
Flexible Gieneral Purpose Communication Primitives
for Distributed Systems

Roberto Baldoni, Roberto Beraldi
Dipartimento di Informatica e Sistemistica

Universith di Rorna "La Sapienza"
Via Salaria 113, Roma, Italy

baldoni,beraIdi@dis.uniromal .it

Abstract

This paper presents the slotted-FIFO communication
mode that supports communication primitives for the en-
tire spectrum of reliability and ordering requirements of
distributed applications: FIFO as well as non-FIFO, and
reliable as well as unreliable comm,unication. Hence, the
slotted- FIFO communication mode is suitable for multime-
dia applications, as well as non real-time distributed appli-
cations. As FIFO ordering is not required for all messages,
message bufering requirements are considerably reduced.
Also, message latencies are lowel: We quantify such ad-
vantages by means of a simulation study. A low overhead
protocol implementing slotted- FIFO communication is also
presented. The protocol incurs a small resequencing cost.

1. Introduction

A major focus of recent research i,n data communication
over computer networks has been to ensure a reliable and,
if possible, ordered flow of data. The definition of commu-
nication modes, such us FIFO and causal ordering [8, 91,
and flow control using windowing and positivelnegative ac-
knowledgments [141 have been motivated by such research.
At the conceptual level, communication subsystems have
been usually modeled as being reliable with unpredictable,
yet finite, message transmission time. Such a communica-
tion model is relevant for database applications that rely on
ordered and reliable flow of data. Until recently, database
applications were dominant among all applications execut-
ing in a networked environment.

However, satisfying the reliability and ordering require-

Ravi Prakash
Department of Computer Science

University of Rochester
Rochester, New York 14627, U.S.A

prakash @ cs.rochester.edu

ments for all messages may entail extensive buffering, and
in some instances long latencies in message delivery [8,9].
Moreover, many applications require communication with
relaxed reliability and/or ordering constraints [12, 151. For
example, multimedia applications have to handle audio and
video streams of data that are played back in real-time at
the destination site. These streams can tolerate some loss of
information as long as these losses do not cause a degrada-
tion in the desired quality of service (QoS) for the applica-
tion [13, 161. New communication paradigms should thus
be suitably defined. One such communication paradigm is
A-causal ordering [6,7, 151 that, assuming application mes-
sages have a lifetime, delivers as many messages as possi-
ble in their lifetime in such a way that these deliveries are
causally ordered.

A good example of the requirements of multimedia com-
munication applications is the MPEG video compression
standard [l I]. MPEG compressed video consists of three
kinds of frames. The Zntraframe frames have no dependen-
cies and can be decoded independently of other frames. A
Predicted frame can be decoded only if the previous frame
is available. A Bidirectional frame requires the closest In-
traframe or Predicted frame before and after it for decoding.
Thus, MPEG induces dependencies between some frames.
It is obvious that the loss of some frames in a sequence
may lead to an inability to decode all the subsequent frames
which depend on it, while the loss of another frame may not
affect the decoding of any frame. This leads to communi-
cation with different priorities, ordering and reliability con-
straints for different data units within the same data stream.

A trivial approach to handle such a data flow could be to
send data on two separate channels. The first frames of dis-
tinct sequences are sent along a channel supporting reliable

20 1
1082-8907/97 $10.00 0 1997 IEEE

http://cs.rochester.edu

and FIFO delivery. Succeeding frames of the sequence (that
are dependent on the first frame) can be sent along a chan-
nel that can lose and/or reorder them. This solution raises
issues pertaining to re-synchronization and maintaining de-
pendencies among frames at the destination site of the two
distinct data flows along different channels.

This paper makes three contributions: (i) we introduce
a communication mode called slotted- FIFO ordering that
allows messages with different ordering and reliability con-
straints to be interleaved on the same channel while main-
taining certain order dependencies among messages, (ii)
propose a protocol based on sequence numbers to imple-
ment slotted-FIFO communication, and (iii) evaluate the
proposed protocol's performance through simulation exper-
iments. One would expect that combining message order-
ing and reliability would incur high overheads. However,
the simulation results indicate otherwise.

