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Abstract

Reordering and reassembly of data before processing can

reduce communication system performance as seen by the

application. We examine a method of explicitly labelling

blocks of data with sufficient information to allow process-

ing of disordered data. Our labelling syntax for data blocks,

which we call chunks, is cleaner and more general than that

of other protocols. We show how chunks can be used for ef-

ficient fragmentation/reassembly and compare chunks with

other fragmentation systems. End-to-end error detection is

complex for chunks or other systems that allow both frag-

mentation and processing of disordered data. We show that

it is possible to design an end-to-end error detection system

that does not compromise chunk processing performance.

Chunks can take advantage of processing techniques such as

Integrated Layer Processing and can be used to implement

concepts such as Application Layer Framing [CLAR 90].

1 Introduction

For the last four years, we have been exploring protocols de-

signed for high application-to-application performance. The

driving force behind this work has been our participation in

the AURORA gigabit network testbed [BIER 92], [CLAR 92].

Often, high performance communication ends at the edge of

the network; we are interested in providing high performance

communication to the application. By high performance, we

mean both high throughput and low latency.

We have found that high-performance processing is easiest

if a group of data th~t require identical processing have a COZY-

pletely self-describing header. We call these self-describing

groups of data chunks. By self-describing, we mean that

chunk headers contain enough information that each chunk
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can be processed by the entire protocol stack without de-

pending on the arrival of any other chunk. We will describe

the performance advantages of chunks and describe infor-

mation that must be contained in chunk headers to aHow

high application-to-application performance. We will also

show that chunks provide an efficient means of performing

fragmentation and reassembly. The nature of chunks makes

end-to-end error detection complex than for conventional pro-

tocols. However, we show that end-to-end error detection is

possible while using chunks and describe a specific tech-

nique.

The following definitions should be understood before

reading the remainder of the paper. A packet is the unit

of multiplexing in a network and the atomic physical unit

of data exchanged between protocol processors. A protocol

data unit (PDU) is the logical unit of protocol processing

exchanged between peer protocol entities. A TCP segment

is an example of a PDU. PDU’S are be mapped into packets

for transmission between protocol processors. As we shall

see later, a chunk is a self-describing piece of a PDU and a

packet is used as an envelope for carrying chunks.

Chunks are designed to support high-performance protocol

processing by rdlowingpackets to be processed at the receiver

as they arrive without intermediate buffering for reordering

or reassembly. Buffering before processing increases end-

to-end latency of data, because of the time that the data are

in the buffer. Eliminating buffering also simplifies hardware

protocol processors. A major disadvantage of buffering data

before processing in RISC workstation architectures is that

buffering requires moving the data twice: once from network

interface to memory (the buffer) and once from memory to the

processor, Because the bus is often a throughput bottleneck
on RISC workstations, moving data across the bus twice

can decrease protocol processing throughput. The idea of

increasing protocol performance on RISC workstations by

eliminating buffering in the protocol stack has been called

Integrated Layer Processing (ILP) [CLAR 90], lazy message

evaluation [0’MAL91 ] and delayed evaluation [PEHR 92].

fissuming that the data transmission rate in a system does

not exceed the receiver’s capacity, processing data as they
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arrive at the receiver is easy if no disordering occurs. How-

ever, data misordering can be caused by message loss in the

network. For example, if message 1 is received, message 2 is

lost, message 3 is received, and the retransmission of message

2 is received, data have been disordered. The unit of disor-

dering is the PDU of the emor control protocol. Another type

of disordering is packet disordering in the network caused

by multipath routing. For example, obtaining gigabit rates

on a SONET OC-3 ATM network requires using eight 155

Mbps ATM connections in parallel. Skew among the routes

can cause packetsl to leave the network in a different order

than that in which they entered. Route changes that occur

during communication also can cause packet disordering,

because the first packet sent along the new route may arrive

before the last packet sent along the old route.

Because disordering occurs, many protocols reorder data

before processing. Reordering implies that at least some data

are buffered before processing, which we would like to avoid.

We claim that reordering before processing is not always

necessary because some applications can accept disordered

data. One such application is bulk data transfer. Regardless

of the order in which data arrive, they can be correctly placed

2. Another example is video.in the application address space

Although the video frames themselves must be presented in

the correct order, data of an individual frame can be placed in

the frame buffer as they arrive without reordering. Another

reason why we need not reorder before processing is that

there exist protocol operations that provide the equivalent

functionality of CRC error detection and DES cipher block

chaining encryption, but with the additional property that

they can be performed on disordered data [FELD 92].

The only remaining obstacle to the processing of disor-

dered data is to assure that each packet contains sufficient

information to determine how to process the packet payload.

Wkh current protocols, we run into trouble as soon as some

PDU is larger than a packet. The problem is that PDU el-

ements are implicitly identified by their position within the

PDU, which means that to process a packet that contains a

piece of a PDU requires already having seen all previous

pieces of the PDU. A way to avoid this problem is to assure

that all PDU’S fit into a single packet. However, such art

approach is not attractive because placing the control over-

head of every PDU in every packet may be inefficient also,

we may not even know the size of the smallest packet in our

system if we transmit across an intemet. Chunks provide a

better solution by explicitly identify ingPDU elements, which

allows both processing of disordered data and spreading of

PDU control overhead across multiple packets.

1packet me Cf?k, h his Cme.

2WJecan fii~k of ~i~ as spatial reordering versus conventional temporal

reordering.

2 Data Labelling Format

Ch.m.ks are completely self-describing data units, within

which all data is processed uniformly. As mentioned previ-

ously, conventional protocols identify PDU data and control

by their position within the PDU. With chunks, we intro-

duce the notion of explicit data typing within a PDU. In our

PDU’S, pieces of the PDU are individually labelled with a

TYPE field. The explicit TYPE field indicates how the piece

of the PDU should be processed. The basic PDU contains

pieces with TYPE’s of “data” and “control”. For example, in

a transport-layer PDU (TPDU), the PDU payload would be

of TYPE “data” and the error detection code field would be

of type “control”. PDU’S may contain more than one type of

control, and thus, multiple control TYPE’s may be used.

