
Heterogeneity as Key Feature of High Performance Computing: the PQE1
Prototype ♦

P.Palazzari1, L.Arcipiani1, M.Celino1, R. Guadagni2, A.Marongiu1, A.Mathis1, P.Novelli1, V.Rosato1

(1($� &DVDFFLD 5HVHDUFK &HQWHU ² 5RPH
�+3&1 3URMHFW � �)XQ]LRQH &HQWUDOH ,QIRUPDWLFD

SDOD]]DUL#FDVDFFLD�HQHD�LW

♦ This work has been performed in the framework of an industrial collaboration between ENEA (The Italian Agency for
New Technologies, Energy and the Environment) and QSW (Quadrics Supercomputing World Ltd., a Finmeccanica
group company).

Abstract
In this work we present the results of a project aimed

at assembling an hybrid massively parallel machine, the
PQE1 prototype, devoted to the simulation of complex
physical models. The analysis of some of the existing
parallel architectures has revealed that general-purpose
machines are largely over-dimensioned and often perform
inefficiently in grand-challenge scientific applications.
We have thus developed an heterogeneous parallel system
which matches task-heterogeneity with
architecture-heterogeneity: in fact special-purpose
massively parallel architectures, when coupled to
general-purpose machines, are able to efficiently satisfy
the requirements of complex scientific computing. We
present the HW structure and the SW tools developed for
the PQE1 prototype. Starting from the concept of
machine-granularity and task-granularity, we show the
necessity to exploit both high granularity and low
granularity parallelism to efficiently use the PQE1
system. Some examples describing application fields in
which the PQE1 prototype has been successfully used are
briefly described.

1. Introduction

Technical applications (image processing, real-time
control,…) and simulation of complex models used in
scientific applications (quantum chemistry, weather
forecast, electromagnetic compatibility…) require
sustained computational powers of the order of tens (or
hundreds) of Gflops (1Gflops = 109 floating point
operations per second). Massively parallel processing
seems to be the only practical way to reach these figures.
To date, commodity off-the-shelf processors are able to

provide peak performance in the range of 1÷2 Gflops (for
example, the 667 MHz Alpha 21264 chip has a peak
performance of 1.3 Gflops [1]): hundreds of those
processors can be coupled, for instance, up to reaching the
desired sustained performances.

The Accelerated Strategic Computing Initiative (ASCI,
[2]) and the Path Forward project, finalized to build very
powerful parallel machines to implement extremely
complex simulations, have produced, to date, the
installation of several general purpose platforms:
1. ASCI Red: composed by 9,216 Pentium Pro

processors, has 584.5 Gbytes of RAM, bi-directional
cross-section bandwidth of 51.6 Gbyte/sec and peak
performance of 1.8 Tflops;

2. ASCI Blue Mountain: assembled with 48 Silicon
Graphics/Cray Origin2000 servers (each is
configured with 128 SMP processors) containing a
total of 6,144 processors, with projected peak
performance of 3 Tflops;

3. ASCI Blue Pacific: has 1,344 PowerPC 604e
processors (332 MHz), 504 Gbytes of RAM, nodes
connected through an Omega Network with a
node-to-node bandwidth of 150MB/sec and offers a
peak performance of 0.89 Tflops.

Also these platforms, like the most widespread
commercial parallel systems, are based on commercial
general-purpose computing devices which allow to
sustain very irregular programming models. If, on one
side, this property makes these systems well suited for
most of the computational tasks related to complex
scientific applications, on the other side this can also be
considered as their main limitation. In fact, the need of
being general-purpose implies that these systems are
designed to support multitasking/multiuser operative
environments, so that most of their silicon, instead of

being devoted to implement computing devices, is used to
build cache memory and control HW to manage complex
memory hierarchies, out of order execution of
instructions, processor scheduling and multiprocess
environment. This fact, while enhancing system
operability, largely decreases the efficiency per silicon
area in floating point dominated applications, being a
large part of the electronic devices not operative for most
of the time [3].

A completely opposite approach to high performance
scientific computing can be found in the physicists
community, where small research groups are used to
design by themselves dedicated machines which can
efficiently solve their computational problems. An
example of this approach is given by the GRAPE
(GRAvitational PipE) system [4]: GRAPE-4, the system
version now available, is a special purpose computer for
astrophysical simulations (N-body gravitational problems
requiring O(N2) computations) with peak speed exceeding
1 Tflops [5]. GRAPE system is a completely not
programmable machine, allowing only to load/read
initial/final data into/from the machine. Extreme
specialization is the key to achieve very high efficiency in
the use of the silicon area: in such platforms only the
required functions are implemented, thus maximizing the
performances per unit of volume of electronics. The
GRAPE project is going to release a 200 TFlops computer
[6], yielding a computational speed from 10 to 100 times
larger than that achievable, on the same problem, in the
platforms developed in the framework of ASCI project.

A further example of the advantages which can be
achieved through HW specialization is given by the APE
project [7] launched by Italian physicists, aimed to build a
massively parallel system to be used in Lattice Quantum
Chromo Dynamics (LQCD). These platforms, the APE
series (APE100 is the old system [8], APEmille is the new
prototype which will be soon launched [9],[10]) are SIMD
programmable systems equipped with up to 2048 Very
Long Instruction Word (VLIW) custom processors and
offering peak performances of 100Gflops (APE100
series) and 1 Tflops (the new APEmille system). In both
cases, the machines in the largest configurations are
easily contained in few rack-mounted containers.

In scientific computations, most of the time is usually
spent in the execution of quite regular codes which iterate
(e.g. in time, frequency, space) several transformations on
large domains of data. In such a computational scenario,
heterogeneous computing is a very promising way to
achieve high performances: the key idea is to connect a
(small) general-purpose parallel machine to several, very
powerful, specialized parallel systems. The less flexible,
specialized machines are dedicated to provide most of the
computational power required by the numerical programs,
while the general-purpose machine is used to give the
necessary flexibility to the whole system, coordinating

tasks and pre/post processing data produced by the
specialized systems.

Heterogeneous computing has been used to achieve the
very high performances required when dealing with
challenging problems: machine heterogeneity is exploited
to match task heterogeneity, using massively parallel
systems as dedicated, high-efficiency boosters attached to
a single user general-purpose parallel machine.

In this work we present the outcome of a scientific
program aimed at developing a massively parallel hybrid
machine. In the first part of the paper a theoretical
framework to describe heterogeneous tasks and
heterogeneous systems is presented. Task and machine
granularity are introduced and their influence on the
efficient implementation of heterogeneous tasks onto
heterogeneous systems is discussed. Then we describe the
PQE1 prototype, the massively parallel hybrid system
which has been developed in our research center. Along
with the description of the HW and the SW of the system,
we discuss the rationale of such architecture and we
sketch the results obtained in two different, successful
applications of the PQE1 platform. Finally the next
version of this hybrid prototype, now in its final design
phase, is presented.