The slotted-FIFO communication mode offers a set of
synchronization primitives for sending messages, namely,
FR-send, FR-send, FR-send, and FR-send, to be read
as FIFO and Reliable send, non-FIFO and Reliable send,
FIFO and non-Reliable send, and non-FIFO and non-
Reliable send, respectively. For a message m, sent by
process p to process q along the channel cp,q using an
F R - send primitive, the following properties are ensured
at process q: 1) a message sent before m along c ~ , ~ , if deliv-
ered to q, is delivered before m, 2) a message sent after m
along c ~ , ~ , if delivered to q, is delivered after m. If the mes-
sage is sent using a reliable primitive, the delivery eventu-
ally occurs. The case where all messages are sent using the
reliable primitive F R - send corresponds to the two way
Push primitive proposed by Ahuja [l , 31 to increase con-
currency on reliable channel compared to FIFO channels.
The interested reader can refer to [SI for a qualitative com-
parison between slotted-FIFO communication mode, flush
primitives [11 and hierarchical channels [4].

Two successive message send events, corresponding to
messages m and m', using the F R - send primitive define
a slot S along the channel c ~ , ~ . A message ml sent using
the FR- send primitive, executed inside S, ensures that ml
is delivered after m and before m'. A pair of message ml
and m2 sent using F R - send primitives within S ensure
that ml and m2, if delivered to q, are delivered after m,
before m', and in their sending order. A message ml sent
using the F R - send primitive ensures that ml, if delivered
to q, is delivered after m and before m'. If the loss of some
messages will not adversely affect the quality of the service,
such messages can be sent in an unreliable fashion using the

F R or F R primitives.
Approaches similar to slotted-FIFO channels have been

proposed in the literature. Specifically, in the definition of
new error control schemes for interprocess communication
that provide variable degrees of error recovery according to
application's requirements [121 and to implement the trans-
port layer of a group communication system to support mul-
timedia streams of data [lo].

Compared to the reliable FIFO channels, we get more
concurrency and two basic advantages: (i) substantial re-
duction in the required buffer space at the receiver process
and (ii) short message latencies. Indeed, the destination
process does not have to buffer the reliable messages that
overtake the unreliable messages to ensure the delivery of
the latter and a message that cannot be lost does not have
to await the delivery of unreliable messages. These advan-
tages are quantified by a simulation study, showing that the
average buffer requirements and the message latency can be
reduced up to one tenth.

The remainder of this paper is organized as follows: Sec-
tion 2 contains a discussion of some applications for which
the slotted-FIFO channels might be useful. The system
model is described in Section 3. Section 4 presents the
slotted-FIFO communication mode and Section 5 shows an
implementation based on sequence numbers. Section 6 re-
ports the simulation results. Finally conclusions are pre-
sented.

2. Applications of Slotted-FIFO Channels

Slotted-FIFO channels provide varying degrees of relia-
bility and ordering for message communication. Such flex-
ibility is desirable for a variety of applications [12, 151. For
example:
Video telephony: In video telephony the audio and video
data streams may be sent along different channels: typi-
cally high bandwidth channels for video signals and low
bandwidth channels for audio signals. It is to be noted that
demands are being placed on the audio and video chan-
nels by other applications executing concurrently in the net-
work. Hence, the probability distribution of the propagation
times of the two different data streams between any source-
destination pair may be different, depending on the loads
on the audio and video channels in the network [16]. Ide-
ally, the corresponding audio packet and video frame should
be played simultaneously at the destination. However, such
synchronization for every audio packet - video frame pair
would require very little variability between the latencies of

202

the audio and video channels, and/or extensive buffering at
the receiver. As such requirements are expensive to meet,
the following strategy can be employed. Periodically, cor-
responding audio packets and video frames are sent using
the F R primitive, and their delivery to the receiver process
is synchronized. The time interval between successive syn-
chronization points corresponds to a slot. During a slot the
audio and video signals can be senlt using the F R and F R
primitives. This is because an occasional loss of a small
number of audio packets and videlo frames is beyond hu-
man perception. The slot duration should be determined
based on the characteristics of the audio and video channels
so that the audio and video streams do not get significantly
out of synch during a slot.