In addition to a TYPE field, PDU pieces require additional

fields for complete identification. For PDU data (TYPE =

“data”), a (ID, SN, ST) tuple provides complete identifica-

tion. The ID identifies the specific PDU to which the data

belong, and the SN is the data’s sequence number within the

PDU payload. The first piece of data of the PDU has a SN

of zero, and the last piece of data of a PDU is indicated by

an ST bit (STop bit) that is set to one. The PDU payload is

also known as afiame, and the (ID, SN, ST) tuple isframing

information.

A single (ID, SN, ST) tuple is sufficient in a system that

uses only a single PDU. However, most communication sys-

tems break the data stream into different sets of PDU’S for

different processing functions. For example, a single data

stream maybe divided into PDU’S one way for error detection

purposes, and divided into PDU’S another way for encryp-

tion purposes. Figure 1 shows how two different processing

functions may frame the same data in different ways; a single

piece of data in the data stream belongs to both PDU B of

PDU type 1 and PDU W of PDU 2. Thus, we allow multiple

(ID, SN, ST) tuples to be associated with a piece of data, one

for each different PDU in the communication system.

PDU type 1 PDU type 1 PDU type 1
ID=A ID=B ID=C

DATA

PDU type 2, ID = W

Figure 1: Dividing a data stream into multiple PDU’S.

We assume that data streams are uni-directional and that bi-

directional streams are constructed with two uni-directional

streams. For simplicity, we treat an entire connection as a

single, large PDU, and so one (ID, SN. ST) tuple is reserved
for the connection. The connection ID is intended to refer

to a single, unmultiplexed application-to-application conver-

sation [FELD 90]. The SN and ST function as previously
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described, with one exception. Unlike other PDU’S, SN’S

of connections are reused over time. The beginning of a

connection is indicated with a special signaling messages

(connection establishment) rather than an SN of zero.

Although conceptually each piece of data is labelled with a

TYPE field and multiple (ID, SN, ST) tuples, a group of data

with contiguous sequence numbers that have identical TYPE

and ID’s can share a single header. Thus, a chunk is a group

of data, along with a single header to label the data, The

chunk header carries the TYPE and ID’s shared by all data of

the chunk, the SN’S of the first data of the chunk, and the ST

bits for the last data of the chunk3. Because all chunk data

share identical TYPE and ID fields, a single context retrieval

is required per chunk and the chunk payload is processed

uniformly by all protocol functions. In addition, the chunk

header carries SIZE and LEN fields that indicate the size and

number of the data pieces in the chunk.

Control information also is carried in chunks. We as-

sume that each type of control information is given a dif-

ferent TYPE and that control information is indivisible, so

no LEN field is needed4. Control information is associated

with only one type of PDU. For example, an error detection

code is associated with TPDU’S and not encryption PDU’S.

An example chunk is shown in Figure 2. The data chunks

(TYPE = D) contain three PDU types: TPDU, external PDU5

(X), and connection (C). TPDU’S are represented by the

(T.ID, T.SN, T. ST) tuple, external PDU’S are represented by

(X.ID, X.SN, X. ST) tuples, andtheconnection is represented

by the (C. ID, C.SN, C. ST) tuple. Notice that there is some

redundancy in the chunk headers; we consider more efficient

ways of encoding chunk headers in Appendix A.

Chunks are pieces of PDU’s and chunks are moved among

protocol processors inside of packets. Packets can be con-

sidered envelopes that carry integral numbers of chunks. If

a chunk is longer than a packet, it can be split into smaller

chunks that fit into packets as shown in Figure 3. Each frag-

mented chunk has the same TYPE, SIZE and ID (C. ID, T. ID,

and X.ID) fields as the original chunk. The LEN and SN

fields (C.SN, T.SN, and X.SN) are adjusted appropriately to

reflect the contents of the new chunk. Only the chunk that

contains the last data of the original chunk has its ST bits

(C. ST, T. ST, and X. ST) set to the values of the ST bits in the

original chunk, no ST bits are set in any other chunk. The

detailed algorithm is in Appendix C. The SIZE field assures

that the atomic units of protocol data processing are not split.

For example, DES encryption works on 64-bit blocks and
we do not want to split these block into two pieces that may

arrive separately.

3A ~h~nk header contains the ST bits of the kc3t data Of the chunk,

because shared TYPE and ID’s mean that only the last data of the chunk

could possibly have any ST bits set.
4ConEol information that is divisible could be carried in chunks similar

to data chuaks.
5Ex@mal pDu refersto anyPDU other than the IT’DLJ. For ex~Ple, tie

extemat PDU could be a PDU of importance to the application (also known

as an Application Layer Frame or ALF [CLAR 90]).

form chunk header

1 1
. ..........................................................

TYPE D:’DDDDDDIYD
C.ID AA A A A A A A~A
C.SN 35! 3637 38 394041 42,43

C. ST O: OOOOOOO; O
T.ID P: QQQQQQQ:R
T. SN6.0123456!0
T. STlj OOOOOOl:O
X.ID CC C C C C C C;C
X.SN 23; 2425 26 27 28 29 3031
X.ST O ‘.~,,_ O 0 0 0 0 0 ‘ O

—— .-.— .. .. .... . . .... . ,

ID
SN
ST
TYPE
SIZE
LEN

>

CTX

II4QC
;6 O 24
)10

D
1
7

DATA

Figure 2: Formation of a TPDU data chunk.

If chunks are smaller than a packet, then as many chunks as

fit can be placed in a single packet, as for packet 2 of Figure 3.

