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Abstract 

This paper presents the slotted-FIFO communication 
mode that supports communication primitives for the en- 
tire spectrum of reliability and ordering requirements of 
distributed applications: FIFO as well as non-FIFO, and 
reliable as well as unreliable comm,unication. Hence, the 
slotted- FIFO communication mode is suitable for multime- 
dia applications, as well as non real-time distributed appli- 
cations. As FIFO ordering is not required for all messages, 
message bufering requirements are considerably reduced. 
Also, message latencies are lowel: We quantify such ad- 
vantages by means of a simulation study. A low overhead 
protocol implementing slotted- FIFO communication is also 
presented. The protocol incurs a small resequencing cost. 

1. Introduction 

A major focus of recent research i,n data communication 
over computer networks has been to ensure a reliable and, 
if possible, ordered flow of data. The definition of commu- 
nication modes, such us FIFO and causal ordering [8, 91, 
and flow control using windowing and positivelnegative ac- 
knowledgments [ 141 have been motivated by such research. 
At the conceptual level, communication subsystems have 
been usually modeled as being reliable with unpredictable, 
yet finite, message transmission time. Such a communica- 
tion model is relevant for database applications that rely on 
ordered and reliable flow of data. Until recently, database 
applications were dominant among all applications execut- 
ing in a networked environment. 

However, satisfying the reliability and ordering require- 
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ments for all messages may entail extensive buffering, and 
in some instances long latencies in message delivery [8,9]. 
Moreover, many applications require communication with 
relaxed reliability and/or ordering constraints [ 12, 151. For 
example, multimedia applications have to handle audio and 
video streams of data that are played back in real-time at 
the destination site. These streams can tolerate some loss of 
information as long as these losses do not cause a degrada- 
tion in the desired quality of service (QoS) for the applica- 
tion [ 13, 161. New communication paradigms should thus 
be suitably defined. One such communication paradigm is 
A-causal ordering [6,7, 151 that, assuming application mes- 
sages have a lifetime, delivers as many messages as possi- 
ble in their lifetime in such a way that these deliveries are 
causally ordered. 

A good example of the requirements of multimedia com- 
munication applications is the MPEG video compression 
standard [l I]. MPEG compressed video consists of three 
kinds of frames. The Zntraframe frames have no dependen- 
cies and can be decoded independently of other frames. A 
Predicted frame can be decoded only if the previous frame 
is available. A Bidirectional frame requires the closest In- 
traframe or Predicted frame before and after it for decoding. 
Thus, MPEG induces dependencies between some frames. 
It is obvious that the loss of some frames in a sequence 
may lead to an inability to decode all the subsequent frames 
which depend on it, while the loss of another frame may not 
affect the decoding of any frame. This leads to communi- 
cation with different priorities, ordering and reliability con- 
straints for different data units within the same data stream. 

A trivial approach to handle such a data flow could be to 
send data on two separate channels. The first frames of dis- 
tinct sequences are sent along a channel supporting reliable 
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and FIFO delivery. Succeeding frames of the sequence (that 
are dependent on the first frame) can be sent along a chan- 
nel that can lose and/or reorder them. This solution raises 
issues pertaining to re-synchronization and maintaining de- 
pendencies among frames at the destination site of the two 
distinct data flows along different channels. 

This paper makes three contributions: (i) we introduce 
a communication mode called slotted- FIFO ordering that 
allows messages with different ordering and reliability con- 
straints to be interleaved on the same channel while main- 
taining certain order dependencies among messages, (ii) 
propose a protocol based on sequence numbers to imple- 
ment slotted-FIFO communication, and (iii) evaluate the 
proposed protocol's performance through simulation exper- 
iments. One would expect that combining message order- 
ing and reliability would incur high overheads. However, 
the simulation results indicate otherwise. 

