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Design Choices in the SHRIMP System: An Empirical StudyMatthias A. Blumrich�, Richard D. Alperty, Yuqun Chen�, Douglas W. Clark�,Stefanos N. Damianakis�, Cezary Dubnicki�, Edward W. Felten�, Liviu Iftodez,Kai Li�, Margaret Martonosix, and Robert A. Shillner�AbstractThe SHRIMP cluster-computing system has progressedto a point of relative maturity; a variety of applications arerunning on a 16-node system. We have enough experienceto understand what we did right and wrong in designingand building the system. In this paper we discuss someof the lessons we learned about computer architecture,and about the challenges involved in building a signi�cantworking system in an academic research environment.We evaluate signi�cant design choices by modifying thenetwork interface �rmware and the system software in orderto empirically compare our design to other approaches.1 IntroductionMulticomputer and multiprocessor architectures appearto be converging due to technological and economicforces. A typical architecture is now a commoditynetwork connecting a set of compute nodes where eachnode consists of one or more microprocessors, caches,DRAMs, and a network interface. The node architecturesof different systems are not only similar to one another,but are often commodity high-volume uniprocessor orsymmetric multiprocessor systems. This approach cantrack technology well and achieve low cost/performanceratios. In such architectures, the network interfacebecomes arguably the key component that determines thefunctionality and performance of communication.
1.1 Network Interface Design ChallengesAn ideal network interface should have a simple designand yet deliver communication performance close to the�Department of Computer Science, Princeton University, Princeton, NJ08544yNEC Research Institute, Princeton, NJ 08540zRutgers University, Department of Computer Science, Piscataway, NJ08855xDepartment of Electrical Engineering, Princeton University,Princeton, NJ 08544

hardware limit imposed by the nodes and the routingnetwork. It should support low-level communicationmechanisms upon which message-passing and shared-memory systems, and applications perform well. It shouldalso provide protection in a multiprogrammed, client/serverenvironment. This is challenging for several reasons. First,the network interface device sees only physical memorywhereas applications use virtual memory. Second, thenetwork interface is a single, physical device shared amongmultiple untrusting processes, whereas the applicationprocesses would like a private communication mechanismto guarantee performance, reliability and protection.Traditional network interface designs often impose largesoftware overhead (thousands of CPU cycles) to send andreceive a message because they rely on the operating systemkernel to obtain exclusive access, check for protection,translate between virtual and physical addresses, performbuffer management, create packets, and set up DMAtransfers.The SHRIMP project studies how to design networkinterfaces to satisfy the design challenges. Our approach isto use a virtual memory-mapped communicationmodel [12,21], and implement it with some hardware support at thenetwork interface level to minimize software overhead.Several other projects and commercial products have usedsimilar memory-mapped communication models, includingHP's Hamlyn project [15], Digital's MemoryChannel [24]and Dolphin's network interface. Although these efforts allproved that the memory-mapped communication paradigmcan indeed achieve high-performance communication withminimal software overhead, many network interface designissues for virtual memory-mapped communication are notwell understood.
1.2 Lessons LearnedThis paper reports our experimental results on a 16-node SHRIMP multicomputer. In addition to measuringthe behavior of the system as it is, we reprogrammed thenetwork interface and low-level communication software toanswer �what if� questions about the design. We measured
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Figure 1. Photographs of the network interface (left) and the 16-node SHRIMP system (right)performance with applications from four categories: usingthe virtual memory-mapped communication mechanismdirectly, using an NX-compatible message-passing library,using a stream-sockets-compatible library, and using sharedvirtual memory systems of several types.Our experiments evaluate the consequences of ourarchitectural approach, as well as answer questions abouthardware parameters. Among the questions we consider arethe following:� Did it make sense to build custom hardware, or couldwe have gotten comparable results by using off-the-shelf hardware and clever software?� Was the automatic update mechanism in SHRIMPuseful, or would a simple block transfer mechanismhave given nearly the same performance?� Was user-level initiation of outgoing DMA transfersnecessary, or could we have gotten nearly thesame performance with a simple system-call-basedapproach and clever software?� How important was our emphasis on avoiding receiver-side interrupts?In addition to answering these questions, we discuss otherlessons learned, including some things that consumedmuchof our design time, yet turned out not to matter.2 The SHRIMP SystemThe architecture of the SHRIMP system has beendescribed in several previous publications [10, 11, 12, 23]�notably [9]�and will only be described in as much detailas necessary here. Speci�c details of the architecture