2. Hierarchical Modeling of Heterogeneous
Tasks and Systems

An algorithm to be implemented on a parallel system
can be represented as a labeled Control Data Flow Graph
(CDFG) G(N,E,C_N,C_E), being
1. N={ni | i=1,2,…,N}

the set of functionality necessary to implement the
algorithm,

2. E⊆ N×N={eij=(ni,nj)| ni sends data to nj}
the internode communication set,

3. C_N={c_ni | c_ni ∈ℵ , ni ∈ N, i=1,2,…,N}
the node labeling set, containing the integer value
which is a measure of the complexity of the
functionality corresponding to ni (e.g., the number of
operations needed to implement ni) and

4. C_E={c_eij | c_eij ∈ℵ , eij ∈ E}
the channel labeling set, containing the integer value
which is a measure of the complexity of the
communication corresponding to eij (e.g., the number

Figure 1: graph node, with input and output
edges, representing the computation ni.

ni,c_ni

Data_in1 … Data_inN_ini

Data_out1 … Data_outN_ini

⇔
fi(Data_in1,…,Data_inN_in_i,

Data_out1,…,Data_outN_out_i)

…

…

ek1i ekN_ini
i

eikN_outi
eik1

of byte sent through eij).
Each node ni in the computation is associated to a

functionality which transforms N_ini input data (with
their corresponding associated data type) into N_outi

output data (with their data type). N_ini and N_outi are,
respectively, the input and the output degrees of ni. The
correspondence between node ni and function fi is
depicted in figure 1.

In a completely similar way, a parallel system can be
represented through a labeled graph PS(R,IN,M_R,B_IN),
being
1. R={ri | i=1,2,…,r}

the resource set (processing elements with their local
memory, shared memory banks, I/O devices) which
can be decomposed into basic sets, i.e.

R={∪ i=1,..,kpi}∪ {∪ i=1,..,mMi }∪ {∪ i=1,..,tI/0i }.
So the parallel system resource set is constituted by
- k sets of processing elements pi, each set pi being

characterized by the number and by the type of
homogeneous computing devices contained in it;

- m sets of memory banks Mi, each set of memory
banks being characterized by the number of
memory banks, by their access time and by the
size of each bank given (in byte) by sizeof(mj),
mj∈ Mi;

- t sets of I/O channels I/Oi, each set being
characterized by the directionality, the bandwidth
and the number of channels contained in it.

2. IN⊆ Pow(R)×Pow(R)={cij=({ri1,…,rih},{rj1,…,rjn})|
{ri1,…,rih} is connected to {rj1,…,rjn}}

the interconnection network set, where Pow(R)
denotes the power set of R. Pow(R) is used to model
shared interconnections: a set of homogeneous
processors pi={p,p,…,p} sharing a memory bank
m∈ Mi are represented through the couple (pi,m); a
shared bus connecting the processors of pi is
represented by the couple (pi,pi); a point to point
connection with one dedicated channel between two
not homogeneous processors is represented by the
couple (pa∈ pi, pb∈ pj);

3. M_R={m_ri | m_ri ∈ℵ ri ∈ R, i=1,2,…,r}
the resource labeling set, which associates to each
resource a number measuring its performances (e.g.
the number of flops executed per clock cycle by a
general purpose processor p∈ pi, the number of clock
cycles necessary to compute functionality f in the
computing devices dedicated to its HW
implementation, the access time for shared memory
banks m∈ Mi, the bandwidth for I/O channels
c_i/o∈ I/Oi);

4. B_IN={b_cij | b_cij ∈ℵ , cij ∈ IN}
the labeling set which associates the bandwidth to
each channel cij∈ IN.

It is fundamental to underline that, in the cases of both
task and parallel system graphs, each node can be

modeled through another task or parallel system graph:
such a hierarchical description of a graph allows to put in
evidence only the degree of parallelism (and of detail)
which the user wants to consider. All the lower level
details are hidden at this stage of abstraction. For instance,
a complex program can be represented through a CDFG
in which nodes are very complex routines; after a
refinement step, each routine can be detailed through
several simpler routines (for instance, an iterative solver
can be expressed by means of Basic Linear Algebra
Subroutines (BLAS)); going on with the zooming of
details, each BLAS routine can be decomposed into
(dependent, i.e. interconnected) elementary operations
expressed in a standard imperative language (e.g., C or
Fortran). As example of hierarchical representation of a
parallel system, we can think to a system graph whose
nodes are large systems (Vector Computers, Distributed
Memory SIMD and MIMD systems, Shared Memory
Multiprocessors, DSP and specialized computing devices)
connected through some kind of (eventually not
homogeneous) IN. Each node can be detailed through
several lower level nodes (processors of the system and
their IN) which can still be detailed through a lower level
representation (interconnected functional units within a
processor). A sketch of this hierarchical description is

depicted in the example reported in figure 2.

3. Task and Machine Granularity: Formal
Definition of Heterogeneous Systems and
Heterogeneous Tasks

Once introduced the formal hierarchical definitions to
model computations and parallel systems, we try to give a
(not exhaustive) definition of task and system
heterogeneity. We need first to introduce the fundamental
concepts of task and machine granularity.

SIMD

SIMD

SIMD
MIMD

MIMD
Vector Proc

PE PE PE

PE PE PE

PE PE PE

C
U

Register File

D
at

a
D

R
A

M

FU1 FU2 FUn

Figure 2: Hierarchical
representation of a

heterogeneous parallel
system

The granularity of a task is usually referred to as being
proportional to the ratio between the computation and the
communication times involved in the execution of the
task [23]. This definition of granularity is, indeed,
machine dependent, as both communication and
computation times may vary when the task is executed on
different architectures. Being interested to a
heterogeneous environment, we prefer to introduce the
concepts of machine granularity (gm) and task granularity
(gt). gm is a measure of the balance between computational
and communication speed of a system and is defined as

BW
PCS

bandwidthI/O

speedncomputatiopeaknode
gm == (1)

where the node peak computation speed (PCS) is the
maximal number of operations per second executed by the
node (usually PCS are expressed in terms of flops in the
context of numerical computations). Previous definition
can be applied to nodes at different hierarchical levels.
Referring to figure 2, for instance, we can define the
granularity of vector nodes, SIMD nodes and MIMD
nodes; at this level (the system level) nodes usually have
very high granularity gm, ranging typical computation
speeds from few Gflops to several tens of Gflops and
typical I/O bandwidth from tens of Mbyte/sec up to few
Gbyte/sec (for massively system with parallel fast I/O); a
typical value for a medium-large system can be

100
10500

1050
g

6

9

m =
×

×= . When moving to a lower level of

detail (the sub-system level), granularity of a node
diminishes, as typical computation speeds of today’s
processing elements are in the range of few hundreds of
Mflops up to 1-2 Gflops and communication bandwidths
range from tens up to few hundreds of Mbyte/sec; typical
value for a high-end processing element (like the Alpha
EV6.7) equipped with a 64-bit PCI connection is

5.6
10200

103.1
g

6

9

m =
×

×= . Moving into a lower level of

detail (the processor level, inside the processing element),
granularity assumes a smaller value, as communication
speed is always in the range of few hundreds of Mflops up
to few Gflops, while communication bandwidth
(processor⇔memory) ranges from few hundreds of
Mbyte/sec up to few Gbyte/sec; for instance, a processing
element with an EV6.7 processor (peak speed 1.3 Gflops)
and a fast chipset for the memory control (e.g the
Tsunami chipset, allowing an internal memory bandwidth
of 2.6Gbyte/sec) is characterized by a granularity

5.0
106.2

103.1
g

9

9

m =
×

×= .