MPEG video transmission: MPEiG compressed video
consists of three kinds of frames [1 11. The Intraframe
frames have no dependencies and can be decoded indepen-
dently of other frames. A Predicted frame can be decoded
only if the previous frame is avaiilable. A Bidirectional
frame requires the c h e s t Intraframe or Predicted frame be-
fore and after it for decoding. As tlhe loss of an Intraframe
frame renders all the dependent Predicted frames that fol-
low it useless, the Intrafranie frames should be sent using
the F R primitive. As loss of a felw of the following Pre-
dicted frames leads to a marginal degradation in the quality
of service, such frames can be sent using F R primitwe. As
the decoding of Predicted frames is dependent on the de-
coding of the preceding Intraframle and Predicted frames,
employing the F R and F R primitives may lead to non-
FIFO delivery of the Predicted frames. Such non-FIFO de-
livery may not only lead to a degradation in the quality of
service, but also unpredictable logical errors in the decoding
of the Predicted frames.

Sliding window protocol: Enforcing FIFO order among
the acknowledgmcnts in a sliding window protocol is both
expensive and unnecessary. An acknowledgment for a
later packet implicitly acknowledges the reception of ear-
lier packets at the receiver. Hence, to minimize the cost
of acknowledgments they can be sent using the F R prim-
itive. If loss of acknowledgments is not acceptable, they
can be sent using the F R primitive. When acknowledg-
ments for earlier packets are received by the sender after
the acknowledgments for later packets, such acknowledg-
ments are simply ignored. In doing so, we match the basic
idea of a general-purpose sliding window protocol [141.

3. System Model

A pair of processes p , q is connected by a communication
network, or simply network. We assume the network is well
connected, but unreliable and asynchronous. Each process
runs on a processor. The processors do not have a global
clock, they do not share memory. Failure handling is not
considered.

We assume that each process consists of an application
layer (AL), a Slotted-FIFO layer, (SL), and a hansport
layer (I'L), as shown in Figure 1. The application layer
can utilize the slotted-FIFO primitives, and generate XY-
send events to the SL, where X Y is a label belonging to
the set (F R , F R , F R , F R) , and can accept delivery events
from the SL. SL is responsible for message delivery accord-
ing to the slotted-FIFO discipline. The SL layer can gener-
ate transport-send events to the transport layer and can ac-
cept transport-receive events from the transport layer. TL
is endowed with mechanisms such as positivehegative ac-
knowledgment and retransmissions to ensure, if requested,
reliable receipt of messages (the two reliable communica-
tion primitives invoke these mechanisms). TL generates
net-send event to the network and accepts net-receive event
from the network.

We say that a message is sent when the corresponding
XY-send event is generated; a message is delivered when
the corresponding delivery event is generated; a message
is received when the corresponding transport-receive event
is generated; a message is said to have arrived when the
corresponding net-receive event is generated.

At the application level a pair of processes, p , q , is
connected by a directed and asynchronous logical chan-
nel c ~ , ~ 0, is the sender and q is the destination process).
Along this channel, a finite sequence of messages M are
sent. The messages in the sequence can be labeled as
m.0, m. 1, . . . m.k, where m.2 denotes the (i + l)st message
sent by p . This channel supports four primitives to send a
message in an ordered andor reliable way: FR-send, FR-
send, FR-send, FR-send and PR-send. A channel can
drop messages sent by unreliable primitives.

4. The slotted-FIFO Communication Mode

A message sequence sent along a channel can be di-
vided into subsequences based on the ordering and relia-
bility characteristics of the constituent messages. Let XY.j
be the (j + 1)" message of the subsequence M x y sent
by invoking the X Y - send(m) primitive (with X Y E

203

XY-send

4. b’FR,h, FR.w E U(&) :: (h < w) iff FR.h 2.f
F R W .

A

delivery The four rules mean the following: (i) FIFO and Reli-
able messages are always delivered in the order they are
sent along a channel, (ii) a Reliable message is always deliv-
ered to its destination in the same slot, (iii) a non-FIFO non-
Reliable message, if delivered to the destination, should be
delivered in the same slot that it is sent, and (iv) two FIFO
non-Reliable messages delivered in the same slot must have
been sent in the order they were delivered. Examples of
slotted-FlFO communications are depicted in Figure 2.a.

transport-send

net-send net-receive i Network

A

transport-receive

Figure 1. The structure of a process.