and implementation will be described more thoroughlythroughout this paper.
2.1 ArchitectureThe SHRIMP system consists of sixteen PC nodesconnected by an Intel routing backplane, which is the sameas that used for the Paragon multicomputer [29]. Thebackplane is organized as a two-dimensional mesh, andsupports oblivious, wormhole routing with a maximum linkbandwidth of 200 Mbytes/second [44]. The right-handphotograph in Figure 1 shows the basic interconnectionbetween the nodes and the backplane. The backplane isactually relatively small but, for convenience, we powerit with the standard Paragon cabinet which is capable ofhousing a complete 64-node system.The custom hardware components in the system consistof the SHRIMP network interfaces (one per node), andsimple transceiver boards (not shown) to connect eachnetwork interface to a router on the backplane. Thetransceiver boards are necessary because the PCs andthe backplane are on separate power supplies, requiringdifferential signaling between them.The SHRIMP network interface (Figure 1) consists oftwo boards because it connects to both the Xpress memorybus [28] and the EISA I/O bus [6]. The memory-bus boardsimply snoops all main-memorywrites, passing address anddata pairs to the EISA-bus board. The EISA-bus boardcontains the bulk of the hardware, and connects to therouting backplane. Figure 2 shows the principal datapathsof the network interface.Three important aspects of the DEC 560ST PCs used toconstruct the SHRIMP system bear mentioning. First, the60 MHz Pentium processor has a two-level cache hierarchythat snoops the memory bus and remains consistent with
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Figure 2. Basic architecture of the SHRIMP network interfaceall main memory transactions, including those from thenetwork interface. Second, the caches can be speci�ed tooperate in write-back, write-through, or no-caching modeon a per-page basis. Third, the memory bus does not cycle-share between the CPU and any other main memory master.The SHRIMP network interface was designed to workin concert with the communication programming model,called Virtual Memory-Mapped Communication (VMMC),in order to provide an ef�cient, high-performancecommunication subsystem. The following description takesa top-down approach, beginning with VMMC.
2.2 Communication ModelBuffers and Import/Export The basic VMMC modelsupports direct data transfer to receive buffers, whichare variable-sized regions of contiguous virtual memory.In order to receive data to a receive buffer, a processexports the buffer together with a set of permissions.Any other process with proper permission can import thereceive buffer to a proxy receive buffer, which is a localrepresentation of the remote receive buffer.Deliberate Update In order to transfer data, a processspeci�es a virtual address in its memory, a virtualaddress within a proxy receive buffer, and a transfer size.This causes the communication subsystem to transfer acontiguous data block of the speci�ed size starting at thespeci�ed memory address to the remote receive bufferindicated by the speci�ed proxy address (subject to buffersize restrictions). Such a transfer is called deliberate updatebecause the transfer is initiated explicitly.Automatic Update Alternatively, a portion of virtualmemory can be bound to an imported receive buffer (orportion thereof) such that all writes to the bound memoryare automatically transferred to the remote receive buffer asa side-effect of the local memory write. This mechanism

is called automatic update because no explicit transferinitiation is required. Due to implementation restrictions,automatic update bindings (also called mappings) must bepage-aligned on both the sender and receiver.Noti�cations VMMC allows a process to enablenoti�cations for an exported receive buffer. This causes acontrol transfer to a speci�ed user-level handler whenevera message is received for that buffer. Noti�cation controltransfers are similar in semantics to Unix signals. Thesystem provides no guarantee as to when the noti�cation isdelivered to user level, and it does not prevent the receiveddata from being over-written. However, it does providequeueing of multiple noti�cations. Exporting processescan optionally block and un-block noti�cations, but not forindividual receive buffers.
2.3 ImplementationThe SHRIMP network interface (Figure 2) supports thebasic communication mechanisms of the VMMC model.There is a thin user-level library layer that implementsthe actual application programming interface (API) of themodel for high-level libraries and applications.Buffers and Import/Export The export implementationpins virtual pages of the receive buffer to physical pages.The import implementation allocates an Outgoing PageTable (OPT) entry for each page of the proxy receive buffer,and con�gures the entries to point to the remote physicalpages of the actual receive buffer.Deliberate Update An application or user-level libraryinitiates a deliberate update transfer by using the networkinterface's user-level DMA mechanism [10]. By executinga two-instruction load/store sequence to special I/O-mappedaddresses, the application tells the SHRIMP DMA enginethe source, destination, and size of the desired transfer.