We are now able to give the following
definition of heterogeneous system: a parallel system

is heterogeneous when

1. it is composed by more than one computing element
and

2. its computing elements are based on different
architectural paradigms (Vector systems, Distributed
Memory/Shared Memory MIMD systems, SIMD
systems, etc..) and/or

3. it can be described through a hierarchical
classification evidencing different node granularities
throughout the hierarchical levels.

gm is a measure of the ratio between system
computation speed and system communication
bandwidth. Following a similar reasoning, task
granularity gt is defined as a measure of the balancing of
computational and communication requirements of a task
and is defined as

n_I/O_byte

n_op

dataI/O ofbytesofnumber

op. computing ofnumber
g t == (2)

The hierarchical classification approach, used to model
heterogeneous tasks, can be applied also in the case of
CDFGs. Given a CDFG with k different nodes, gt(ni) is
the granularity of each node (i=1,2,..,k; ni∈ N) and the
granularity of the whole CDFG is the maximal value of
the granularity of its composing tasks, i.e.

gt(CDFG)=maxi=1,k(gt(ni)) (3)

Granularity of a set of nodes is defined as the largest
granularity in the set because it seems to be reasonable to
represent computation/communication demands of a
complex task through its largest component; in fact, given
for instance a CDFG with 9 different nodes with the same
(small) granularity 1 and one node with (large) granularity
100, computation/communication demands are well
represented by the value 100 (worst case). If we use an
average value to represent the global task granularity, in
previous example we would obtain gt=10.9, which clearly
underestimates the influence of the ‘large’ task, probably
yielding, as we will discuss later, an inefficient
implementation of the task on the parallel system.

When a hierarchical representation of a CDFG is used,
the change from the procedural level (i.e. the level in
which nodes represent routines) to the instruction level of
detail (nodes represent elementary instruction, e.g. basic
C statements) determines a decrease in the node
granularity. In fact, if we indicate with n the size (in byte)
of the input/output parameters, the number of operations
N_OP(n) executed by the routine has, in most cases, a
dependency law larger than O(n), i.e. N_OP(n)≥O(n).
N_OP(n)=O(n) is a lower bound, being O(n) the number
of elementary operations necessary to read/write input
data (with the obvious exception of data structures already
stored in memory and communicated through a pointer;
however, also in this case the following inequality (4) is
satisfied). As a consequence, the law connecting the

granularity of a task to the size n of input/output data is
given by

)1(O
O(n)

N_OP(n)
)n(g t ≥= (4)

At the instruction level the granularity is O(1), i.e. the
number of bytes used to encode input and output
parameters of one operation is a constant number (with
very few, and particular, exceptions involving data
movement), because elementary operations manipulate
one or two scalar values and return another scalar value.
As a consequence, when moving from the procedural to
the instruction level, task granularity does not increase
(typically diminishes).

Other parameters characterizing nodes of CDFG, at the
procedural level, are
- the type T∈ {‘control-dominated’, ‘computation-

dominated’}; a node is control dominated when has
small granularity and contains a number of decision
operations (i.e. conditional jumps) significantly larger
than the computing operations; on the contrary, a
node is computation dominated when has large
granularity,

- computational paradigm; each node of the graph,
when expressed at a lower level of detail, can be
represented by means of the ‘data-parallel’, the
‘pipeline’, the ‘farm’, the ‘loop’, the ‘unrestricted’
structuring constructs; for the description of the
structuring constructs, except the ‘unrestricted’, see
[29]; the ‘unrestricted’ paradigm refers to a generic
computation represented by means of an irregular
CDFG.

We are now able to give the following
definition of heterogeneous task: a CDFG represents

an heterogeneous task when
1. it is composed by more than one node at the

‘procedural’ level and
2. its nodes are based on different computational

paradigms or have different types T and/or
3. its nodes have different granularities

4. Matching Task and System Heterogeneity
to Maximize System Performances

Once fixed the meaning of heterogeneity for tasks and
systems, it is important to evaluate their mutual relation
and to describe the associated heterogeneity parameters
(granularity, computational/architectural paradigms, node
type T). In this framework, it is worth investigating the
connections among system/task granularity, heterogeneity
and global performances.

The granularity G, in its classical form, is defined as
the ratio between Run time (R) and Communication time
(C) of a given task [28], i.e.

C

R

 timeioncommunicattask

 timeexecutiontask
G == (5)

In order to avoid a too formal explanation, far beyond
the scope of this paper, we do not go into the details
necessary to define task execution and communication
times; intuitively, we consider as execution
(communication) time the summation of all the time
intervals in which at least one computational unit (I/O
channel) is computing (communicating).

Previous definition of granularity is machine
dependent, being execution and communication times
connected to processor speeds and I/O bandwidths. The
previously introduced definitions of gm and gt can be used
to make explicit this dependence; in fact G can be
expressed as

m

t
g

g
G η= (6)

being
comm

proc

η
η

η = an efficiency figure which takes into

account the partial utilization of the processor speed
()procη and of the bandwidth ()commη . In order to verify

the validity of (6), it is sufficient to substitute in it the
expressions of gt and gm and, with few algebraic
operations, we obtain

C

R

BW

n_I/O_byte
1

PCS

n_op
BW

PCS
_byte0n_I/

n_op

g

g
G

comm

proc

comm

proc

mcomm

tproc

==

===

η
η

η

η

η
η

The actual value of η depends on the characteristics of
tasks and on their implementation on the physical system.
A reasonable estimation, to be confirmed through some
experiences on a given system, is η=0.1÷0.5. For
instance, when dealing with tasks with large I/O packets
(small granularity), usually communication startup time is
negligible and ηcomm≅ 1; in such a case η=ηproc and
processor utilization in the range from 20% up to 60% is a
realistic figure.

 The expression of G as ratio between task and
machine granularity underlines how the relative values of
task and machine granularity are relevant to achieve high
performances when implementing the task on an actual
(heterogeneous) parallel system. Efficient task
implementation requires to match two conflicting
behaviors: that of a task with maximum parallelism (to
minimize execution time) with the constraint of
minimizing communication costs (overheads). The only
information on the granularity G is not sufficient to
determine if the implementation of the task on a machine

is efficient: G gives just a measure of the relative
influence of communication overhead on system
performances. Given an implementation of a task on a
parallel system, efficiency reaches its maximum when, for
a fixed degree of parallelism, communication overhead is
minimum. In fact, indicating with R the time spent
executing computations and with C the time spent in
communications, and defining as efficiency the ratio

TimeComputingActual

R
Eff = (7)

where the Actual Computing Time is the elapsed time
from the start of the parallel program till its end, the
following inequalities hold:

MaxMin Eff
C)MAX(R,

R
Eff

CR

R
Eff =≤≤

+
= (8)

which can be rewritten, introducing the granularity G, as

MaxMin Eff
)

G

1
MAX(1,

1
Eff

G

1
1

1
Eff =≤≤

+
= (9)

It is worthwhile to note that the fraction of unused
computational resources is given by (1-Eff). The lowest
value for the efficiency (EffMin) corresponds to the
complete absence of overlapping between computation
and communications; the highest value for the efficiency
(EffMax) corresponds to a complete overlapping between
computations and communications. In figure 3 the values
EffMin anf EffMax are sketched as function of the
granularity G.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10
Granularity

E
ff

ic
ie

n
cy

Min Eff
Max Eff

Figure 3: Minimum and maximum efficiency values
vs Granularity

Actual efficiency values lie within the two plots, being
closer to the lower or to the higher depending on the
algorithm structure and the HW support for computation
and communication overlapping (number of DMA
channels, routing processors).

G=1 indicates equality between computation and
communication times. The larger is G, the more

negligible is the communication time with respect to
computing time. Values of G<1 originate I/O bound
problems.