{ F R , F R , F R , FR}) . The messages in this subsequence
can be represented as XY.0, XY.1,. . . X Y . k x y , where

Let there be a function f : M x y -+ M which given
the identity of a message sent by an X Y - send primitive
determines the identity of the same message in M. We also
assume that m.0 = f (F R . 0) and m.k = f (F R A F R) , i.e.,
the first and last messages in the message sequence are sent
using the F R - send primitive. Now, we can define a “slot”
as follows.

kxu 5 k.

Definition4.1 A slot Si is the set MSi of messages m.x
(with MSi C M), sent by p along c ~ , ~ , such that
f (FR.2) < m.x < f (FR.(i + 1)). The projection of a
slot II(Si) is the set of messages delivered to process q.

Also, let m.xh and m.x, be two messages belonging to
II(Si), we denote m.xh cvt m.5, iff the delivery of m.zh
occured before the delivery of m.5,. We are in the position
to define the slotted-FIFO communication mode:

Definition 4.2 A pair of processes p , q respects slotted-
FIFO ordering on cPyq iff:

I . VFR.h,FR.w E M :: (h < w) iff FR.h cvt
FR.w;

2. VFR.h E Si 1: FR.h E U(Si);

3. VFR.h E II(Si) :: FR.h E Si;

5. A Simple Implementation of the Slotted-
FIFO layer

An implementation of the Slotted-FIFO layer consists of
defining a protocol between a XY-send procedure invoked
by the application layer and a message handler (namely RE-
CEIVE) which is instantiated each time a transport-receive
event is generated by the trqnsport level. Actually, each
message m, received at the slotted FIFO layer, is associated
with a WAIT (or delivery) condition. If the condition is sat-
isfied m, is delivered. If the message type is unreliable and
is out of its slot, m is discarded. Otherwise m is buffered
at the slotted-FIFO layer until its WAIT condition becomes
true. When an FR message is going to be delivered, first
buffered unreliable FIFO messages that should precede the
FR message are delivered.

5.1. The Sending Process

The sending process maintains the following three vari-
ables:

slot: the current slot number;

SpR: the sequence number of the next Non-FIFO and
reliable message in the current slot;

 SF^: t h e s e q u e n c e n u m b e r of the next FIFO and un-
reliable message in the current slot;

Each message is equipped with control information
stored in its ST structure whose fields are as follows:

0 slot: integer indicating the slot associated with the
message;

e t ype: a char indicating the type of the message;

204

-2- F R _ _ _
F R

. > P R + P R

Figure 2. An example of slotted-FIFO communication and the corresponding partial order generated
by the relation 5 .

0 order: integer whose value depends on the type of
the message. If the message is of type F R , it repre-
sents the number of FR messages sent in the previous
slot (i.e., SpR) . If the message is of type Fl?,it rep-
resents the number of FR' messages sent so far (in-
cluding this message) in the current slot. i.e., SF^.

Implementation of the XY-send primitive is given in Fig-
ure 3. First, fields slot and type of ST are updated (Sl).
When a reliable FIFO message has to be sent, the order field
is set to the current value of the SF,, counter (S2). This is
needed to inform the receiving process of the number of
reliable messages sent during the current slot (i.e., the slot
being closed by the F R message). Tlhe FR message should
not be delivered to the receiving process until all the preced-
ing reliable messages in the slot have been delivered. The
slot counter is incremented (S3), anid the FIFO unreliable
counter is reset (S4). When a non-FIFO reliable message
has to be sent, the S,, counter is incremented. When send-
ing an unreliable FIFO message, the SF^ counter is incre-
mented, and the order field of ST is set to the current value
of the SF^ counter.

It is to be noted that a process need not maintain se-
quence number information for non-FIFO unreliable mes-
sages in the form of an S ~ R variable. Also, the order field
of the ST structure sent with such messages is unassigned.
This is because the only constraint relevant for the delivery
of F R class of messages is the slot number.

The structure ST allows us to model messages as a par-
tial order. This will be useful to deifine an ordering in the
activation of multiple suspended WAIT conditions as ex-
plained later.

1. Let STm be the control information structure for the
message m. Let m and m' be two messages, we
say that m precedes m', denoted m +s m', iff
ST,.slot < ST,! .slot. The precedence relation +s

represents the transitive closure of precedence among
successive slots.