A TPDU data chunk and a TPDU control chunk (TYPE =

ED) that contains the error detection code are combined into

a single packet. The chunks are removed from the packet

and processed separately at the receiver. Because chunks

allow disordering, how the chunks are placed in a packet is

irrelevant. Placing multiple chunks in a packet is necessary if

we want to send an entire PDU in a single packet. If chunks

do not fill a packet completely, we must indicate when the

last valid chunk has been reached. A chunk with LEN= O is

placed after the last valid chunk in the packet.

Chunks provide a syntax only, with no associated seman-

tics. To use chunks to implement a concept such as ALF, we

must associate the semantics of an application frame with one

of the (ID, SN, ST) tuples in a chunk. Semantics for other

types of operations, such as error control, can be associated

with other (ID, SN, ST} tuples in a chunk.

The syntax of chunks is similar to the syntax of other

protocols, and Appendix B contains a comparison of chunks

with other protocols.
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ID
SN
ST
TYPE
SIZE
LEN

data
chunk

CTX

IIQC
6024

10

D
1
7

I DATA

error
detection
chunk

CT

uID A
TYPE ED
SIZE 1

WSC-2

L-
split data chunk
into two chunks

1

v
CTX

ID

F

AQC
SN 36 0 24

ST 000

TYPE D
SIZE
LEN :

DATA

t

ID
SN
ST
TYPE
SIZE
LEN

t
CTX

m

AQC
40 4 28
010

D
1
2

DATA

place chunks
into packets i

EEEIEEEI
Figure 3: TPDU chunks and their mapping onto packets.

3 Fragmentation

We often want to use PDU’S that exceed the packet size of

the underlying network. The splitting of PDU’S into pieces

is called fragmentation or segmentation. Chunks can be used

for a flexible and efficient fragmentation system. In this sec-

tion, we discuss fragmentation in general and then discuss the

advantages of using chunks for fragmentation/reassembly.

Fragmentation is used because it can be more efficient than

placing every PDU in a single packet. For example, consider

two supercomputers exchanging large blocks of data. For per-

formance reasons, the supercomputers may prefer to do pro-

tocol processing on 64 kbyte blocks even though the network

packets may be much smaller6. Another reason to spread

PDU overhead across multiple packets is that the packets

CA hig&Speed V2p implementation on a CraY uses 64 Wte ‘fcp seg-

ments [BORM 89].

may be too small to efficiently carry a PDU per packec such

is the case with ATM cells. Also, interrupts can be reduced

if the host-network interface interrupts only after complete

PDU’S have been received. Such an approach is suggested

in [STER 90], and a host-network interface built by Davie

moves individual packets across a computer bus using DMA,

but generates interrupts only for complete PDU’S [DAVI 91].

In an intemetworking environment, many different packet

sizes may exist. Consequently, we may need to perform

fragmentation within the network. Fragmentation can be

handled several ways [SHOC 79], [KENT 87]7:

1.

2.

3.

4.

Never fragment - discard packets that are too large

Intra-network fragmentation

Inter-network fragmentation

Never fragment - never send packets larger than a spec-

ified maximum size

Discarding packets that are too large (option 1) is unac-

ceptable. Intra-network fragmentation (option 2) can be done

transparently, but the approach sacrifices the flexibility of al-

ternate routing [SUNS 77], [SHOC 79]. Also, there can be

a problem if different networks use different fragmentation

schemes; we may have to reassemble at the exit of one net-

work and re-fragment at the entrance to the next network

[SUNS 77]. Inter-network fragmentation (option 3) seems

to be the solution of choice for intemetworking [CERF 74],

[SUNS 77], [SHOC 79].

A specified maximum packet size (option 4) guarantees in-

efficient use of almost evety network except the one network

whose packet size is limited to the internetwork maximum

size [SUNS 77], [SHOC 79]. Kent and Mogul [KENT 87]

argue against fragmentation and for a variation of option
4. They suggested avoiding IP fragmentation by dynami-

cally determining the minimum transmission unit (MTU) for

a route. Dynamically determining the MTU for a particu-

lar route reduces PDU overhead on routes with MTU’s that

are larger than the intemet-wide MTU. Aside from this one

difference, all of their arguments also hold for option 4.

Kent and Mogul claim that fragmentation causes inefficient

use of resources, but there is no way to avoid the additional

overhead of small packets if we must use a route with small

packets. Reassembly within the network can reduce overhead

on links of a route after the link with the smallest MTU.

Kent and Mogul argue that fragment loss degrades per-

formance because if a single fragment is lost, then an entire

TPDU8 is retransmitted. However, if such losses occur often

enough to be a problem, a good transport protocol implemen-

tation should reduce its TPDU size to match the observed

network error rate without any direct knowledge of whether

7Although these references discuss fragmentation in the network, the

same ideas apply regardless of where fragmentation is performed.
s~e TPDU in tieir case is a TCP segment.

173



fragmentation is occurring. Also, if fragments travel along

the same route, we have the option of dropping all of the

fragments of a TPDU if any fragment must be dropped, a

technique suggested by Turner [TURN 92].

Kent and Mogul claim that efficient reassembly is hard,

and thus network fragmentation should be avoided. How-

ever, eliminating network fragmentation does not eliminate

reassembly. Even if no fragmentation occurs in the network,

we must reassemble (or reorder) packets as they arrive at the

receiver to recover the original data stream. Reducing the

TPDU size to eliminate network fragmentation does elim-

inate reassembly of fragments into TPDU’S, but at the ex-

pense of complicating reassembly of TPDU’S because more

TPDU’S are used. The main advantage of avoiding network

fragmentation is that a two-step reassembly process (frag-

ments to TPDU’S, then TPDU’S to data stream) becomes a

one-step process (fragments to data stream).

Kent and Mogul discuss the intentionat use of frag-

mentation, which decreases the amount of fragmenta-

tion/reassembly at the data stream level and increases the

amount of fragmentatiordreassembly at the PDU level. Such

an approach makes sense if fragmentation is cheaper at the

PDU level (perhaps because different types of processors are

available).