The slotted-FIFO communication mode offers a set of 
synchronization primitives for sending messages, namely, 
FR-send, FR-send, FR-send, and FR-send, to be read 
as FIFO and Reliable send, non-FIFO and Reliable send, 
FIFO and non-Reliable send, and non-FIFO and non- 
Reliable send, respectively. For a message m, sent by 
process p to process q along the channel cp,q using an 
F R  - send primitive, the following properties are ensured 
at process q: 1) a message sent before m along c ~ , ~ ,  if deliv- 
ered to q, is delivered before m, 2) a message sent after m 
along c ~ , ~ ,  if delivered to q, is delivered after m. If the mes- 
sage is sent using a reliable primitive, the delivery eventu- 
ally occurs. The case where all messages are sent using the 
reliable primitive F R  - send corresponds to the two way 
Push primitive proposed by Ahuja [ l ,  31 to increase con- 
currency on reliable channel compared to FIFO channels. 
The interested reader can refer to [SI for a qualitative com- 
parison between slotted-FIFO communication mode, flush 
primitives [ 11 and hierarchical channels [4]. 

Two successive message send events, corresponding to 
messages m and m', using the F R  - send primitive define 
a slot S along the channel c ~ , ~ .  A message ml sent using 
the FR- send primitive, executed inside S, ensures that ml 
is delivered after m and before m'. A pair of message ml 
and m2 sent using F R  - send primitives within S ensure 
that ml and m2, if delivered to q, are delivered after m, 
before m', and in their sending order. A message ml sent 
using the F R  - send primitive ensures that ml, if delivered 
to q, is delivered after m and before m'. If the loss of some 
messages will not adversely affect the quality of the service, 
such messages can be sent in an unreliable fashion using the 

F R  or F R  primitives. 
Approaches similar to slotted-FIFO channels have been 

proposed in the literature. Specifically, in the definition of 
new error control schemes for interprocess communication 
that provide variable degrees of error recovery according to 
application's requirements [ 121 and to implement the trans- 
port layer of a group communication system to support mul- 
timedia streams of data [lo]. 

Compared to the reliable FIFO channels, we get more 
concurrency and two basic advantages: (i) substantial re- 
duction in the required buffer space at the receiver process 
and (ii) short message latencies. Indeed, the destination 
process does not have to buffer the reliable messages that 
overtake the unreliable messages to ensure the delivery of 
the latter and a message that cannot be lost does not have 
to await the delivery of unreliable messages. These advan- 
tages are quantified by a simulation study, showing that the 
average buffer requirements and the message latency can be 
reduced up to one tenth. 

The remainder of this paper is organized as follows: Sec- 
tion 2 contains a discussion of some applications for which 
the slotted-FIFO channels might be useful. The system 
model is described in Section 3. Section 4 presents the 
slotted-FIFO communication mode and Section 5 shows an 
implementation based on sequence numbers. Section 6 re- 
ports the simulation results. Finally conclusions are pre- 
sented. 

2. Applications of Slotted-FIFO Channels 

Slotted-FIFO channels provide varying degrees of relia- 
bility and ordering for message communication. Such flex- 
ibility is desirable for a variety of applications [12, 151. For 
example: 
Video telephony: In video telephony the audio and video 
data streams may be sent along different channels: typi- 
cally high bandwidth channels for video signals and low 
bandwidth channels for audio signals. It is to be noted that 
demands are being placed on the audio and video chan- 
nels by other applications executing concurrently in the net- 
work. Hence, the probability distribution of the propagation 
times of the two different data streams between any source- 
destination pair may be different, depending on the loads 
on the audio and video channels in the network [16]. Ide- 
ally, the corresponding audio packet and video frame should 
be played simultaneously at the destination. However, such 
synchronization for every audio packet - video frame pair 
would require very little variability between the latencies of 
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the audio and video channels, and/or extensive buffering at 
the receiver. As such requirements are expensive to meet, 
the following strategy can be employed. Periodically, cor- 
responding audio packets and video frames are sent using 
the F R  primitive, and their delivery to the receiver process 
is synchronized. The time interval between successive syn- 
chronization points corresponds to a slot. During a slot the 
audio and video signals can be senlt using the F R  and F R  
primitives. This is because an occasional loss of a small 
number of audio packets and videlo frames is beyond hu- 
man perception. The slot duration should be determined 
based on the characteristics of the audio and video channels 
so that the audio and video streams do not get significantly 
out of synch during a slot. 