2. Let m and m' be two messages such that ST,.slot =
STml.slot and ST,.type = ST,~.type = FR,
we say that m precedes m', denoted m +f m', iff
ST,.order < ST,, .order. The precedence relation
+f represents precedence within a slot due to FIFO
ordering.

3. Let m and m' be two messages, we say that m
precedes m', denoted m +es m', iff ST,.slot =
STmt.slot and STm1.type = FR. The precedence
relation +es denotes that messages in a slot precede
the FR message that marks the end of the slot.

Now, we denote 5 the transitive closure of the union
of +s, + f , and +S. The set of messages M can be then
represented as a partial order of messages kf = (M , 5) .
Two messages m and m' are concurrent iff l (m 5 m') and
l(m' 5 m). In Figure 2.b the partial order M = (M , 5)
of the message scheduling of Figure 2.a is shown.

5.2 The Receiving Process

The receiving process at the slotted-FIFO layer manages
the following four variables:

0 slot: an integer that stores the current slot number;

205

init

procedure XY - S E N D (m t j)

/*m is the message content*/
/ * t is the type * /
/ * j is the destination process*/
begin

slot=O; s p R = o ; SFR=O ;

S T s l o t = slot; ST.type = t ; (S1)
case t of
F R : ST.order = S p R ; S p , = 0; (S2)

(S 3) slot = slot + 1;
S F R = 0; break; (S 4)

FR : SpR = S p R + 1; break; (S 5)

ST.order = S F f i ; break; (S 7)
Fl!? : S F R = S F R + 1; (S 6)

F R : break; (S 8)
endcase
transport-send(m, S T) ; (S 9)

end.

Figure 3. A simple XY-send primitive imple-
mentation.

R p R : an integer that stores the number of reliable
non-FIFO messages delivered in the current slot;

0 R F R : an integer that stores the sequence number of
the last non-reliable FIFO message delivered in the
current slot;

0 endslot: a Boolean variable indicating that an F R
message has arrived and the end of the slot is immi-
nent;

The RECEIVE message handler is shown in Figure 4.
Each received message is associated with a WAIT condi-
tion which depends on the message type (R2, R8, R11,
R1.5). Let the type of the message received be FIFO and
reliable. Statement (R2) permits further processing of the
message, and ultimately its delivery, only when the value
of the local slot variable is equal to the value of the mes-
sage’s ST.sEot field and the message’s ST.order field is
equal to the number of reliable messages sent in the cur-
rent slot. This ensures that the reliable messages sent by the
source in the current slot are delivered to the destination be-
fore messages belonging to the next slot are delivered. Both
R p R and R F f i counters are also reset (R3,R4).

If a non-FIFO reliable message is received, the receiving
proccss waits until the ST.slot field equals the current slot
(R8). The R p , field is incremented to reflect the delivery
of a non-FIFO reliable message (R9), and the message is
delivered (R10).

If an unreliable non-FIFO message is received and the
value of its STsZot field is lower than the current slot, the
message is discarded (R11, R12). Such a situation arises if
the message has been overtaken on its way to the destination
by a reliable FIFO message and arrives after the expiration
of its slot. Otherwise it is delivered as soon as the the slot
field is cqual to the current slot (R13, R14).

Similarly, an unreliable FIFO message is discarded if the
value of its ST.sZot field is either less than the current slot
or if an FIZ message has arrived and the end of its slot is im-
minent (R1.5, R16). Otherwise its delivery is delayed until
one of the the conditions in (R17) is satisfied. The first con-
dition (i.e., ST.slot == slot and ST.order==RFR + 1))
is the typical FIFO condition. The second condition (i.e.,
ST.slot == slot and ends lo t) indicates that the end of
the slot is imminent. So, all pending F R messages must
be immediately delivered in the correct order before the re-
ceived F R message be delivered.

Deadlock Avoidance

If the WAITS in the case statements are busy-waits, dead-
locks can arise. For example, let a sender send an FR mes-
sage followed by an F R message to the receiver. Also, let
the F R message overtake the F R message. If busy-waits
are employed at the receiver, the receiver process will be
spinning on the condition ST.order == R p R . On the ar-
rival of the FR message the processor will not be able to
handle it and increment R p R as the processor cycles are
being monopolized by the busy-wait.