3.1 Chunk Fragmentation

Chunks are well suited to fragmentation because chunks pre-

serve all of their properties under fragmentation. Also, re-

gardless of how many different fragmentation steps occur,

chunks can be efficiently reassembled in a single step. Chunk

fragmentation is easiest to understand if we think of packets

as envelopes that carry chunks. Whenever we must change

from one packet size to another packet size, it is as if chunks

are emptied from one size of envelope and placed in another

size of envelope.

IImmEl~ F’PICIDATAICIDATA]

Fragmented Repacked (Method 2)

P = Packet Header ~ IPICI DATA

C = Chunk Header Reassembled (Method 3)

Figure 4: Using chunks for internetworking.

When moving chunks from large packets to small pack-

ets, it may be that some chunks are too large to fit into the

small packets. If so, the large chunk can be split into smaller
chunks that do fit into the small packets, as was shown in

Figure 3 and described in Appendix C. Because splitting

a chunk forms multiple chunks by definition, the receiver

always receives packets filled with chunks, and the format

of the received chunks is identical regardless of how much

network fragmentation occurs. Splitting chunks can be con-

sidered a generalization of existing fragmentation protocols,

because multiple (ID, SN, ST) tuples must be manipulated

rather than a single (ID, SN, ST) tuple. Such manipulation

can be done in parallel.

When moving chunks from smaIl packets to large packets,

we have the three choices shown in Figure 4:

1. Put one small chunk in each large packet

2. Combine multiple small chunks into a large packet

3. Perform chunk reassembly

With chunks, all three options are possible, and the specific

choice is left to the implementor. We can use arbitrary com-

binations of intra-network and inter-network fragmentation,

because chunk fragmentation and reassembly in the network

is complete] y transparent to the receiver. Chunks also al-

low the possibility of packing unrelated chunks into packets,

a technique that is simpler than and almost as efficient as

chunk reassembly.

3.2 Chunks versus Other Systems

Most fragmentation schemes take a PDU, split the PDU into

pieces and transmit the pieces as PDU fragments. The prob-

lem with this scheme is that individual packets (fragments) no

longer contain enough information about the framing struc-

ture of the PDU to allow disordered packets to be processed

as they arrive at the receiver. Thus, fragments must be re-

assembled into PDU’S at the receiver before they can be pro-

cessed as usual. We would prefer that each fragment could

be immediately processed without prior reassembly because

reassembly before processing implies buffering.

Unlike chunks, IT fragmentation never combines frag-

ments in the network, and thus, never reassembles or com-

bines fragments inside the network. IP does not perform

reassembly, and Cerf and Kahn argue that routers should not

perform reassembly for practical reasons [CERF 74]. How-

ever, reassembly in routers may be a practical option today.

IP is not designed to combine arbitrary fragments in a single

packet.

Another advantage of chunks is reduced demultiplexing

cost. Because of multipath routing, a mixture of complete

PDU’S and fragments of PDU’S could arrive at the receiver.

The receiver must examine the received packet to demulti-

plex the packets to the appropriate protocol. Although this

demultiplexing step is simple, it does have some cost. Chunks

are processed identically regardless of whether network frag-
mentation has occurred.

An alternative to fragmentation is to convert large PDU’S

into smaller PDU’S, as in done in XTP. However, performing

this function at just the transport layer is not enough - it must

9me ~gon~m for chunk reassembly is in Appendix D.
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be done for all PDU’S at all layers. One consequence of

this is that all of the higher-layer protocols in use on the net-

work must beat the point of fragmentation, e.g., anyone who

fragments XTP packets must understand the XTP protocol.

Fragmentation is no longer independent of the upper-layer

protocols. Another disadvantage is that the overhead of all

PDU’S must be carried in each packet, and this could be

inefficient.

XTP also has a scheme similar to that of combining mul-

tiple chunks in a single packet. An XTP SUPER packet is

a packet that contains multiple XTP TFDU’S. However, the

SUPER packet format is not the same as the regulw XTP

packet format. Chunks have the same format regardless of

what fragmentation, reassembly, or chunk combining may

have occurred.

The disadvantage of chunks is that chunk fragmentation

requires manipulation of multiple levels of framing informa-

tion, compared with other fragmentation systems that manip-

ulate a single level of framing information. However, this

manipulation is quite simple and can be done in parallel for

each level of framing.

Chunks are a compromise between the traditional fragmen-

tation approach and the XTP approach. With fragmentation,

entities that convert between two packet sizes do not need

to know either the syntax or semantics of higher-layer pro-

tocols. The XTP approach requires that both the syntax and

semantics of XTP be known to entities that convert from one

packet size to another. Chunks provide a syntactic structure

that must be understood by any entity that processes chunks.

However, intermediate systems that perform fragmentation

need not understand the semantics associated with the chunk

syntax.

3.3 Reassembly

At some point in the receiver, we must perform complete

reassembly of the transmitted data. There are several options:

●

●

☛

The

Let the application deal with reassemblyl”

Reorder data before passing to application

Reassemble data into larger blocks (e.g., complete

PDU’S) before passing to application

second and third options are not mutually exclusive.

As discussed previously, passing data to the application as

it arrives has both latency and throughput advantages over

reordering and reassembly. Immediate packet processing

minimizes data movement, while reassembly requires two

accesses to each piece of data one access to examine the

header for reassembly purposes and one access for proto-

col processing after reassembly is complete. Reordering is

somewhere in-between and the number of times that data

1°Sometimes cslled reassembly in place [STER 90].

must be accessed depends on the amount of disordering in

the network. Maximum system performance is achieved if

any reordering or reassembly happens as close to the appli-

cation as possible.

Any of three approaches presented above can be used with

chunks because chunks can be reassembled in a single step

regardless of whether fragmentation occurs in the network.

Thus, chunks can provide the low PDU overhead of fragmen-

tation with the reassembly efficiency of avoiding fragmenta-

tion. Chunks have another advantage because they need not

be fragmented completely until they reach the router attached

to the network with the MTU.

