter “Dynamical Remapping with Copy-on-Write”, similar difficulties are
also discussed in regard to ZeroCopy technique that uses address remapping.

Many practical difficulties surrounding this ZeroCopy technique unfortunately lead to a
very limited adoption in current operating systems. Since implementation of asynchronous
transfers and networking seemed infeasible, it is mostly used to implement fast “Raw Disk
I/O” transfers [5].

4 Optimizing Data Transfers Between Usermode and Kernel

The goal of the techniques presented until now was to avoid the copying between user and
kernel buffers, which is traditionally implemented using CPU copies. As we have seen,
their application is usually restricted to specialized cases, where we can do without data
processing either in kernel or in user space. The class of ZeroCopy techniques presented
in this chapter is aimed to maintain the traditional concept of passing data between user
and kernel, while optimizing the transfers themselves.

We’ve seen that the data between software and hardware can be offloaded to DMA trans-
fers, but in our case where data is transferred between user and kernel software, there is no
such copy facility. On the other hand, the virtual memory architeture present on the most
modern CPUs and used by operating systems suggests the possibility to virtually copy and
share memory contents, although with relatively large granularity of 4 or 8 kilobytes, by
remapping pages on different virtual locations, also between user applications and ker-
nel. In this chapter we discuss two such techniques that take advantage of virtual memory
remapping.

4.1 Dynamical Remapping with Copy-on-Write

As shown before, the synchronous write and read operations can be achieved by using user
buffers directly, in case of the network transfers however, data needs to be copied to the
kernel buffers, so it can be processed asynchronously by the networking stack. For this
purpose, we can use the virtual memory operations to map the pages of the user buffers
into the kernel address space. The main problem with this approach however, is that
once the user application returns from the write or sendto system call, it may be able to
modify data in its buffers while it is still being accessed by the networking protocol stack.
Although no explicit locking mechanism is provided in the traditional write semantics,
data protection can be implemented using the Copy-on-Write (COW) technique, which
exploits an additional feature of MMU, the access protection of pages.

On the transmitting side, the implementation is relatively simple, pages associated with
user buffers are mapped into the kernel space and marked write-only for the user. After
the system call returns, both user application and networking stack can read the buffer,

11



while it is shared between kernel and usermode. After the kernel has sent all data required,
it can make them writable for user again. Should the application however try to write to
its buffers before that, an exception occurs, and the kernel will have to copy the data to its
own buffers and restore mapping on the user side. This technique requires that the actual
COW events should be rare, as the total cost of a COW event will be significantly higher
than a simple CPU copy. It should be also noted that even if the data transmitted from
the buffer covers some complete pages, they cannot be simply replaced with free pages on
the user side in order to prevent copy-on-write - the semantics of the write call must be
preserved and they guarantee that the written data will be unchanged when the call returns.
In practice, most applications will usually reuse the same buffer many times, so it is also
reasonable not to unmap the pages from the kernel space after they are no longer needed,
but keep the mapping to save management effort in the expected event that the same page
will be used again. Unfortunately, such persistent mapping won’t eliminate the need for
costly page table traversal and TLB flush, since the read-only flag of the page will still
needs to be changed every time the page is COW-locked and unlocked.

Figure 5: Send via address remapping with Copy-on-Write

The implementation of a similar technique on the receiving side however must deal with
much more complicated issues. The semantics of the read call will only allow the kernel
to know where the payload of a received packet should be written if the read was issued
before the arrival of the packet and the application is blocked. In such case however there’s
also no need for page remapping, given the adequate support of the network interface card,
it will be more reasonable to directly write the payload into the user buffer.

Should the receive be done asynchronously, there’s no user buffer to write to until read call
is issued, and the kernel must store the packet in its own buffer. Now there is still a pos-
sibility to efficiently move the data into the user space by flipping the mappings of pages
of the kernel buffer and the user buffer, but only if the received data covers a complete
page (otherwise we would still need to copy the rest) and the data in the kernel buffer is
properly aligned to the address specified by the application. Both of these requirements
are almost impossible to achieve, unless the networking protocol is somehow forced to
transmit packets that match page size exactly [5].