MPEG video transmission: MPEiG compressed video 
consists of three kinds of frames [ 1 11. The Intraframe 
frames have no dependencies and can be decoded indepen- 
dently of other frames. A Predicted frame can be decoded 
only if the previous frame is avaiilable. A Bidirectional 
frame requires the c h e s t  Intraframe or Predicted frame be- 
fore and after it for decoding. As tlhe loss of an Intraframe 
frame renders all the dependent Predicted frames that fol- 
low it useless, the Intrafranie frames should be sent using 
the F R  primitive. As loss of a felw of the following Pre- 
dicted frames leads to a marginal degradation in the quality 
of service, such frames can be sent using F R  primitwe. As 
the decoding of Predicted frames is dependent on the de- 
coding of the preceding Intraframle and Predicted frames, 
employing the F R  and F R  primitives may lead to non- 
FIFO delivery of the Predicted frames. Such non-FIFO de- 
livery may not only lead to a degradation in the quality of 
service, but also unpredictable logical errors in the decoding 
of the Predicted frames. 

Sliding window protocol: Enforcing FIFO order among 
the acknowledgmcnts in a sliding window protocol is both 
expensive and unnecessary. An acknowledgment for a 
later packet implicitly acknowledges the reception of ear- 
lier packets at the receiver. Hence, to minimize the cost 
of acknowledgments they can be sent using the F R  prim- 
itive. If loss of acknowledgments is not acceptable, they 
can be sent using the F R  primitive. When acknowledg- 
ments for earlier packets are received by the sender after 
the acknowledgments for later packets, such acknowledg- 
ments are simply ignored. In doing so, we match the basic 
idea of a general-purpose sliding window protocol [ 141. 

3. System Model 

A pair of processes p ,  q is connected by a communication 
network, or simply network. We assume the network is well 
connected, but unreliable and asynchronous. Each process 
runs on a processor. The processors do not have a global 
clock, they do not share memory. Failure handling is not 
considered. 

We assume that each process consists of an application 
layer (AL), a Slotted-FIFO layer, (SL), and a hansport 
layer (I'L), as shown in Figure 1. The application layer 
can utilize the slotted-FIFO primitives, and generate XY- 
send events to the SL, where X Y  is a label belonging to 
the set ( F R ,  F R ,  F R ,  F R ) ,  and can accept delivery events 
from the SL. SL is responsible for message delivery accord- 
ing to the slotted-FIFO discipline. The SL layer can gener- 
ate transport-send events to the transport layer and can ac- 
cept transport-receive events from the transport layer. TL 
is endowed with mechanisms such as positivehegative ac- 
knowledgment and retransmissions to ensure, if requested, 
reliable receipt of messages (the two reliable communica- 
tion primitives invoke these mechanisms). TL generates 
net-send event to the network and accepts net-receive event 
from the network. 

We say that a message is sent when the corresponding 
XY-send event is generated; a message is delivered when 
the corresponding delivery event is generated; a message 
is received when the corresponding transport-receive event 
is generated; a message is said to have arrived when the 
corresponding net-receive event is generated. 

At the application level a pair of processes, p , q ,  is 
connected by a directed and asynchronous logical chan- 
nel c ~ , ~  0, is the sender and q is the destination process). 
Along this channel, a finite sequence of messages M are 
sent. The messages in the sequence can be labeled as 
m.0, m. 1, . . . m.k, where m.2 denotes the ( i  + l)st message 
sent by p .  This channel supports four primitives to send a 
message in an ordered andor reliable way: FR-send, FR- 
send, FR-send, FR-send and PR-send. A channel can 
drop messages sent by unreliable primitives. 