Reassembly buffer lock-up occurs when the reassembly

buffer is filled completely and yet no single PDU is com-

plete. Reassembly buffer lock-up can be a problem with

disordered IP fragments [KENT 87]. Chunks eliminate this

problem because they can be processed and moved to their fi-

nal destination as they arrive without prior physical reassem-

bly. To reduce degradation caused by fragment loss and

fragment timeout problems, retransmitted data should use

the same identifiers as the originally transmitted data. An

identical technique can be used with chunks.

Regardless of whether we perform physical PDU reassem-

bly, packet reordering, or immediate packet processing, we

must perform virtual reassembly. By virtual reassembly, we

mean keeping track of the received fragments to determine

when all of the fragments of a PDU have been received. If

physical reassembly is used, virtual reassembly indicates that

a PDU is ready for processing. If reordering or immediate

packet processing is used, virtual reassembly indicates all

pieces of a PDU have been processed incrementally. For

example, if we compute an error detection checksum in-

crementally as fragments arrive, completion of PDU virtual

assembly indicates that the incremental checksum is ready to

be compared with the received checksum of the PDU.

Virtual reassembly also may be used to reject duplicate

data. For example, if we are performing an incremental

checksum calculation, we want to avoid processing the same

TPDU piece twice, as this may cause the checksum to be

incorrect even if no data cormption has occurred. Another

reason to reject duplicates is to prevent a corrupted dupli-

cate from overwriting uncorrupted data that has already been

received.

Virtual reassembly can be complex if data disordering

occurs. Reference [STER 92] suggests the use of VLSI

for high-speed virtual reassembly and McAuley describes

a VLSI virtual reassembly unit that is based VLSI chip pre-

viously built at Bellcore [MCAU 93b].

4 End-to-End Error Detection

In a communication system, we want to use end-to-end error

detection, because it provides higher reliability than hop-by-

hop error detection [SALT 84]. The transport layer protocol
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in the host is responsible for end-to-end error detection. Lay-

ers above the transport protocol expect that both the data and

control parts of their PDU’S are protected by the transport

protocol.

End-to-end error detection of higher-layer PDU’S is con-

ventionally performed by carrying the higher-layer PDU’S

(framing, control information, and data) as TPDU payload.

With chunks, higher-layer PDU framing information is car-

ried in chunk headers, so both chunk headers and payloads

must be protected by the error detection code. Because chunk

headers are manipulated during network fragmentation, end-

to-end error detection requires an error detection code value

that is unaffected by the fragmentation procedure. In this

section, we describe how to perform end-to-end error detec-

tion using chunks. Although we focus on chunks, a similar

approach is necessary for any system that allows both pro-

cessing of disordered data and network fragmentation.

Our end-to-end error detection system example uses anew

error detection code, WSC-2, that cart be applied to disor-

dered data and has the error detection power of an equivalent

cyclic redundancy code (CRC)ll [MCAU 93a]. A WSC-2

encoder takes 32-bit symbols of data and creates two 32-bit

parity symbols, PO and Pl, such that:

k–l k–l

where di is a 32-bit data symbol and the operations ~, @, and

@ are addition and multiplication performed in GF(232). Ac-

ceptable values for i are O ~ i <229 – 2; if we have less than

229 – 2 data symbols, the i values left unused are equivalent

to encoding a symbol of zero at that i value. Consequently,

WSC-2 will work correctly as long as the the error detection

protocol specifies which unique value of i should be used for

each symbol that is covered by the error detection code. Our

error detection system takes advantage of this flexibility.

Now we consider how TPDU errors are detected. We

shall detect errors in three different ways: error detection

code mismatch caused by virtual reassembly error, error de-

tection code mismatch caused by header or data corruption,

and inconsistency among certain TPDU header fields. Ta-

ble 1 lists the chunk fields of the TPDU chunk shown in

Figure 2, whether a field is altered by fragmentation, and

how the results of corruption are detected. Table 1 is simply

for referencq it need not be read in detail. Recall from before

that the TYPE field distinguishes between data and control
parts of PDU’s, the SIZE field gives the size of the basic data

unit contained in a chunk, the LEN field gives the number of

basic data units carried by a chunk, the (C.ID, C.SN, C.ST)

tuple is framing information for the connection between two

clients, the (X. ID, X.SN, X. ST) tuple is external framing in-

formation (e.g., ALF), and the (T.ID, T.SN, T.ST} tuple is

1I‘rhe Tcp checksumcan be computed on disordered data, but has less

powerful error detection properties than botb CRC and WSC-2. A CRC

cannot be computed on disordered data [FELD 92].

TPDU framing information.

Field Changed by How Detected?

Fragmentation?

C.ID No Error Detection Code

C.SN Yes Consistency Check
L

C.ST Yes Error Dete~tion Code

T.ID No Error Detection Code

T.SN Yes Reassembly Error

T.ST Yes Reassembly Error

X.ID No Error Detection Code

X.SN Yes Consistency Check

X.ST Yes Error Dete&ion Code

TYPE No Reassembly Error

LEN Yes Reassembly Error

SIZE No Reassembly Error

Data No Error Detection Code

Control No Error Detection Code

ED code No -

Table 1: How corruption is detected for various chunk fields.

We now describe in detail the error detection method used

for different groups of chunk fields. Corruption of some

fields (TYPE, LEN, SIZE, T.SN, and T.ST) will cause virtual

reassembly to fail, either because reassembly never completes

or because reassembly completes incorrectly such that error

detection code mismatch will occur. These fields need not be

covered explicitly by the error detection code.

k—————— ‘ 229‘orals ——————+

❑ = UNUSED
+ 4

VARIABLE POSITION
INFORMATION

Figure 5: TPDU invariant.

For the fields that are covered by the error detection code,
we perform error detection on an invariant of the TPDU

under chunk fragmentation. The invariant is simply a way

of assuring that the transmitter and receiver perform error

detection on the same chunk fields in the same way regardless

of network fragmentation. The TPDU invariant is shown in

Figure 512. The numbers indicate offset from the beginning

IZFor ~is example, we show error detection of data chunk payloads onlY.