In order to avoid situations with processors stalling
due to I/O operations, with a consequent strong
decreasing of efficiency, granularity of the task should be
greater of a certain value G0 so that efficiency results
greater than the minimum acceptable threshold EffT. If the
not overlapping model is assumed, the granularity must
respect the following inequality in order to have Eff>EffT,

T

T
Eff1

Eff
G

−
> (10)

and, evidencing dependence of G on gt and gm, we obtain

η
1

Eff1

Eff

g

g

T

T

m

t ⋅
−

> (11)

From previous inequality, setting
η
1

Eff1

Eff
k

T

T ⋅
−

= ,

we obtain a fundamental relation between task and
machine granularity:

mt gkg ⋅> (12)

In the case of perfect overlapping between
computation and communications, it is easy to verify that
expression (12), from the position G>1, becomes

mt g
1

g ⋅>
η

 (13)

Previous expressions ensure a correct implementation
of tasks on heterogeneous systems. The value k has to be
estimated on the basis of ‘reasonable’ assumptions about
the degree of overlapping between computations and
communications (expression of k has been determined
assuming the worst case, with no overlapping) and about
the efficiency η which can be achieved when
implementing the task on the system.

The scheme to allocate a heterogeneous task onto a
heterogeneous system is the following:
- Consider the highest levels of detail both for the

system and the task graphs;
- Ordinate the node tasks in descending order of

computational complexity;
- For each node in the task graph, chosen according to

previous decreasing ordering, select the system nodes
which match, with their architectural paradigms, the
node computational paradigm;

- Among all the candidate system nodes, choose the
one which has the highest computational power and
respects the relation gt>k⋅gm; as the choice of the
system depends on k, i.e. on the efficiency of the
implementation of the task node on the system node,
the process can be iterated at a lower level of detail

(i.e. the node is expanded (if possible) into a smaller
granularity CDFG and also the system node is
considered at a lower level of detail) until a
reasonable estimation for k is achieved.

- Assign the task node to the system node found in
previous point (the choice of the system with the
highest computational power allows to satisfy the
tasks with highest computing requirements).

As the previous ‘recipe’ does not consider the load
balancing, some policy must be chosen to avoid the
overloading of the most powerful systems; a method
could be based on a cyclic allocation policy or on some
dynamic updating of system performances (as a system
node becomes more loaded, its computational speed
appear smaller to the other task nodes that must still be
allocated). In order to take into account precedence
relations among nodes in the CDFG, techniques discussed
in [23], [35] can be used.

5. The Heterogeneous PQE1 System

The previous discussion is aimed at stressing that a
heterogeneous system is not a mere collection of several
platforms used, sometimes, as a parallel system, but it is
an integrated system that must be designed from scratch
to behave as a heterogeneous parallel system. In fact,
heterogeneity is a property of the problems to be solved.
A ‘well balanced’ heterogeneous system will thus provide
the best way to solve complex ‘real’ problems.
Heterogeneity moreover, avoids to over-dimension a
parallel system, as the computational power is ‘dedicated’
(according to several computational paradigms), allowing
very high efficiency. The idea is to avoid, as much as
possible, the use of general purpose systems just because
they perform ‘quite well’ in all the problems but not ‘very
well’ for any problem. On the contrary, heterogeneous
systems could contain different ‘dedicated’ parallel
systems, some of which very well suited for a certain
class of problems, others for others different classes. In
this way, in principle, it would be possible to have a
system which often behaves ‘very well’ on a lot of
problems, because different parts of a complex
application could be efficiently implemented onto
architecturally different parts of the system. Furthermore,
on the basis of the previous analysis, specialized
architectures are, often, less costly (in terms of silicon
area, power consumption, volume) than general purpose
systems.

5.1 Rationale for the PQE1 prototype

General-purpose parallel machines support the Single
Program Multiple Data (SPMD) asynchronous
programming paradigm. Their HW structure is inherently
asynchronous and some silicon area, other than some

time, must be wasted to manage process synchronization
and asynchronous communications. Such a wasting of
resources can be avoided by using synchronous machines
to which could be efficiently allotted computational tasks
requiring synchronous algorithms.

On the basis of the experience gained using SIMD
systems in several fields of technical-scientific computing
(material science [14][15], astrophysics [40], atmospheric
modeling [16], image processing and compression
[17][18], computational electromagnetic [19][20], linear
algebra [21], neural networks [22]) we are convinced that
SIMD architectural paradigm can efficiently express
programs solving problems related to such fields.
Moreover it is also preferable to the MIMD paradigm
because many algorithms
1. are synchronous;
2. often require that all the processors execute the same

instructions on different domains;
3. need interprocessor communications executed in a

synchronous way;
4. do not need deep memory hierarchies thanks to the

regular patterns of memory accesses.
Point 1 and 3 show that, for such classes of algorithms,

the time spent in synchronization phases, required by
MIMD systems, is a completely unnecessary overhead
introduced by the asynchronous HW structure of the
machine. This overhead is not required by SIMD
machines with synchronous communications. Point 2
shows that all the HW dedicated to manage different
program flows in the processors is unnecessary, being
sufficient one centralized controller of program flow.
Point 4 means that cache memory and the related
management policies are not needed in most scientific
applications, being the ‘locality’ of the problem [30]
easily controlled by the programmer through instructions
of vector movements between main memory and an
internal register file. Although cache memory results to be
particularly useful in multi-programmed environments,
where several processes are running and the fast memory
is not large enough to keep the whole image of all the
running processes, in most cases of scientific computing
only one process is running and its locality is easily
captured by the programmer through instructions which
allow burst memory transfers, through DMA channels,
between the slow external RAM and a fast internal
register file (or a multi-port/multi-bank internal static
memory). A further discussion on SIMD vs MIMD
architectures, along with a description of SIMD/MIMD
mixed mode systems, is reported in [27].

5.2 HW description of the PQE1 prototype

The PQE1 is an ‘hybrid’ MIMD-SIMD platform where
the flexibility and operability of a MIMD (distributed
memory) architecture (the eight node Meiko/QSW CS-2)
are coupled to the power and efficiency of SIMD

machines (7 APE100/Quadrics systems) which enable to
efficiently perform in small granularity tasks.

If we take into account the 4 points listed above and
we assume that most algorithms arising in scientific
applications can be expressed through synchronous
programs with synchronous communications, executing
the same instruction on a set of different data which can
be easily mapped onto a data parallel structure with
regular patterns of memory access, it results very
reasonable to allot those parts of the computation to the
SIMD machine APE100/Quadrics, leaving the remaining
tasks of the computation to be executed on the MIMD
part.

We used 7 APE100/Quadrics machines, built in 1994:
two with 512 processors arranged as an (8x8x8) 3D torus
and 5 with 128 processors arranged as an (8x4x4) 3D
torus. Each computing node is based on a custom VLIW
processor, has clock frequency fck=25 MHz and is able to
terminate a ‘normal operation’ A×B+C every clock cycle,
so each processor executes two floating point operations
in one clock cycle (when the pipeline is full) and has a
peak speed of 50 Mflops; floating point are represented
according to the IEEE 754 standard (single precision).
Each node is connected to a data memory of 4Mbytes and
has an internal register file (RF) with 128 registers; each
clock cycle the processor is able to read two operands
from RF and write one result to RF. Communications
with other adjacent nodes, connected in the north, south,
east, west, up and down directions are synchronous and
memory mapped; interprocessor communication
bandwidth is 12.5 Mbyte/sec, so the 512 (128) processor
configuration has an aggregate bandwidth of 6.4 (1.6)
Gbyte/sec and a peak speed of 25.6 (6.4) Gflops.