4. The slotted-FIFO Communication Mode 

A message sequence sent along a channel can be di- 
vided into subsequences based on the ordering and relia- 
bility characteristics of the constituent messages. Let XY.j 
be the ( j  + 1)" message of the subsequence M x y  sent 
by invoking the X Y  - send(m) primitive (with X Y  E 
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XY-send 

4. b’FR,h, FR.w E U(&) :: ( h  < w )  iff FR.h  2.f 
F R W .  

A 

delivery The four rules mean the following: (i) FIFO and Reli- 
able messages are always delivered in the order they are 
sent along a channel, (ii) a Reliable message is always deliv- 
ered to its destination in the same slot, (iii) a non-FIFO non- 
Reliable message, if delivered to the destination, should be 
delivered in the same slot that it is sent, and (iv) two FIFO 
non-Reliable messages delivered in the same slot must have 
been sent in the order they were delivered. Examples of 
slotted-FlFO communications are depicted in Figure 2.a. 

transport-send 

net-send net-receive i Network 

A 

transport-receive 

Figure 1. The structure of a process. 

{ F R ,  F R ,  F R ,  FR}) .  The messages in this subsequence 
can be represented as XY.0,  XY.1,. . . X Y . k x y ,  where 

Let there be a function f : M x y  -+ M which given 
the identity of a message sent by an X Y  - send primitive 
determines the identity of the same message in M. We also 
assume that m.0 = f ( F R . 0 )  and m.k = f ( F R A F R ) ,  i.e., 
the first and last messages in the message sequence are sent 
using the F R  - send primitive. Now, we can define a “slot” 
as follows. 

kxu 5 k. 

Definition4.1 A slot Si is the set MSi  of messages m.x 
(with MSi  C M),  sent by p along c ~ , ~ ,  such that 
f (FR.2) < m.x < f (FR.( i  + 1)). The projection of a 
slot II(Si) is the set of messages delivered to process q. 

Also, let m.xh and m.x, be two messages belonging to 
II(Si), we denote m.xh cvt m.5, iff the delivery of m.zh 
occured before the delivery of m.5,. We are in the position 
to define the slotted-FIFO communication mode: 

Definition 4.2 A pair of processes p ,  q respects slotted- 
FIFO ordering on cPyq iff: 

I .  VFR.h,FR.w E M :: (h  < w )  iff FR.h cvt 
FR.w; 

2. VFR.h E Si 1: FR.h E U(Si); 

3. VFR.h E II(Si) :: FR.h E Si; 

5. A Simple Implementation of the Slotted- 
FIFO layer 

An implementation of the Slotted-FIFO layer consists of 
defining a protocol between a XY-send procedure invoked 
by the application layer and a message handler (namely RE- 
CEIVE) which is instantiated each time a transport-receive 
event is generated by the trqnsport level. Actually, each 
message m, received at the slotted FIFO layer, is associated 
with a WAIT (or delivery) condition. If the condition is sat- 
isfied m, is delivered. If the message type is unreliable and 
is out of its slot, m is discarded. Otherwise m is buffered 
at the slotted-FIFO layer until its WAIT condition becomes 
true. When an FR message is going to be delivered, first 
buffered unreliable FIFO messages that should precede the 
FR message are delivered. 

5.1. The Sending Process 

The sending process maintains the following three vari- 
ables: 

slot: the current slot number; 

SpR: the sequence number of the next Non-FIFO and 
reliable message in the current slot; 

 SF^: t h e  s e q u e n c e  n u m b e r  of the next  FIFO and un-  
reliable message in the current slot; 

Each message is equipped with control information 
stored in its ST structure whose fields are as follows: 

0 slot: integer indicating the slot associated with the 
message; 

e t ype:  a char indicating the type of the message; 
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-2- F R  _ _ _  
F R  

. . . . . . . > P R  + P R  

Figure 2. An example of slotted-FIFO communication and the corresponding partial order generated 
by the relation 5 .  