Any control chunk payloads for higher-layer protocols also must be in the

invariant. Control chunk payloads would be treated like data chunk payloads,
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of the error detection code space (i = O) in 32-bit symbols.

Error detection encoding/decoding is required only for the

labelled areas; the shaded areas are unused. We assume that

the TPDU data is limited to 16,384 32-bit symbols, and that

this information is encoded as symbols O through 16,383 of

the error detection block. The T.ID and C.ID are constant for

all chunks of a TPDU, and are encoded as symbols 16,384

and 16,385 of the error detection block. The C.ST bit can be

set only on a TPDU boundary, so a set C.ST bit can occur at

most once in a TPDU. The C.ST value is encoded as symbol

16,386 of the error detection block13.

The X.ID and X.ST fields are more complicated to encode,

because multiple X.ID’s may exist in a TPDU. For each

unique X.ID that occurs in the TPDU, we want exactly one
appearance of that X.ID somewhere in the error detection

code space. To assure that each X.ID is encoded exactly

once, we encode the X.ID field of chunk headers with the

X.ST bit set. Because the X.ST bit is set once for each

external PDU, the X.ID of that PDU is encoded exactly once.

The only remaining X.ID that may not be encoded for aTPDU

is the X.ID of an external PDU that begins but does not end

within the TPDU. To assure that this X.ID is encoded exactly

once, we also encode the X.ID field of chunk headers with

the T.ST bit set. Because the T.ST bit is set once per TPDU,

the X.ID of the last external PDIJ of the TPDU is encoded

exactly once. Figure 6 shows a TPDU which contains pieces

of three external PDU’S. The vertical arrows show which

PDU boundary triggers the encoding of each X.ID field.

external external external
PDU PDU PDU
X.ID = A

+ ‘lD’B~

A DATA B c

TPDU

Figure 6: Encoding of the X.ID and X.ST fields.

Because it is possible that the T.ST and X.ST bits are set

simultaneously, we must encode the value of the X.ST bit

associated with each encoded X.ID field to detect X.ST bit

corruption if both the X.ST and T.ST bits are set simultane-

ously. We assume that the X.ID is 32 bits and the X.ST is

one bit, and we encode them within two 32-bit symbols. To

assure that no two X. IDLX.ST pairs overlap each other or any

other information in the error detection code space, we en-

code the two symbols starting at position 2. T.SN + 16,387,

where T.SN is the T.SN of the data element for which the

X.ST or T.ST set.

The two fields we have not discussed are the C.SN and

atthough at a different position in the error detection code space.
13~e ~eade~ ~a~ nOUCe fiat We SOrIIetiIIIeS use ~ entk 32-bit ‘ymkl

to encode chunk fields that maybe as small as a single bit however, with an

error detection code space of 229 symbols, sparse unitization is acceptable.

X.SN fields. If the C.SN is uncorrupted, the value of (C.SN–

T.SN) is constant for all chunks of a TPDU. If the X.SN is

uncorrupted, the value of (C.SN – X.SN) is constant for all

chunks of an external PDU within a TPDU. If not all chwzks

of a PDU have identical values for either of these differences,

then the TPDU is corrupted.

As might have been expected, the difficult part of end-to-

end error detection with chunks is handling the higher-level

framing and SN information: the C.SN, X.ID, X.SN, and

X.ST fields. Although our example uses chunks designed

for one type of external PDU, the same basic idea cart be

generalized to provide end-to-end error detection of chunks

designed for multiple types of external PDU’S.

5 Summary

Chunks are self-describing data units designed for high-

performartce protocol processing. Chunks are typed pieces

of PDU’S, and packets act as envelopes for carrying chunks

across a network. The self:describing nature of chunks allow

them to be processed as they arrive at the receiver, regardless

of any disordering. The ability to process data without in-

termediate buffering for reordering or reassembly improves

protocol processing performance.

Chunks can be the basis of a flexible and efficient system

for fragmentation. Chunks allow fragmentation, reassembly,

and the combining of arbitrary chunks into a packet for ef-

ficient bandwidth utilization. Chunks can be reassembled

efficiently in one step, regardless of how many times they’ve

been fragmented. Convention protocols require a reassembly

step for each fragmentation step. Because chunks can be pro-

cessed in any order, the complexity of managing reassembly

buffers is eliminated.

Because chunk headers contain higher-layer framing in-

formation, it is not immediately obvious that true end-to-end

error detection can be performed on chunks. We describe

why end-to-end error detection is difficult for chunks and

similar systems, and we show how end-to-end error detec-

tion of chunks can be performed using an error detection

system that invariant under chunk fragmentation.

Our experience with chunks has shown that they allow pro-

tocol implementations with more modularity and parallelism

than implementations of protocols with more conventional

data strttctures. A, McAuley of Bellcore has implemented a

version of chunks in C, including fragmentation and end-to-

end error detection.

The work presented in this paper is just part of the work

necessary to support high-performance protocol processing.

Much of our previous work has been to provide art infras-

tructure for supporting chunks, including work describing
the advantage of non-multiplexed connections [FELD 90],

processing of disordered data [FELD 92], [MCAU 93a] and

VLSI reassembly processors [MCAU 93b].
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A Implementation Considerations

The simple version of chunks that we have discussed in this

paper are easy to parse because of their fixed-field format.

Chunks also simplify distributed protocol processing because

they can be demultiplexed via the TYPE field and routed to

the appropriate processing units. Individual processing units

are responsible for knowing which chunk (ID, SN, ST) tuple

to use.