Hence, it is important to ensure the following:

When an instance of the RECEIVE message handler
reaches a WAIT statement and the condition in the
statement is not true, that particular instance of the
RECEIVE message handler is suspended and gives
up control of the receiver process.

e A suspended instance of the RECEIVE message han-
dler is activated when the condition on which the pro-
cedure is waiting becomes true due to execution of
statements in other instance(s) of the RECEIVE mes-
sage handler at the same site.

0 If delivery conditions of multiple suspended instances

206

init

RI.~=O; endslot= f a l s e ;
when an (m,ST) event: is
accepted from the Transport-Layer
/*m is the message content, * /
/ * ST is the control information*/

slot=O; RFR=O;

begin
case
FR :

FR :

F R :

F R :

ST.type of
ends lot =true ;
wait (slot==ST. slot and
ST. order==RgR) ;
RpR=O ;
RFR=O ;
endslot= f a l s e ;
slot=slot+l;
deliver (m) ;
break;
wait(slot==ST.slot) ;

deliver (m) ;
break;
if (ST.slot < slot)
then discard (m) ; break;
else wait(ST.sloti==slot) ;

RF;,=R~R + 1 ;

deliver (m) ;
break;

if ((ST.slot < slot) OT
ends lot)
then discard(m) ;
else wait ((ST. s lot ==s lo t and (R17)
(ST. order==RFR+l OT end-slot)) ;

RFR=ST.order ; (R18)
deliver (m) ; (RI9 1
break;

endcase
end.

Figure 4. A simple RECEIVE message handler
implementation.

0

of the RECEIVE message handler become true si-
multaneously (for example the ones associated with
messages m and m'), they are activated in an order
consistent with the partial order given by the relation
5, i.e., m is activated before m' if m 3 m'. If m and
m' are concurrent they can be activated in any order.

Finally, to ensure consistency of updates to the con-
dition variables the following statement sequences
are executed in an atomic fashion: (R3) - (R7),
(R9) - (RlO), and (R18) - (R19).

We would like to remark that a busy-wait implementa-
tion using preemptable threads is possible. However, in that
case we need to take care of priority among threads.

6. Simulation Study

In this section we measure the performance of the
slotted-FIFO layer proposed in the previous section. We
assume FR-send primitives are generated by AL (Appli-
cation Layer) at fixed time intervals of length T,, referred
to as the slot length. In the interval between two FR-send
messages, primitives of the other types are generated ac-
cording to a Poisson process with rate A, and are labelled
as X Y type with probability PXY. The SL stores waiting
messages inside a resequential buffer. The network is char-
acterized by the reliability, given as the probability, P,,,,,
that a sent message is not lost. No correlation is assumed
between losses.

In order to guarantee reliable trasmissions, an error-
detection mechanism, based upon a classical positive re-
transmission protocol using time-out, is embedded in TL.
Specifically, after a transport-send is executed for a reliable
message m, m is buffered and a net-send event is generated
by TL each time a time-out period Tt, expires. Moreover,
we use message numeration at TL layer to avoid message
duplication. We assume no flow control and infinite buffer
size at TL.

We define network delay, Tntw, as the time elapsed be-
tween the the net-send event of a message m and the arrival
(see Section 3) of m at the receiver; the transport delay,
Ttra, as the time elapsed between the transport-send event
of a message m and the receipt of m; the delively delay, Td,
as the time elapsed between the acceptance of the transport-
receive event of a message m by SL and the delivery of m.

For messages that are not lost Tntw is an exponentially
distributed random variable with mean pntw. We assume

207

100.0

80.0 -
I E

$

E

- m" 60.0
U

._ - 40.0
U

20.0

I M b

m
U , , , m 0.0

0.0 20.0 40.0 60.0 80.0 100.0
Slot length [ms]

Figure 5. FR delivery delay vs slot length.

Tt,, = Tnt, for unreliable messages that are not lost l ,

and Ttra = aTt, + TntW for reliable message, where cy

is a geometrically distributed random variable denoting the
number of retransmissions:

p?-ob{cy = k} = Psucc(l - PszLcc)k, k 2 0.