The connection of the APE100/Quadrics machines to a
MIMD system, the Meiko/QSW CS-2 [24], has been
performed to give more flexibility to the SIMD machines.
Each node of the MIMD platform is based on two Ultra
Sparc processors, connected in the SMP configuration, it
offers a peak speed of 180 Mflops and has 128 Mbytes of
RAM. The connection between CS-2 nodes and
APE100/Quadrics systems is implemented through an
HiPPI (High Performance Parallel Interface) channel,
which provides a bandwidth of 20 Mbyte/sec. The
connection among the nodes of the CS-2 machine takes
place via the Meiko/QSW proprietary network based on
the ASIC circuits Elan/Elite and implementing a
multistage interconnection network with Fat Tree
topology and point-to-point bandwidth of 100 Mbyte/sec.
The scheme of the complete prototype is shown in Fig.4.

The PQE1 hybrid systems is thus composed by 7
SIMD machines which allow to obtain an aggregate
computational speed of 83.2 Gflops, 20.8 Gbyte/sec of
bandwidth and 6.5 Gbytes of RAM. These parallel
systems communicate through 7 HiPPI channels with a
CS-2 machines, so the communication bandwidth

between the two systems is 140 Mbytes/sec. The CS-2
MIMD parallel system has 8 twin nodes, offers a peak
speed of 1Gflops, has 1 Gbyte of RAM and has an
aggregate bandwidth of 800 Mbyte/sec.

Looking at previous data, it is clear that the machine is
strongly unbalanced, having the most of computational
and communication speed in the SIMD part. If we analyze
the sub-unit composed by a CS-2 node and the attached
SIMD machine, seen as co-processing system, the

resulting sub-unit granularity (at the system level) is

1280
1020

106.25
)512#100(g

6

9

m =
⋅
⋅=−APE (14)

 and
320)128#100(gm =−APE (15)

The PQE1 system can be considered, at a first level, as
a parallel machine with small parallelism (parallelism
degree is 7). In order to avoid wasting of performances, at
this level of parallelization we have to consider only very
large granularity tasks. If we consider, for instance, the
product of two (n x n) single precision matrices, the task

granularity is given by
6

n

12n

2n
g

2

3

t == (2n3 is the

number of operations required, while 12n2 is the number
of byte to transfer, being necessary reading the two input
matrices and writing the result matrix). In order to avoid
I/O bound behavior, ηgt>gm must result; in the case of a
128 processor machine, supposing η=0.5 (reasonable
value for this type of computations, using sequences of
not independent operations of the type A×B+C), this
corresponds to the condition n>3840.

Node
 #0

Node
 #1

Node
 #2

Node
 #3

Node
 #4

Node
 #5

Node
 #6

Node
 #7

APE
100

#512

APE
100

#512

APE
100

#128

APE
100

#128

APE
100

#128

APE
100

#128

APE
100

#128

CS-2 Interconnection Network

Communication
Interface

Ultra
Sparc

Ultra
Sparc

128 Mbyte DRAM
Figure 4: HW structure
of the PQE1 Prototype

The second level of parallelism can be exploited within
the single task. The SIMD machine has granularity (at the
sub-system level) is

4
6.1

4.6

4.6

6.25
gm === (16)

In this case we have a lot of parallelism available
(parallelism degree is 128 or 512) and we can deal with
small granularity tasks.

As stated above, the rationale for such a strong
machine imbalance is that SIMD systems are very well
suited to implement numerical computations, allowing to
reach very high sustained performances. The MIMD
nodes are not devoted to solve the ‘number crunching’
part of the problem, but to perform data pre/post
processing and to allow communications among different
algorithms implemented on the SIMD systems. We
underline that typical sustained performances obtained on
the APE100/Quadrics machines range from 30% to 70%
of the peak performances, i.e. they vary from 7.7 to 18
Gflops on the 512 node machines.

5.3 SW description of the PQE1 prototype

The basic modality to program PQE1 system is the
using of a message passing paradigm (the MPI library) to
manage the high granularity tasks allocated into the
MIMD part. In order to allow a low-level interaction
between CS-2 nodes and SIMD machines, a
communication library has been devised and
implemented. This library contains a set of commands to
load/run programs into the SIMD machines, to
synchronize the execution between the program running
on the MIMD node and the program running on the
connected SIMD system, to communicate data to/from the
SIMD system. Due to the large granularity of the
programs running on the SIMD nodes, no particular effort
has been spent to reduce start-up times which, for all the
operations, are in the order of 10 ms.

As the MIMD system is devoted to manage the whole
hybrid system and to increase the flexibility of the PQE1
platform, a library implementing the functionality of a
Distributed Virtual Shared Memory (DVSM) was
developed [25]. This library allows to declare physically
distributed memory areas as ‘shared’, thus allowing the
user to operate on such areas with the usual operations of
locking/unlocking and implementing atomic instructions
to perform blocking/non-blocking read/write operations
with synchronized/unsynchronized access. Typical times
for locking (unlocking) an area are 60 (45) µs; the time
necessary to access in writing (reading) a page is 19 (50)
µs. Previous times do not depend on the size of the
memory area.

A further tool, called SkIE-CL [26], has been devised
and implemented to improve the programmability of

PQE1 system, is a skeleton based coordination language
which allows to express task/data parallelism through
some predefined schemes (pipeline, farm, map, loop).
Once the program has been written through the available
parallel constructs, SkIE-CL is able to generate MPI code
to program the MIMD part of the machine, performing a
(near)-optimal mapping of tasks on the MIMD part of the
system, by using some analytical model of the constructs;
furthermore SkIE-CL allows to control the SIMD systems
by means of the communication library described above.

Previous tools (the DVSM and the SkIE-CL) were
jointly developed by QSW and the Information Science
Department of University of Pisa.

Two interesting applications using PQE1 prototype
features, i.e. overlapping computations between the SIMD
and the MIMD parts of the system can be found in [21]
and [16]. The first refers to the implementation of Basic
Linear Algebra Subroutines-3 on the SIMD part of the
system. The MIMD connections are used to perform a
block-based partitioned matrix-matrix product, being the
sub-blocks products distributed among several SIMD
machines. The second work is related to the
implementation of a high resolution meteorological
limited area model coupled with an ocean model for the
prediction of the state of the Mediterranean Sea and of
high water events in the Venice Lagoon. The code was
parallelized by allotting the computation of the most time
consuming models (the High Resolution and the Very
High Resolution Limited Area Models) to the SIMD part
and the resolution of the less intensive computing spectral
wave model (WAM) to the MIMD nodes. To these nodes
is also demanded the computation of the two dimensional
model (POM) for the prevision of the Adriatic Sea
circulation and, ultimately, the finite elements shallow
water model of the Venice Lagoon.

In the following two paragraphs we give some details
on the implementations and the results achieved when
using the PQE1 system to perform n-body gravitational
computations and electromagnetic simulations.

5.4 n-body computations

The PQE1 architecture has been recently used for
performing n-body (O(N2) calculations to study the
dynamic behavior of a galactic globular cluster hosting a
massive object (black hole) in its center [40]. Calculations
have been carried out by exploiting a double level of
parallelism which can be attained with the machine: the
first, related to the SIMD parallelization of the O(N2)
loop, was obtained by partitioning the stellar positions
among the different nodes and by allotting the force
calculations on the given partition to the single SIMD
node. The hypersystolic loop ([36],[37)] has been
successfully used to reduce communication times within
the force loop calculation. The second level of parallelism
has been exploited by using the MIMD resources to

evaluate the black hole-stars interactions (O(N) loop)
during the time spent by the SIMD part to evaluate the
interstellar interactions. The concurrent use of both the
MIMD and the SIMD parts allowed to perform the
integration of one reference time (crossing time) of a
system of N=128000 stars in a CPU time of the order of
t=72500 sec (with the SIMD part constituted by a
platform with 512 nodes).