0 order: integer whose value depends on the type of 
the message. If the message is of type F R ,  it repre- 
sents the number of FR  messages sent in the previous 
slot (i.e., SpR) .  If the message is of type Fl?,it rep- 
resents the number of FR' messages sent so far (in- 
cluding this message) in the current slot. i.e.,  SF^. 

Implementation of the XY-send primitive is given in Fig- 
ure 3. First, fields slot and type of ST are updated (Sl). 
When a reliable FIFO message has to be sent, the order field 
is set to the current value of the SF,, counter (S2). This is 
needed to inform the receiving process of the number of 
reliable messages sent during the current slot (i.e., the slot 
being closed by the F R  message). Tlhe FR message should 
not be delivered to the receiving process until all the preced- 
ing reliable messages in the slot have been delivered. The 
slot counter is incremented (S3), anid the FIFO unreliable 
counter is reset (S4). When a non-FIFO reliable message 
has to be sent, the S,, counter is incremented. When send- 
ing an unreliable FIFO message, the  SF^ counter is incre- 
mented, and the order field of ST is set to the current value 
of the  SF^ counter. 

It is to be noted that a process need not maintain se- 
quence number information for non-FIFO unreliable mes- 
sages in the form of an S ~ R  variable. Also, the order field 
of the ST structure sent with such messages is unassigned. 
This is because the only constraint relevant for the delivery 
of F R  class of messages is the slot number. 

The structure ST allows us to model messages as a par- 
tial order. This will be useful to deifine an ordering in the 
activation of multiple suspended WAIT conditions as ex- 
plained later. 

1. Let STm be the control information structure for the 
message m. Let m and m' be two messages, we 
say that m precedes m', denoted m +s m', iff 
ST,.slot < ST,! .slot. The precedence relation +s 

represents the transitive closure of precedence among 
successive slots. 

2. Let m and m' be two messages such that ST,.slot = 
STml.slot and ST,.type = ST,~.type = FR,  
we say that m precedes m', denoted m +f m', iff 
ST,.order < ST,, .order. The precedence relation 
+f represents precedence within a slot due to FIFO 
ordering. 

3. Let m and m' be two messages, we say that m 
precedes m', denoted m +es m', iff ST,.slot = 
STmt.slot and STm1.type = FR.  The precedence 
relation +es denotes that messages in a slot precede 
the FR message that marks the end of the slot. 

Now, we denote 5 the transitive closure of the union 
of +s, + f ,  and +S. The set of messages M can be then 
represented as a partial order of messages kf = ( M ,  5) .  
Two messages m and m' are concurrent iff l ( m  5 m') and 
l(m' 5 m). In Figure 2.b the partial order M = ( M ,  5 )  
of the message scheduling of Figure 2.a is shown. 

5.2 The Receiving Process 

The receiving process at the slotted-FIFO layer manages 
the following four variables: 

0 slot: an integer that stores the current slot number; 
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init 

procedure XY - S E N D  ( m t j ) 

/*m is the message content*/ 
/ *  t is the type * /  
/ *  j is the destination process*/ 
begin 

slot=O; s p R = o  ; SFR=O ; 

S T s l o t  = slot; ST.type = t ;  (S1) 
case t of 
F R  : ST.order = S p R ;  S p ,  = 0;  (S2 ) 

( S 3 )  slot = slot + 1; 
S F R  = 0;  break; ( S 4 )  

FR : SpR = S p R  + 1; break; ( S 5 )  

ST.order = S F f i ;  break; ( S 7 )  
Fl!? : S F R  = S F R  + 1; ( S 6 )  

F R  : break; ( S 8 )  
endcase 
transport-send(m, S T )  ; ( S 9 )  

end. 

Figure 3. A simple XY-send primitive imple- 
mentation. 