Although simple to process, the chunks discussed in this

paper do not use bandwidth efficiently. Chunk header size

may be reduced if we are willing to perform additional pro-

cessing andfor take advantage of the characteristics of specific

underlying networks. The chunk syntax transformations that

we discuss in this section are invertible, because they allow

recovery of the original chunk syntax. Protocols can be de-

fined to use the simplest form of chunks and chunk syntax

transfonnations can be used to increase the bandwidth effi-

ciency of chunk headers without changing the basic operation

of the protocol. In fact, chunks headers can have different

formats in different parts of the network if desired.

one way to reduce chunk header size is to avoid including

chunk header fields that seldom change. For example, instead
of carrying an explicit SIZE field, chunk size information

can be shared by specification or by signaling. With the

specification approach, the value of the SIZE field of each

chunk TYPE is part of a protocol specification. An alternative

is to use a signaling system similar to that used for a virtual

circui~ when a connection is formed, the value of the SIZE

field of each chunk TYPE can be carried in the signaling

message. Another form of signaling system is that used for

TCP header compression [JACO 90]; a similar system could

be adopted for chunks. With any of these approaches, the

chunk header need not contain a SIZE field. The C.ST bit

also could be sent as a signaling message, because it is used

only when a connection closes.

Some chunk header ID fields can be eliminated with the

use of implicit ID’s. An implicit ID takes advantage of

the fact that the SN fields of a chunk change in lock-step.

For example, consider the C.SN (connection SN) and T.SN

(TPDU SN) fields of a TPDU. The value of (C.SN - T.SN)

is identical for each chunk of a TPDU, and this difference

can be used in place of an explicit T.ID (TPDU ID) field.

Figure 7 shows an example of how an implicit ID is derived.

C.ID AA AA AA AA

C.SN 35 3637 38 394041 42

T.SN 50123450

T.ID = C.SN - T.SN 301363636363636 ~42
i............. . .

T.ST 10000010

DATA

TPDU DATA

Figure 7: How an implicit T.ID is derived.

Another way to reduce chunk header size is to minimize

the number of different frames used by different protocol

functions. Because each different frame requires a separate

(ID, SN, ST) tuple, the fewer different frames, the smaller the

chunk header. Also, each time any frame boundary occurs, a

new chunk header is needed. Consequently, aligning frame

boundaries also reduces the chunk header overhead.

Packets are utilized more efficiently if multiple chunks can

be carried in a packet. Previously we discussed packets that

carry multiple chunks from a single connection, and this idea

can be extended to packets that carry chunks from multiple

connections. Data, signaling information, and acknowledg-

ments can be combined in any combination. Notice that

this allows an error detection system that utilizes chunks to

achieve the efficiency associated with the piggybacking of

acknowledgments without requiring the explicit design of

piggybacking into the error control protocol. Thus, chunks

provide more modularity in protocol design by allowing some

efficiency considerations to be separated from other aspects
of protocol design.

In some cases, the chunks headers within a packet maybe

related, if so, some chunk fields may be implicit rather than
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explicit. Forexample, because thechunk following the last

TPDU DATA chunk is always a TPDU ED chunk, the ED

chunk does not require a chunk header because its TYPE is

known, and its C.ID and T.ID fields can be derived from the

DATA chunk header. In general, we can use positional in-

formation and Huffman encoding to reduce the chunk header

overhead within a packet.

On a network that has low loss and maintains packet or-

der, we need not send SN’S in each chunk header. SN’S can

be regenerated at the receiver with a counter that is incre-

mented each time a data element passes. However, because

loss and misordenng may occur, the counter at the receiver

may sometimes lose synchronization with the transmitter. To

recover synchronization, the transmitter must send SN infor-

mation to the receiver occasionally, such as at the beginning

of each PDU. During the time that the receiver is out of

synchronization, the error detection system will detect the

incorrect sequence numbers and allow any incorrect chunks

to be discarded.

Chunks are a dynamic way of mapping PDU information

to packets. If we make the PDU small enough to fit into a

packet, then the same chunks will appear in each packet. If

this is true, then a protocol can specify a static packet format

rather than the chunk format and eliminate the complexity

of dynamically fitting chunks into packets. Thus, the design

of conventional packet header formats can be considered a

special case of chunks.

B Comparison of Chunks with Other

Protocols

The syntax of chunks is similar to the syntax of other proto-

cols, although chunks have a cleaner, more general design.

Chunk headers provide explicit framing and type informa-

tion for all PDU types in a communication system. Existing

protocols provide implicit or explicit framing information for

one or more PDU types. The equivalent of the chunk SIZE

field is implicit for all existing protocols. Carrying some

framing infortnation (ID, SN, ST) implicitly is common for

protocols designed to operate on non-misordering channels.

The type 5 ATM Adaptation Layer (AAL) [LYON 91]

provides a single bit of higher-layer framing information in

the ATM cell header that is equivalent to the T.ST bit in

chunks. The error detection code field is found by its position

in the frame. No explicit ID, SN, or TYPE fields are needed

because because ATM links do not misorder. Because no

SN is used, an SN of zero cannot be used to indicate the

beginning of a frame. A cell is considered to contain the

beginning of a frame if the previous cell was the end of a

frame. LEN information is explicit.

Thetype4 AALprotocol uses an C.ID (MID), a4-bit C.SN,

and framing information denoting the beginning, continua-

tion, or end of message (BOM, COM, EOM) [DEPR 91].

EOM is equivalent to X.ST, and with BOM, the X.ID and

X.SN can be derived from the C.SN. No C.ST is used. LEN

information is explicit.

The HDLC link-layer protoco114 provides three levels of

framing. The basic HDLC frame is delimited by flags, and

the error detection code is found by its position in the framq

thus TYPE, T. ID, T.SN, and T.ST are implicit. HDLC uses a

C.ID (address field), C.SN (SN field), and C.ST is indicated

by a HDLC disconnect. The P/F bit can be used as an X.ST

bit, but the X.ID and X.SN are implicit and derived from the

C.SN and X.ST bit. LEN also is implicit.

The URP protocol [FRAS 89] provides three levels of

framing. URP uses a C.SN, but the C.ID is implicit because

URP connections are mapped one-to-one onto network con-

nections, and the C.ST is indicated by connection tear-down.