5.5 Electromagnetic simulation

We investigated the simulation of dynamic evolution
of electromagnetic fields through the integration of
Maxwell equations by means of the Finite Difference in
the Time Domain (FDTD) scheme. A domain with
(n × n × n) cells was considered. Simulating one period of
the input signal requires Ns time steps. At the end of each
period of the simulation (i.e. at simulation time n+Ns,
n=0,1,…) in each cell the value

()tn
kj,i,N1,...,t

max Emaxk)j,(i,E
s

+
=

=

is computed. These maximal values are then
sub-sampled with step s and communicated to the host to
be post-processed (for example reordered, normalized and
stored). In order to simulate an EM phenomenon with
frequency f=1.9 GHz on a domain with (n × n × n) cells,
we have chosen spatial discretization ∆=1.5 cm and
temporal discretization ∆t=2.88×10-11 [sec] to avoid
numerical and modal dispersion, so Ns=19. The number of
computations executed in one period is

Nflops = Ns×36×n3=684n3 (17)

Setting the sub-sampling step s=5 (i.e. two samples for
wavelength are saved), at the end of each period the
number of bytes to be sent is given by

Nbytes = 3
3

n
125

4

s

n
4 =

× (18)

According to (2), task granularity is given by

21675
n

125
4

684n
g

3

3

t == (19)

From (6), (14) and (19), assuming an efficiency in the
implementation η=0.2, we obtain the granularity value
for the EM simulation executed on the 512 processor
APE100 system

4.3
1280

216750.2
g

g
)G(APE-#512

m

t ≅×=
⋅

=
η

and, from (6), (15) and (19) the granularity value for the
execution on the 128 processor APE100 system

5.13
320

216750.2
g

g
)G(APE-#128

m

t ≅×=
⋅

=
η

Resulting G>1 in both previous cases, the simulation
of one period of the EM phenomenon and the
communication of sub-sampled results does not originate
an I/O bound problem.

The second level of parallelism can be exploited within
the single FDTD task. In this case we have a lot of
parallelism available (parallelism degree is 128 or 512)
and we can deal with small granularity tasks. For
example, going inside the structure of the parallel FDTD
simulation (described in [20]), 36(nc)

3 is the number of
floating point operations executed in one time step within
a processor where (nc × nc × nc) cells have been allocated
and 2×6×4(nc)

2 is the number of bytes to communicate at
each time step (3 faces with two of the Ex, Ey, Ez

components (depending on the face) and 3 faces with two
of the Hx, Hy, Hz, components must be communicated); in
such a case task granularity is given by

()
() c2

c

3
c

t n
4

3

n84

n36
g == (20)

In order to avoid an I/O bound problem, being in the
case in which the overlapping between communications

and computations is allowed, mt g
1

g ⋅>
η

 must result

(eq(13)); from(13), (16) and (20) we derive the condition

27
3

80
n4

0.2

1
n

4

3
cc ≅

≥⇒> which gives the linear

dimensions of the sub-domain in which the global
simulation domain is partitioned.

Performances achieved in EM simulations were close
to the value η=0.1, which corresponds to sustained
performances of 2.5 Gflops when using the PQE1 system
with one 512 node SIMD machine. This quite low figure
is due to the Absorbing Boundary Conditions (ABC), not
discussed above, which present a very low degree of
small granularity parallelism, thus diminishing the global
performances of the system.

6. Next generation of the PQE1 hybrid
prototype

The very interesting results obtained with the hybrid
PQE1 prototype confirmed the validity of the approach of
coupling specialized massively parallel systems to general
purpose parallel machines. The PQE1 prototype,
presented in this work, is based on HW of a previous
technological generation: we are thus planning to design a
new system with up-to-date components. A next system is
planned and will be based on several images of the new
APEmille SIMD parallel machine. The MIMD part will
be constituted, according with recent trends in parallel
computing with large granularity systems, by a Linux
cluster connected through a proprietary fast

interconnection network. Furthermore, the new prototype
will allow the insertion of ad hoc designed specialized
systems, based on programmable HW (e.g. FPGA).

One of the main novelty of the next generation
prototype, along with its technological improvements
which put it in the very high-end section of today
supercomputers, relies on the possibility to apply and test
methodologies derived from the HW/SW co-design field.
In fact, the capability to implement on programmable HW
some specific classes of algorithms will allow, at compile
time, on the basis of some cost criteria, the choice
between SW or HW implementation of some nodes in the
CDFG specifying the application behavior.

6.1 The APEmille system

APEmille, being the evolution of the
Quadrics/APE100 system, is a SIMD machine. The first
prototypes have been built in 1999. Similarly to APE100,
APEmille has a 3D toroidal topology and uses custom
VLIW processors. Each processor, working at a clock
frequency of 66 MHz, at every clock cycle is able to
terminate a ‘normal operation’ A×B+C on complex
numbers. As executing 8 floating point operations per
cycle, the peak performance of an APEmille processor is
equal to 528 Mflops.

Each node has an internal register file with 512
locations at 32 bits and is equipped with 32 Mbytes of
Synchronous DRAM which can be accessed with a
bandwidth of 528 Mbyte/sec, thus resulting in a node
granularity, at the processor level, gm=1.

Each node can access memory of its neighbors in the 3
spatial directions with a bandwidth of 66Mbyte/sec, so the
granularity of APEmille machine with p processors, at the

sub-system level, is 8
1066

10528
g

6

6

m =
×⋅
×⋅=

p

p
.

The I/O is based on the use of one PCI channel for
each cluster of 32 computing nodes, thus resulting in a
granularity, at the system level,

170
10100

1052832
g

6

6

m ≅
×

×⋅= , being 100 MByte/sec the

actual bandwidth measured on the PCI channel.
The largest configuration of the APEmille is

constituted by 2048 nodes, yielding a peak speed
exceeding 1 Tflops.

Other than the improvements in processor and memory
access speeds, APEmille differs from APE100 because
double precision and integer operations are provided in
the computing nodes.

6.2 The MIMD system

Following the evolution of high-end commodity
processors, as computing core the ALPHA EV6.7 has

been chosen because of its high computational
performances (1.3 Gflops).

The MIMD system will be based on 16 nodes, each
equipped with 1 Gbyte of DRAM. The nodes are
constituted by two EV6.7 processors connected in SMP
configuration. Internal memory bandwidth is 2.6
Gbyte/sec, so the granularity at the node level, is

1
106.2

103.12
g

9

9

m =
×
×⋅= .

Interconnection network uses the QsNet, based on the
Elan III network adapter and the Elite III switch. QsNet
[31] has a fat-tree topology, as shown in figure 5 for a 128
node system, and offers a remote access latency of 2.5
µsec and a bandwidth of 210 Mbyte/sec. For a system
with p nodes, granularity at the interval level is

4.12
10210

106.2
g

6

9

m ≡
×⋅
×⋅=

p

p
. Granularity at the system

level has the same value, because both interprocessor
communications and I/O operations are limited by the PCI
speed.

Figure 5: fat-tree topology (128 nodes)

An interesting comparison enlightening the better
performances of QsNet with respect to the Gigabit
Ethernet and Myrinet networks are reported in [41], where
the MPI measured latency and bandwidth are given. In
Table 1 we summarize such values.