6.1 Results of the Experiments

Results presented in this section were obtained with the
following parameters. A= 1 packetdms, pntw = 25 ms,
Tt,=50 ms, Psucc = 0.999. We considered five different
transmission schemes: (a) PFR = 12; (b) P ~ R = 1; (c)

Experiments were conducted by varying the slot length
from 2 ms to 100 ms and by measuring the average delivery
delay experienced by the different types of messages and
the average queue length of the resequencing buffer em-
bedded in the slotted-FIFO layer. For each value of the slot
lenght we did several runs with different seeds and the re-
sult were within four percent of each other, thus variance is
not reported.

Fig. 5 shows the FR delivery delay as a function of the
slot length (measured in ms). FR delivery delay denotes
the time required for slot reorder and is affected by reliable
message arrival out of sequence. In schemes (a) and (d), it is
in the range 70-80 ms and is almost independent of the slot
length, since reliable transmissions are used for both mes-
sages. In schemes (b) and (c), we observed a significant re-

PFR = 1; (d) PpR = 1; (e) P ~ E = PFR = PFR = 1/3.

'We assume that no delay is involved in the TL when sending a

2To compare the slotted-FIFO performance with pure FIFO channels,
message.

we allow messages within a slot to be of the FR type.

80.0 -
E
tn 60.0
c

Q

5 40.0
.S x

0.0' " " " " ' 1
0.0 20.0 40.0 60.0 80.0 100.0

Slot length[ms]

Figure 6. Delivery delay of messages inside a
slot.

duction of the FR delivery delay. Indeed, non-reliable mes-
sages, that are received too late (i.e., after their slot) by SL,
are discarded and FR messages are not forced to wait for
such messages. As the slot length increases, the probability
that the received FR messages are out of sequence decreases
and thus the resequencing cost falls down. Scheme (e) is an
example of FR delivery delay in which 33% of messages in
a slot are sent in a reliable way.

Figure 6 shows delivery delay of the messages inside a
slot. It is simple to see that delivery delay is the sum of two
delays. The first delay, D1, is associated with the situation
where a message in a slot reaches the destination prior to the
FR message marking the beginning of that slodend of previ-
ous slot. D1 is higher for smaller slot intervals since small
slot intervals increase the probability that reliable messages
arrive out of sequence. The second delay, Dz, measures
the time elapsed between the time a message m enters its
slot and the delivery of m. In the non-FIFO schemes (b)
and (d), D2 = 0 and thus FR delivery delay decreases as
the slot lenght increases. In the scheme (c), some F R mes-
sages are forced to wait until the end of the slot before they
are delivered. As the slot length increases, Dz dominates
over D1.

As far as the required buffer size is concerned, the aver-
age queue length of the resequencing buffer was used to
compare the different scheme requirements. Results are
shown in Figure 7. For slot wider than 20 ms, the average
queue length of scheme (b) is ten times less than scheme (a).
In scheme (c), until D2 does not dominate over D1 (till 40
msec), the average queue lenght was from one half up to one

208

100.0

.c

-
m
J
U

& 50.0 c
2

0.0 r
0.0 20.0 40.0 60.0 80.0 100.0

Slot length [nns]

Figure 7. Buffer requirements.

third the average queue length of the reliable schemes (a)
and (d). As the slot length increases, the non-FIFO scheme
(d) decreases the average queue length as Dz = 0 while the
unreliable FIFO scheme (c) increases it as 0 2 dominates
over D1. These measures can be useful to design memory
space allocation used for message reordering at the slotted-
FIFO layer according application's requirements.

Finally, we would like to remark that the percentage of
messages dropped by the proposed dotted-FIFO layer is al-
ways below 10% for any slot width and that using a scheme
(b), the one with least ordering and reliability constraints,
the average buffer requirements and the message latency
can be reduced up to one tenth compared to a pure FIFO
channel (scheme a).

7. Conclusion

Reliable FIFO message communication has received
great attention in the past. This is primarily because
database applications have been the dominant network ap-
plications so far, and these applications require reliable
FIFO communication. However, many applications need
communication with relaxed reliability and/or ordering con-
straints. Multimedia applications, fo'r example, have differ-
ent quality of service requirements from database applica-
tions, i.e., loss of some packets and occasional non-FIFO
delivery is acceptable. Hence, communication protocols for
database applications are not suitable as well as expensive
for multimedia applications.