R p R :  an integer that stores the number of reliable 
non-FIFO messages delivered in the current slot; 

0 R F R :  an integer that stores the sequence number of 
the last non-reliable FIFO message delivered in the 
current slot; 

0 endslot: a Boolean variable indicating that an F R  
message has arrived and the end of the slot is immi- 
nent; 

The RECEIVE message handler is shown in Figure 4. 
Each received message is associated with a WAIT condi- 
tion which depends on the message type (R2, R8, R11, 
R1.5). Let the type of the message received be FIFO and 
reliable. Statement (R2) permits further processing of the 
message, and ultimately its delivery, only when the value 
of the local slot variable is equal to the value of the mes- 
sage’s ST.sEot field and the message’s ST.order field is 
equal to the number of reliable messages sent in the cur- 
rent slot. This ensures that the reliable messages sent by the 
source in the current slot are delivered to the destination be- 
fore messages belonging to the next slot are delivered. Both 
R p R  and R F f i  counters are also reset (R3,R4). 

If a non-FIFO reliable message is received, the receiving 
proccss waits until the ST.slot field equals the current slot 
(R8). The R p ,  field is incremented to reflect the delivery 
of a non-FIFO reliable message (R9), and the message is 
delivered (R10). 

If an unreliable non-FIFO message is received and the 
value of its STsZot field is lower than the current slot, the 
message is discarded (R11, R12). Such a situation arises if 
the message has been overtaken on its way to the destination 
by a reliable FIFO message and arrives after the expiration 
of its slot. Otherwise it is delivered as soon as the the slot 
field is cqual to the current slot (R13, R14). 

Similarly, an unreliable FIFO message is discarded if the 
value of its ST.sZot field is either less than the current slot 
or if an FIZ message has arrived and the end of its slot is im- 
minent (R1.5, R16). Otherwise its delivery is delayed until 
one of the the conditions in (R17) is satisfied. The first con- 
dition (i.e., ST.slot == slot and ST.order==RFR + 1)) 
is the typical FIFO condition. The second condition (i.e., 
ST.slot == slot and ends lo t )  indicates that the end of 
the slot is imminent. So, all pending F R  messages must 
be immediately delivered in the correct order before the re- 
ceived F R  message be delivered. 

Deadlock Avoidance 

If the WAITS in the case statements are busy-waits, dead- 
locks can arise. For example, let a sender send an FR mes- 
sage followed by an F R  message to the receiver. Also, let 
the F R  message overtake the F R  message. If busy-waits 
are employed at the receiver, the receiver process will be 
spinning on the condition ST.order == R p R .  On the ar- 
rival of the FR message the processor will not be able to 
handle it and increment R p R  as the processor cycles are 
being monopolized by the busy-wait. 

Hence, it is important to ensure the following: 

When an instance of the RECEIVE message handler 
reaches a WAIT statement and the condition in the 
statement is not true, that particular instance of the 
RECEIVE message handler is suspended and gives 
up control of the receiver process. 

e A suspended instance of the RECEIVE message han- 
dler is activated when the condition on which the pro- 
cedure is waiting becomes true due to execution of 
statements in other instance(s) of the RECEIVE mes- 
sage handler at the same site. 

0 If delivery conditions of multiple suspended instances 
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init 

RI.~=O; endslot= f a l s e ;  
when an (m,ST) event: is 
accepted from the Transport-Layer 
/*m is the message content, * /  
/ *  ST is the control information*/ 

slot=O; RFR=O; 

begin 
case 
FR : 

FR : 

F R  : 

F R  : 

ST.type of 
ends lot =true ; 
wait (slot==ST. slot and 
ST. order==RgR) ; 
RpR=O ; 
RFR=O ; 
endslot= f a l s e ;  
slot=slot+l; 
deliver (m) ; 
break; 
wait(slot==ST.slot) ; 

deliver ( m )  ; 
break; 
if (ST.slot < slot) 
then discard ( m )  ; break; 
else wait(ST.sloti==slot) ; 

RF;,=R~R + 1 ; 

deliver ( m )  ; 
break; 

if ((ST.slot < slot) OT 
ends lot ) 
then discard(m) ; 
else wait ( ( ST. s lot ==s lo t and ( R17 ) 
(ST. order==RFR+l OT end-slot ) ) ; 

RFR=ST.order ; (R18) 
deliver ( m )  ; (RI9 1 
break; 

endcase 
end. 