Table 1: Network Comparisons
Network Latency (µs) Bandwidth

(MB/s)
Fast Ethernet 50 12.5

Gigabit Ethernet 15 125
Myrinet 20 62
QsNet 5 200

6.3 Specialized system design

In order to design specialized HW systems, we have
developed a High Level Synthesis (HLS) methodology
which, starting from a high level description of an affine
iterative algorithm, allows its automatic hardware
synthesis; theoretical basis of this approach can be found
in [38],[39]. The HLS methodology is based on a sequence
of steps which transform the high level description into

several lower level representations, until reaching the
hardware implementation (described through a Hardware
Description Language). Each transformation step is
correct-by-construction, i.e. it preserve application
semantics allowing the automatic implementation of the
HLS methodology. In order to ensure the generation of
correct-by-construction transformation steps, the
algorithm high level description is given through a
mathematical model of computation. In such a way each
transformation step is mathematically proved to be
correct.

The chosen model of computation is the System of
Affine Recurrence Equations (SARE) ([32] [33] [34])
which is one of the most promising model of computation
in such fields arising in signal and image processing,
linear algebra, scientific computing. SARE computational
model allows the specification of an algorithm by means
of recurrence equations.

7. Conclusions

In this work a brief review of the supercomputer
scenario has been presented, discussing advantages of
custom vs commodity system implementation.

Some theoretical aspects involved in heterogeneous
system design and management have been introduced.
Particular emphasis has been devoted to definition and
discussions of task and system granularity. After
underlying impact of a correct matching between
task/system granularity, they were presented some results
obtained in a scientific project aimed to exploit the
advantages connected both to heterogeneity and to the use
of custom parallel architectures. The outcome of this
project was the PQE1 hybrid parallel system. After a brief
description of its HW and SW environment, some
examples of its use in several application domains have
been reported (simulation of the sea level in the Venice
lagoon, of the dynamic of galactic globular cluster, of
electromagnetic field evolution).

Finally, on the basis of the experience gained while
developing this project, the HW/SW architecture of a next
hybrid parallel prototype has been shortly presented.

Acknowledgments

The authors acknowledge the fundamental role
played by the Italian Project PQE2000 (which groups
INFN, ENEA, CNR and QSW) for having triggered the
idea of the PQE1 platform and for the collaboration
during the course of the project. It should be emphasized
the preminent role of M. Vanneschi, F. Baiardi, D. Guerri,
M. Danelutto and S. Pelagatti (University of Pisa) in the
realization of most of the SW structures (DVSM, SkIE-
CL) which are supported by the PQE1 architecture and
constitute its relevant assets. The role played by the QSW
staff (R. Marega, B. Bacci, R. Castino, L. Di Iulio, S.

Pratesi, D. Rowet, A. Scippa, R. Simonazzi) in the
platform realization is also acknowledged. The authors
are also indebted to the staff of ENEA Funzione Centrale
Informatica (INFO) for its constant technical support
throughout the course of the project.

8. References

[1] ALPHA 21264 Microprocessor Hardware Reference
Manual
[2] Accelerated Strategic Computing Initiative – ASCI –
URL: http://www.sandia.gov/ASCI/
[3] Mathis, A.: Technologies for Teracomputing: a European
Option. Para98 -Workshop On Applied Parallel Computing
In Large Scale Scientific and Industrial Problems - Umea,
Sweden June, 14-16, 1998
[4] The GRAPE project. URL: http://grape.c.u-
tokyo.ac.jp/grape/
[5] Makino, J., Taiji, M.: Astrophysical N-body simulation on
GRAPE-4 special purpose computer. Proceedings of
Supercomputing 1995
[6] Makino, J.: Stellar dynamics on 200 Tflops special purpose
computers. Proceedings of the International Symposium on
Supercomputing (1997)
[7] APE: The Italian SIMD supercomputer in the teraflop
range. URL http://chimera.roma1.infn.it/ape.html
[8] Battista, C. et al.: The APE100 Computer: (I) the
Architecture. Int. Journal of High Speed Computing n. 5 –1993
[9] Bartoloni, A. et al.: The new wave of the APE Project:
APEmille. Nucl. Phys. B, n. 42 – 1995
[10] Tripiccione, R. APEmille. Parallel Computing, vol. 25, n.
10-11, Oct. 1999, Special Issue: High performance computing in
lattice QCD.
[11] PQE1 prototype description - URL:
http://www.pqe2000.enea.it/home/pqe1/PQE1_a.html
[12] Vanneschi, M.: The PQE2000 Project on General Purpose
Massively Parallel Systems''. Alta Frequenza, IEEE. November
1996.
[13] Vanneschi, M.: PQE2000:HPC tools for industrial
applications IEEE Concurrency, Vol 6, n.4, Oct-dec. 1998
[14] Pucello, N., Rosati, M., Celino, M., D'Agostino, G.,
Pisacane, F., Rosato,V.: Search of molecular ground state via
genetic algorithm; implementation on a hybrid SIMD-MIMD
platform, Lecture Notes in Computer Science; A.Bode,
J.Dongarra, T.Ludwig, V.Sunderam Eds. (Springer) 1996
[15] Pucello, N., Celino, M., Rosato,V.: SuperComputing
Application to Materials Science Engineering Proc. SIMAI 98
Conference, Giardini Naxos, Messina, Italy (1-5 June 1998)
[16] Nicastro, S., Valentinotti, F.: An Atmosphere-Ocean
Forecast System on a Hybrid Architecture. Proceedings of the
Euromicro International Workshop on Parallel and Distributed
Computing PDP 99. Madeira (Spain), 1999.
[17] Valentinotti, F., Taraglio, S.: Phase Difference Stereo
Disparity Computation on a SIMD Parallel Machine. Lecture
Notes in Computer Science N.1225. Proceedings of High
Performance Computing and Networking – Europe, HPCN'97,
Vienna, Austria, April 1997.
[18] Palazzari, P., Coli, M., Lulli, G.: Massively parallel
processing approach to fractal image compression with near-
optimal coefficient quantization. Journal of Systems
Architecture vol 45, n. 10, April 1999 pp. 765-779