URP delimits messages with a BOT marker (similar to X. ST)

and delimits blocks (TPDU’S) with a BOT marker or BOTM

marker (similar to T.ST). The error detection code is found

by its position in the framq thus TYPE, T.ID, and T.SN are

implicit. The X.ID and X.SN are implicit and derived from

the C.SN and X.ST bit. LEN also is implicit.

Some protocols are designed to work with misordeting

channels, and provide explicit framing information. IP

[POST 81] uses provides T.ID (identification field), T.SN

(fragment offset field), and T.ST (logical inverse of the more

fragments bit) fields. The VMTP protocol [CHER 86] pro-

vides error detection per packet, so T.ID, T.SN, T. ST, and

TYPE information is implicit. VMTP also provides an X.ID

(transaction identifier), a X.SN (segOffset), and X.ST bit

(End-of-Message). LEN is implicit.

Axon [STER 90] provides several levels of framing, Each

level of framing has an SN (index) and ST bit (limit). How-

ever, not all levels of framing have an ID, which means that

some frames are assumed to be hierarchically nested. Chunks

allow the use of completely independent frames at all levels.

Axon headers also contain some explicit type information,

but some PDU pieces, such as the error detection checksum,

have their functionality indicated by position within the PDU,

rather than explicit type information. LEN is implicit.

The Axon framing structure provides enough information

for placement of disordered data into application memory

space. The only data processing that occurs is the compu-

tation of an error detection checksum for each packet. The

chunks framing structure is designed not only for data place-

ment, but also for data processing functions that are indepen-

dent of data framing, such as error detection and encryption15.

Some protocols can accept disordering for some framing

levels, but require that data be reordered for other framing

levels. The DeIta-T protocol [WATS 83] has a C.ID and

C.SN, with the C.SN large enough to allow reordering of

l’tMaY ~~er liti-layer protocols we SimikiI to HDLC (SDLC, ‘Ccp,

LAPB, LAPD, etc.).
15me abili~ to processdisordered data depends not ordy on what fi~ing

information is available, but rdso on the use of functions that can accept

disordered data [FELD 92].
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disordered data. Within the data stream, Delta-T provides

symbols that mark the beginning and end of a higher-level

frame (the B and E symbols). The E symbol is equivalent

to the X. ST, and the X.ID and X.SN can be derived from the

1? symbol and C.SN. The XTP protocol [XTP 90] is similar

with its use of BTAG and ETAG fields. TYPE, T. ID, T.SN,

and T.ST information is implicit for these protocols.

Generally, framing information is provided in two ways:

header fields, or flags/symbols in the data stream. The ad-

vantage of using header fields is that we need not parse the

data streatyt for flags. The advantage of flags is that multiple

frames can be delimited within a single packet. Chunks pro-

vide the best of both worlds because multiple chunks, each

of which delimits a frame, can be placed in a single packet.

Once the chunk headers have been found, we do not have to

parse chunk data fields for flags.

C Fragmentation Algorithm

Assume that we have a chunk that we wish to fragment into

two chunks, chunks and chunk.b. The algorithm below can

be repeated until each chunk carries only a single unit of data.

Ifi chunk.len >1

Then:

chunk_a.type i-- chunk.type

chunk_a.size i- chunk.size

chunkalen +- newlen

chunks.c.id h chunk.c.id

chunkat.id + chunk.t.id

chunk-a.x.id G chunk.x.id

chunk-a.c.sn b chunk.c.sn

chunkat.sn - chunk.t.sn

chunk_a.x.sn * chunk.x.sn

chunks.c.st + O

chunkat.st e O

chunks.x.st + O

FOH O ~ i < new-len

chunks.data[i] +- chunk.data[i]

chunk-b.type - chunk.type

chunk-b.size e chunk.size

chunk-b.len +- chunk.len - new_len

chunk_b.c.id e chunk.c.id

chunk-b.t.id e-- chunk.t.id
chunk_b.x.id e chunk.x.id

chunk-b.c.sn e chunk.c.sn + newlen

chunk_b.t.sn +-- chunk.t.sn + new_len

chunk-b.x.sn e chunk.x.sn + newlen

chunk-b.c.st & chunk.c.st

chunk-b.t.st ~ chunk.t.st
chunk.b.x.st - chunk.x.st

Fo~ new_len s i < chunk.len

chunk-b.data[i] +- chunk. data[i - newlen]

D Reassembly Algorithm

Assume that we have two chunks, chunk_a and chunk.b, that

we wish to reassemble into chunk-c. The algorithm below

can be repeated as long as eligible chunks exist.

It ,
(chunks.type = chunk_b.type) A

(chunks.size = chunk_b.size) A

(chunks.c.id = chunk_b.c.id) A

(chunks.t.id = chunk_b.t.id) A

(chunks.x.id = chunk_b.x.id) A

(chunks.c.sn + chunks.len = chunk-b.c.sn) A

(chunks.t.sn + chunks.len = chunk-b.t.sn) A

(chunks.x.sn + chunks.len = chunk-b.x.sn)

Then:

chunk.c.type +- chunks.type

chunk-c.size e chunk_a.size

chunk_c.len +-- chunk-a.len + chunk.b.len

chunk-c.c.id G chtmka.c.id

chunk-c.t.id - chunka,t,id

chunk-c.x.id k chunkd.x.id

chunk-c.c.sn b chunks.c.sn

chunk-c.t.sn ~ chunk-a.t.sn

chunk-c.x.sn e chunks.x.sn

chunk-c.c.st ~ chunk_b.c.st

chunk-c.t.st + chunk-b.t,st

chunk-c.x.st +- chunk_b.x.st

FOE O ~ i < chunks.len

chunk_c.data[i] - chunks.data[i]

Fo~ chunks.len ~ i < chunk-b.len

chunk-. c.data[i] - chunk-b. data[i - chunks.len]
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