Figure 4. A simple RECEIVE message handler 
implementation. 

0 

of the RECEIVE message handler become true si- 
multaneously (for example the ones associated with 
messages m and m'), they are activated in an order 
consistent with the partial order given by the relation 
5, i.e., m is activated before m' if m 3 m'. If m and 
m' are concurrent they can be activated in any order. 

Finally, to ensure consistency of updates to the con- 
dition variables the following statement sequences 
are executed in an atomic fashion: (R3) - (R7), 
(R9) - (RlO), and (R18) - (R19). 

We would like to remark that a busy-wait implementa- 
tion using preemptable threads is possible. However, in that 
case we need to take care of priority among threads. 

6. Simulation Study 

In this section we measure the performance of the 
slotted-FIFO layer proposed in the previous section. We 
assume FR-send primitives are generated by AL (Appli- 
cation Layer) at fixed time intervals of length T,, referred 
to as the slot length. In the interval between two FR-send 
messages, primitives of the other types are generated ac- 
cording to a Poisson process with rate A, and are labelled 
as X Y  type with probability PXY. The SL stores waiting 
messages inside a resequential buffer. The network is char- 
acterized by the reliability, given as the probability, P,,,,, 
that a sent message is not lost. No correlation is assumed 
between losses. 

In order to guarantee reliable trasmissions, an error- 
detection mechanism, based upon a classical positive re- 
transmission protocol using time-out, is embedded in TL. 
Specifically, after a transport-send is executed for a reliable 
message m, m is buffered and a net-send event is generated 
by TL each time a time-out period Tt, expires. Moreover, 
we use message numeration at TL layer to avoid message 
duplication. We assume no flow control and infinite buffer 
size at TL. 

We define network delay, Tntw, as the time elapsed be- 
tween the the net-send event of a message m and the arrival 
(see Section 3) of m at the receiver; the transport delay, 
Ttra, as the time elapsed between the transport-send event 
of a message m and the receipt of m; the delively delay, Td, 
as the time elapsed between the acceptance of the transport- 
receive event of a message m by SL and the delivery of m. 

For messages that are not lost Tntw is an exponentially 
distributed random variable with mean pntw. We assume 
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Figure 5. FR delivery delay vs slot length. 

Tt,, = Tnt, for unreliable messages that are not lost l ,  

and Ttra = aTt, + TntW for reliable message, where cy 

is a geometrically distributed random variable denoting the 
number of retransmissions: 

p?-ob{cy = k} = Psucc(l - PszLcc)k, k 2 0. 

6.1 Results of the Experiments 

Results presented in this section were obtained with the 
following parameters. A= 1 packetdms, pntw = 25 ms, 
Tt,=50 ms, Psucc = 0.999. We considered five different 
transmission schemes: (a) PFR = 12; (b) P ~ R  = 1; (c)  

Experiments were conducted by varying the slot length 
from 2 ms to 100 ms and by measuring the average delivery 
delay experienced by the different types of messages and 
the average queue length of the resequencing buffer em- 
bedded in the slotted-FIFO layer. For each value of the slot 
lenght we did several runs with different seeds and the re- 
sult were within four percent of each other, thus variance is 
not reported. 

Fig. 5 shows the FR delivery delay as a function of the 
slot length (measured in ms). FR delivery delay denotes 
the time required for slot reorder and is affected by reliable 
message arrival out of sequence. In schemes (a) and (d), it is 
in the range 70-80 ms and is almost independent of the slot 
length, since reliable transmissions are used for both mes- 
sages. In schemes (b) and (c), we observed a significant re- 

PFR = 1; (d) PpR = 1; (e) P ~ E  = PFR = PFR = 1/3. 