[19] Palazzari, P., D'Atanasio, P., Ragusini, F.: Simulation of
Patch Array Antennas by Parallel Finite-Difference Time-
Domain Algorithm. Proceedings of the High Performance
Computing and Networking – Europe (HPCN Europe 98), April
21st-23rd, 1998, Amsterdam (Nederland).
[20] Palazzari, P., Adda, S., D'Atanasio, P.: A Tool for the
Simulation of Electromagnetic Field Dynamic in Complex
Environments through Massively Parallel Systems. 13th
European Simulation Multiconference (ESM’99), Warsaw,
Poland, June 1-4, 1999
[21] Coletta, M., Lippert, T., Palazzari, P.: Hyper-Systolic
Implementation of BLAS-3 Routines in the APE100/Quadrics
Machine. Para98 -Workshop On Applied Parallel Computing In
Large Scale Scientific and Industrial Problems - Umea, Sweden
June, 14-16, 1998
[22] Taraglio, S., Massaioli, F.: An efficient implementation of a
Backpropagation learning algorithm on a Quadrics parallel
supercomputer", Proceedings of the High Performance
Computing and Networking – Europe (HPCN-Europe 1995),
April 1995.
[23] Gerasoulis,A., Yang,T.: On the granularity and clustering of
directed acyclic task graphs. IEEE Transactions on Parallel and
Distributed Systems, vol. 4, N. 6, Jun. 1993.
[24] Meiko Web Page:
www.meiko.com/info/TechnicalDescription/TechnicalDescripti
on.html
[25] Baiardi,F., Bernasconi,C., Guerri,D., Ricci,L., Vaglini,L.:
Implementing concurrent paradigms through virtual shared
areas. Technical report from Informatics Department, University
of Pisa, November 1998.
[26] Bacci,B., Cantalupo,B., Danelutto,M., Orlando,S.,
Pasetto,D., Pelagatti,S., Vanneschi,M. : An environment for
structured parallel programming. In Advances in High
Performance Computing, NATO ASI series e, Vol. 30, 1997.
[27] Siegel, H. J., Maheswaran, M., Watson, D.W., Antonio,
J.K., Atallah, M.J.: Mixed Mode System Heterogeneous
Computing. Chapter 2 in the book ‘Heterogeneous Computing’,
Ed. Eshigian,M.M., Arctech House, Norwood, MA, 1996.
[28] Stone, H.S.: Multiprocessors. In High-Performance
Computer Architecture, First Edition, Addison Wesley, 1987.
[29] Bacci,B., Danelutto,M., Pelagatti,S., Vanneschi,M.: SkIE:
A heterogeneous environment for HPC applications. Parallel
Computing, Vol. 25, n.13-14, Dec. 1999.
[30] Silbershatz, A., Galvin, P.B.: Virtual Memory. Chapter in
Operating System Concepts, Addison Wesley, 1994
[31] www.quadrics.com/web/public/fliers/qsnet.html
[32] Mongenet C.: Data Compiling for System of Affine
Recurrence Equations. IEEE International Conference on
Application - Specific Array Processors, ASAP, Aug. 1994.
[33] Mongenet C., Clauss P., Perrin G.R.: Geometrical Tools to
Map System of Affine Recurrence Equations on Regular Arrays.
Acta Informatica, Vol. 31, No. 2, 1994.
[34] Loechner V., Mongenet C.: Solutions to the
Communication Minimization Problem for Affine Recurrence
Equations. Proceedings of the EUROPAR ‘97, Passau,
Germany, Vol. LNCS 1300, August 1997.
[35] Sarkar, V. : Partitioning and scheduling parallel programs
for multiprocessors. The MIT Press, 1989
[36] Lippert, T., Seyfried, A., Bode, A., Schilling, K.: Hyper-
Systolic Parallel Computing. IEEE Trans. on Parallel and
Distributed Systems, n. 1, 1998.

[37] Lippert, T., Glaessner, U. , Hoeber, H., Schilling, K. and
Seyfried, A.: Hyper-Systolic Processing on APE100/Quadrics,
in n2-loop computations'. Int. Jour. Mod. Phys. C, 7, 1996.
[38] Marongiu, A., Palazzari, P.: A new memory-saving
technique to map System of Affine Recurrence Equations
(SARE) onto Distributed Memory Parallel Systems.
International Parallel Processing Symposium IPPS99, April 12-
16, 1999, San Juan, Puerto Rico.
[39] Marongiu, A., Palazzari, P.: Automatic Mapping of System
of N-dimensional Affine Recurrence Equations (SARE) onto
Distributed Memory Parallel Systems. Accepted to appear in the
special issue of IEEE Trans. on Software Engineering on
Architecture-Independent Languages and Software Tools for
Parallel Processing
[40] Saraceni, F., Coletta, M., Pucello, N., Rosato, V.,
Capuzzo-dolcetta,R.: On the use of a hybrid MIMD-SIMD
platform to simulate the dynamics of globular clusters with an
internal massive object. In preparation.
[41] Allan, R.J., Guest, M.E.: Distributed Computing
Programme.HPC Profile – The national publication for High –
Performance computing applications and techniques, 24, pp12-
15, Dec. 1999

Paolo Palazzari, graduated in Electronic Engineering '89,
Ph.D. '94. From '89 to '95 he was scientific assistant at the
Electronic Engineering Department of University 'La
Sapienza' in Rome. From '96 he is staff scientist at the
Italian National Agency for New Technologies, Energy
and the Environment (ENEA) where works on the High
Performance Computing and Networking project. Main
fields of his research are automatic parallelism detection
for High Level HW/SW synthesis, routing, allocation and
scheduling of parallel programs, image processing, neural
networks and non linear optimization techniques.

Lidia Arcipiani has a degree in Mathematics and a
post-graduate “diploma” in Statistical Methodology. After
ten years at the Electronic Division of the Italian
Company Olivetti, she moved at the Italian Commission
for Nuclear Energy (CNEN, now ENEA) as director of
Casaccia Computing Centre. She has been acting as
coordinator of computing, information and networking
programs for the Department of Energy. At present she is
staff scientist and R&D expert on the High Performance
Computing and Networking Project of ENEA. She has
been member of the National Committee for the
Mathematical Science of the Consiglio Nazionale delle
Ricerche (CNR) and vice-president of the National
Committee for the Information Technologies of the CNR.
She was professor of Computer Science at Catania
University.

Massimo Celino, graduated in Physics at the University
"La Sapienza" of Rome (1992), has been working as
Research Associate at the Department of Physics in the
field of Statistical Physics. From 1994 he is working at
the Italian National Agency for New Technologies,
Energy and the Environment (ENEA). His work is mainly

focused on Computational Physics for applications in
Materials Science and Quantum Chemistry. Other
interests are in the field of computer programming and
parallel algorithms for high performance computing
platforms.

Roberto Guadagni, graduated in Electronic Engineering
at University “La Sapienza” of Rome in 1983. He is
working at the Italian National Agency for New
Technologies, Energy and the Environment (ENEA) from
1986. Now he is responsible of the supercomputing
facilities in the Casaccia Research Center.

Alessandro Marongiu, graduated in Electronic
Engineering ‘95, Ph.D. 2000. Main fields of his research
are automatic parallelism detection for High Level
HW/SW synthesis, allocation and scheduling of parallel
programs, cellular neural network design.

Agostino Mathis is Director of the Interdepartmental
Project "High Performance Computing and Networking"
(HPCN) at the Italian National Agency for New
Technology, Energy and the Environment (ENEA). He
graduated in Electrical Engineering, and received a post-
graduate "diploma" in Nuclear Engineering, at the Turin
Polytechnic School of Engineering. He holds the "Libera
Docenza" in Control Engineering at the Rome "La
Sapienza" University. He is Professor of High
Performance Computing at the Rome “Tor Vergata”
University. He has published numerous papers on
mathematical modeling of industrial processes, techniques
for computer simulation, information systems for
organizational management and high performance
computing.

Paolo Novelli graduated in Physics at the University of
Rome (Italy) in 1969. From 1971 to 1975, he was an
assistant professor of electronics at the Physics
Department of the same University. At the Italian
National Agency for New Technologies, Energy and the
Environment (ENEA) since the beginning of his
professional activity, he was involved in the following
fields: design of electronic devices for nuclear plants and
analog computers, development of numerical models of
uranium enrichment cascades, computational gas-
dynamics of ultracentrifuges. From 1982, he was involved
in the corporate planning activities, and in 1987 he
became the Head of the Organizational Development unit.
In 1994, he came back to his past research interests and
joined the High Performance Computing and Networking
unit (HPCN).

Vittorio Rosato, graduated in Physics at the University of
Pisa (1979), received the Ph.D. at the University of Nancy
(F) on 1986. He has been working as Research Associate
at the University College of Wales in Aberystwyth (UK),
at the Centre d'Etudes Nucleaires de Saclay (F), at the
CECAM (Centre Europeen de Calcul Atomique et
Moleculaire) in Orsay (F). From 1990 he is a Staff
Scientist at the Italian National Agency for New
Technologies, Energy and the Environment (ENEA). His
research field is Computational Materials Science; in this
area, he has been working on the development of
interatomic potentials for metals and intermetallics and in
their use to study thermodynamic and structural properties
of complex materials. He is now active in the field of
atomic-scale simulations of new C-based and Si-based
materials. He is involved in design and realization of new
tools (HW and SW) for HPC for scientific applications.