Both the copy-on-write technique for the transmitting and page flipping for receiving side
were implemented in Solaris, but due to mentioned restrictions on the receiving side, sup-
port for page flipping was eventually removed. Implementation itself required changes in
the key networking code components, but were very trivial, basically it was only needed
to replace the calls to copyin with cow copyin [5].

12



Figure 6: Receive via page flipping

4.2 Buffer Sharing

Another possibility to implement fast data transfers between user and kernel is to use pre-
mapped shared buffers. A framework was proposed under the name “fbufs” by Druschel
and Peterson [16] and implemented for Solaris by Thadani and Khalidi [17]. The main
idea lies in a cardinal change of the API and semantics, where applications and kernel
drivers strictly use the fbufs framework to communicate data between user application and
kernel and for in-kernel communication.

The fbufs framework uses a per-application pool of buffers mapped in both user and kernel
address space or creates them when necessary. With virtual memory operations done only
once upon creation of the buffer, the fbufs concept efficiently eliminates most performace
impacts of memory coherency maintenance.

In order to use the fbufs framework, both applications and kernel drivers need to use the
new API respective DDI functions, that mimic the traditional interface. An application
wishing to send data may obtain an fbuf from the pool, fill it with data and send through a
file descriptor using the new uf write API method. Since an fbuf is basically just a memory
area, they can be used as the storage memory in the conventional mblk t structures and
propagated transparently through the STREAMS framework. STREAMS modules thus
would not require modifications, they can duplicate, discard and even chain the fbufs-
based mblks with normal mblks when splitting data and appending packet headers using
traditional functions. The driver at the end of the stream also frees the fbufs-based mblk
or message using traditional freeb respective freemsg functions [4].

Implications with fbufs framework arise on the receiving side: in order to allocate fbufs-
based mblks, the device driver must use uf allocb DDI function instead of traditional al-
locb, and what’s more important, it must be able to determine the correct fbufs pool to
allocate from, using data from received packet which can be considered a violation of lay-
ering concept in networking stacks. The application that receives data in an fbuf also may
still need to copy the data from it to another buffer in order to reassembly a data stream
that arrives in packets. Received fbufs can be kept by the application for a while, reused
to send another data, or simply returned to the pool.

In order to maintain the traditional write semantics, the application must be prevented
from writing to fbufs currently processed in the kernel. Since introduction of automatic
protection scheme like copy-on-write would basically nullify the advantages of having
pre-mapped memory in many cases, the fbufs framework employs mandatory locking of

13



Figure 7: fbufs architecture

the resource instead - the application must be designed in a way that fbufs sent to the kernel
are considered to be no longer in posession of the application, although the memory is still
mapped in the address space [17].

5 Summary

As we have seen, many ZeroCopy techniques were proposed and implemented, but not
many of them have found wide adoption in the actual operating systems. Some of the
techniques such as fbufs sound promising in many aspects, but require a radical change in
API semantics, and also in drivers, which prevented them, in addition to some unsolved
implementation problems, from leaving the experimental stage. Although good perfor-
mance improvements could be shown on a test system, converting the complete install
base to the new architecture seems an impossible task. The strategy of using preallocated
shared buffers also suffers from granularity issues - data delivered in such buffers to ap-
plication might still need another copy to destined location, unless it can be processed in
place or reused in communication.

The dynamic address remapping techniques require few changes to the operating system
and usually none to user software, but the current virtual memory architectures are not
well-suited for frequent remappings of the virtual memory. In order to visualize the per-
formance impact, we must consider that current designs usually use multi-stage address
translation, AMD64/EM64T architecture for example uses a 4-stage hierarchy of page ta-
bles [18] in 64-bit mode, which would require at least 4 memory accesses to different
locations. With cache line size of 64 bytes, such access would equal prefetching of 256
bytes, with necessary modifications in operating system’s own tables only adding to this
overhead. After remapping, TLB flush is required to ensure correct memory address trans-
lation, and virtually-mapped L1 cache must be also flushed to ensure coherency. On SMP

14



systems, the same must be done for other CPUs by issuing interprocessor interrupts that
add a considerable overhead.