'We assume that no delay is involved in the TL when sending a 

2To compare the slotted-FIFO performance with pure FIFO channels, 
message. 

we allow messages within a slot to be of the FR type. 
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Figure 6. Delivery delay of messages inside a 
slot. 

duction of the FR delivery delay. Indeed, non-reliable mes- 
sages, that are received too late (i.e., after their slot) by SL, 
are discarded and FR messages are not forced to wait for 
such messages. As the slot length increases, the probability 
that the received FR messages are out of sequence decreases 
and thus the resequencing cost falls down. Scheme (e) is an 
example of FR delivery delay in which 33% of messages in 
a slot are sent in a reliable way. 

Figure 6 shows delivery delay of the messages inside a 
slot. It is simple to see that delivery delay is the sum of two 
delays. The first delay, D1, is associated with the situation 
where a message in a slot reaches the destination prior to the 
FR message marking the beginning of that slodend of previ- 
ous slot. D1 is higher for smaller slot intervals since small 
slot intervals increase the probability that reliable messages 
arrive out of sequence. The second delay, Dz, measures 
the time elapsed between the time a message m enters its 
slot and the delivery of m. In the non-FIFO schemes (b) 
and (d), D2 = 0 and thus FR delivery delay decreases as 
the slot lenght increases. In the scheme (c), some F R  mes- 
sages are forced to wait until the end of the slot before they 
are delivered. As the slot length increases, Dz dominates 
over D1. 

As far as the required buffer size is concerned, the aver- 
age queue length of the resequencing buffer was used to 
compare the different scheme requirements. Results are 
shown in Figure 7. For slot wider than 20 ms, the average 
queue length of scheme (b) is ten times less than scheme (a). 
In scheme (c), until D2 does not dominate over D1 (till 40 
msec), the average queue lenght was from one half up to one 
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Figure 7. Buffer requirements. 

third the average queue length of the reliable schemes (a) 
and (d). As the slot length increases, the non-FIFO scheme 
(d) decreases the average queue length as Dz = 0 while the 
unreliable FIFO scheme (c) increases it as 0 2  dominates 
over D1. These measures can be useful to design memory 
space allocation used for message reordering at the slotted- 
FIFO layer according application's requirements. 

Finally, we would like to remark that the percentage of 
messages dropped by the proposed dotted-FIFO layer is al- 
ways below 10% for any slot width and that using a scheme 
(b), the one with least ordering and reliability constraints, 
the average buffer requirements and the message latency 
can be reduced up to one tenth compared to a pure FIFO 
channel (scheme a). 

7. Conclusion 

Reliable FIFO message communication has received 
great attention in the past. This is primarily because 
database applications have been the dominant network ap- 
plications so far, and these applications require reliable 
FIFO communication. However, many applications need 
communication with relaxed reliability and/or ordering con- 
straints. Multimedia applications, fo'r example, have differ- 
ent quality of service requirements from database applica- 
tions, i.e., loss of some packets and occasional non-FIFO 
delivery is acceptable. Hence, communication protocols for 
database applications are not suitable as well as expensive 
for multimedia applications. 

In this paper, we presented the slotted-FIFO communica- 
tion mode. It supports reliable FIFO, unreliable FIFO, reli- 
able non-FIFO, and unreliable non-FIFO flow of data while 

maintaing a certain degree of ordering among them. The en- 
tire communication can be divided into slots demarcated by 
successive reliable FIFO messages. The reliable messages 
sent within a slot are always delivered to the destination pro- 
cess after the beginning and before the end of the slot. FIFO 
messages in a slot, if delivered to the destination, are deliv- 
ered in the correct order. The delivery of reliable messages 
is never delayed on account of unreliable messages. This 
leads to a reduction in message buffering and latency. Loss 
of unreliable messages in transit is semantically similar to 
their late arrival, and requires no special handling. 

Simulation results also show that in applications where 
some loss of sent messages can be allowed (such as the mul- 
timedia applications), a slotted-FIFO channel can be used to 
obtain better performance, in terms of buffer requirements 
and delivery delay, when compared to a pure FIFO channel. 
We showed that designing a slotted-FIFO layer is simple 
and this should imply a simplicity of implementation. The 
bookkeeping overheads are also low. 
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