In this paper, we presented the slotted-FIFO communica-
tion mode. It supports reliable FIFO, unreliable FIFO, reli-
able non-FIFO, and unreliable non-FIFO flow of data while

maintaing a certain degree of ordering among them. The en-
tire communication can be divided into slots demarcated by
successive reliable FIFO messages. The reliable messages
sent within a slot are always delivered to the destination pro-
cess after the beginning and before the end of the slot. FIFO
messages in a slot, if delivered to the destination, are deliv-
ered in the correct order. The delivery of reliable messages
is never delayed on account of unreliable messages. This
leads to a reduction in message buffering and latency. Loss
of unreliable messages in transit is semantically similar to
their late arrival, and requires no special handling.

Simulation results also show that in applications where
some loss of sent messages can be allowed (such as the mul-
timedia applications), a slotted-FIFO channel can be used to
obtain better performance, in terms of buffer requirements
and delivery delay, when compared to a pure FIFO channel.
We showed that designing a slotted-FIFO layer is simple
and this should imply a simplicity of implementation. The
bookkeeping overheads are also low.

Acknowledgments

The authors would like to thank Roy Friedman of Cor-
ne11 University for useful comments and discussions on an
earlier version of the paper.

References

[l] M. Ahuja. Flush Primitives for Asynchronous Dis-
tributed System. Information Processing Letters,
34(1):5-12, February 1990.

[2] M. Ahuja. Hierarchy of Communication Speeds for De-
signing Concurrent Systems. Technical Report OSU-
CISRC-1/91-TRl, The Ohio State University, 1991.

[3] M. Ahuja. An implementation of F-channels. ZEEE
Transactions on Parallel and Distributed Systems, 658-
667, June 1993.

[4] M. Ahuja and R. Prakash. On the relative speed of mes-
sages and hierarchical channels. In Proceedings of the
4th IEEE Symposium on Parallel and Distributed Pro-
cessing, pages 246-253. IEEE Computer Society Press,
1992.

[5] R. Baldoni, R. Beraldi, and R. Prakash, Slotted-
FIFO Communication for Asynchronous Distributed
Systems. Technical Report n. 10-97, Dipartimento di

209

Informatica e Sistemistica, Universita’ di Roma “La
Sapienza”, April 1997.

[6] R. Baldoni, A. Mostefaoui, and M. Raynal, Causal
delivery of messages with real-time data in unreliable
networks. Journal of Real-time Systems, Vol 10, no. 3,
245-262,1996.

[7] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal.
Efficient A-causal broadcasting. International Journal
of Computer Systems Science and Engineering (to ap-
pear), 1997.

[SI K. Birman and T. Joseph. Reliable communication in
presence of failures. ACM Transactions on Computer
Systems, 5(1):47-76, February 1987.

[9] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic broadcast. ACM Transactions on
Computer Systems, 9(3):272-314,1991.

[lo] G. V. Clocker, N. Huleihel, I. Keidar, D. Dolev.
Multimedia multicast transport service for groupware.
Proceedings of the TINA’96 Conference, 43-54, VDE
Verlag, 1996.

[111 D. Gall. MPEG: A video compression standard for
multimedia applications. Communications of the ACM,
34(4):46-58, April 1991.

[12] E Gong, G. M. Parulkar. An application-oriented
error control scheme for high speed networks .
IEEELACM Transactions on Networking, 4(5), 669-
683, October 1996.

[13] T. Houdoin and D. Bonjour. ATM and AAL layer
issues concerning multimedia applications. Annals of
Telecommunications, 49(5):230-240,1994.

[141 A.S. Tanenbaum. Computer Network. Prentice-Hull
International Editions, 1996.

[151 R. Yavatkar. MCP: A Protocol for Coordination and
Temporal Synchronization in Multimedia Collaborative
Applications. In Proceedings of the 12th IEEE Interna-
tional Conference on Distributed Computing Systems,
606613. IEEE Press, 1992.

[161 I. Wakeman. Packetized video: options for interac-
tion between the user, the network and the codec. The
Computer Joumal, 36(1):55-66,1993.

2 10