In the regular network traffic, a wide spectrum of packet sizes can be expected, with largest
size of an Ethernet packet being 1500 bytes. In practice, only a little portion of regular
traffic would be even feasible for ZeroCopy implementation with address remapping tech-
niques, as virtual memory operations’ cost would outweight the cost of the default CPU
copy, except for large packets. Separate protocol implementations for different packet
sizes would be quite complicated to coordinate and debug, and may even deplete instruc-
tion cache sizes [7]. It should be also taken in consideration that CPU copy of small units
touches data, forcing its prefetching into caches, which can be very useful if the arrived
data is expected to be processed by the application shortly afterwards.

Often, an extensive hardware support is required to fully eliminate memory accesses by
CPU, and since not every commodity hardware offers them, or even implements all fea-
tures correctly, kernel developers are seldom motivated to implement additional processing
paths in central drivers and modules, unless performance improvements are convincing.

Unfortunately, the adoption of ZeroCopy in regard to networking is encumbered by many
architectural limitations, such as the architecture of virtual memory and network proto-
cols, and is still limited to very specialized cases like file serving and high-bandwidth
communication with specialized protocols. The adoption of ZeroCopy in disk operations
seems to be a lot more feasible, mostly due to their synchronous nature and usually large,
page-granular transfer units, as opposed to typical network traffic.

15



References

[1] Christian A. Kurmann, Zero Copy Strategies for Distributed CORBA Objects in Clusters of
PCs, Hartung-Gorre Verlag Konstanz (2003).

[2] A. Romanow, J. Mogul, T. Talpey, S. Bailey, Request For Comments 4297 : Remote Direct
Memory Access (RDMA) over IP Problem Statement, IETF (2005)

[3] Dragan Stancevic, Zero Copy I: User-Mode Perspective, Linux Journal (2003),
http://www.linuxjournal.com/node/6345

[4] STREAMS Programming Guide, Sun Microsystems (1997)

[5] H.K. Jerry Chu, Zero-Copy TCP in Solaris, SunSoft Inc. (1996)

[6] jamal, Linus Torvalds, Is sendfile all that sexy? (Discussion thread at the Linux-Kernel Mail-
ing List), Linux Kernel Mailing List (2001), http://www.cs.helsinki.fi/linux/linux-kernel/2001-
02/0106.html

[7] Ingo Molnar, Alan Cox, Jeff V. Merkey, Linus Torvalds, zero-copy TCP
(Discussion thread at Linux Kernel Archive), Linux Kernel Archive (2000),
http://www.ussg.iu.edu/hypermail/linux/kernel/0009.0/0210.html

[8] Kevin Fall, Joseph Pasquale, Exploiting In-Kernel Data Paths to Improve I/O Throughput and
CPU Availability, USENIX Winter (1993)

[9] Piyush Shivam, Pete Wyckoff, Dhabaleswar Panda, EMP: Zero-copy OS-bypass NIC-driven
Gigabit Ethernet Message Passing, (2001)

[10] X. Liu, Performance evaluation of a hardware implementation of VIA, Tech. rep., U. of Cali-
fornia in San Diego (1999)

[11] Mohammad Banikazemi, Bulent Abali, Lorraine Herger, Dhabaleswar K. Panda, Design Alter-
natives for Virtual Interface Architecture and an Implementation on IBM Netfinity NT Cluster,
Journal of Parallel and Distributed Computing vol. 61 (2001)

[12] Virtual Interface Architecture, http://www.viarch.com/

[13] Thorsten von Eicken, Werner Vogels, Evolution of the Virtual Interface Architecture, IEEE
Computer 31 (1998)

[14] Ian Pratt, Keir Fraser, Arsenic: A User-Accessible Gigabit Ethernet Interface, INFOCOM
(2001)

[15] corbet, DMA issues, part 2, LWN.net (2004), http://lwn.net/Articles/91870/

[16] P. Druschel, L. Peterson, Fbufs: A High-Bandwidth Cross-Domain Transfer Facility, Proceed-
ings of the 14th ACM Symposium on Operating Systems Principles (1993)

[17] Moti N. Thadani, Yousef A. Khalidi, An Efficient Zero-Copy I/O Framework for UNIX, Sun
Microsystems Inc. (1995)

[18] AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, Advanced Mi-
cro Devices (2005)

16