Protection is guaranteed by a combination of page-mappingtricks and simple error checking in the network interfacehardware.Automatic Update To implement automatic update, thenetwork interface maintains a one-to-one mapping betweenphysical memory page numbers and OPT entries. Thisallows a write that is snooped off of the memory bus toaddress the OPT directly and obtain a remote physical pagenumber. To implement an automatic update binding, theOPT entries corresponding to the bound memory pagesare simply modi�ed to point to the remote physical pages,and enabled for automatic update. Any writes to pageswhose corresponding entries are not enabled for automaticupdate are snooped, but ignored. The network interfacehas a mechanism to combine consecutive automatic updateswithin a single page or during a speci�ed number of cyclesinto a single packet.Noti�cations To enable noti�cations, the interrupt bits areset in the Incoming Page Table (IPT) entries correspondingto the pages of an exported receive buffer. An arrivingpacket causes an interrupt when an interrupt bit in thepacket's header (controlled by the sender) is set, and theinterrupt bit in the destination page's IPT entry (controlledby the receiver) is also set. When an interrupt occurs, asingle system-level handler is invoked to decide where todeliver the user-level noti�cation. Note that the sender'sinterrupt request bit for an automatic update packet is storedin the OPT, while deliberate update allows the bit to bedynamically set as part of an explicit transfer initiation.3 Applications and ExperimentsWe have implemented several high-level communicationAPIs and systems on the SHRIMP multicomputer,including the native VMMC library [21], an NX message-passing library [2], a BSP message-passing library [3],a Unix stream sockets compatible library [17], a Sun-RPC compatible library [7], a specialized RPC library [7],and Shared Virtual Memory (SVM) [26, 27]. EachAPI implementation takes advantage of the low-overhead,user-level communication mechanisms on the system andsupports a few applications.In this paper we selected applications based on fourdifferent APIs: VMMC, NX, Stream sockets, and SVM.The primary selection criterion is whether there is anoticeable amount of time spent on communication. Table 1shows the selected applications and their characteristics.Each of these applications has two versions: one usingautomatic update and another using deliberate update.We have selected small problem sizes for our evaluationpurposes. We use the following applications:

Comm Problem Seq ExecApplication API Size Time (sec)Barnes-SVM SVM 16K bodies 121.3Ocean-SVM SVM 130�130 12.8Radix-SVM SVM 2M keys, 3 iters 14.3Radix-VMMC VMMC 2M keys, 3 iters 10.9Barnes-NX NX 4K bodies, 20 iters 149.9Ocean-NX NX 514�514, 1�10�3 69.2DFS-sockets Sockets 4 clients 6.9Render-sockets Sockets 167�63�34 13.8
Table 1. Characteristics of the applications
used in our experiments. (Ocean-NX does
not run on a uniprocessor; two-node running
time is given)Barnes-SVM This application is from the SPLASH-2benchmark suite [46]. It uses the Barnes-Hut hierarchicalN-bodymethod to simulate the interactions among a systemof particles over time. The computational domain isrepresented as an octree of space cells. The leaves of theoctree contain particles, and the particles and space cellsare distributed to processors based on their positions inspace. At each time step of the simulation, the octree isrebuilt based on the current positions of the bodies and eachprocessor computes the forces for the particles which havebeen assigned to it by partially traversing the tree.Ocean-SVM This �uid dynamics application is also fromthe SPLASH-2 suite. It simulates large-scale oceanmovements by solving partial differential equations ateach time-step. Work is assigned to processors bystatically splitting the grid and assigning a partition toeach processor. Nearest-neighbor communication occursbetween processors assigned to adjacent blocks of thegrid. The matrix is partitioned in blocks of n=p whole,contiguous rows.Radix-SVM This is another kernel from the SPLASH-2 suite. It sorts a series of integer keys into ascendingorder. The dominant phase of Radix is key permutation. InRadix a processor reads its locally-allocatedn=p contiguouskeys from a source array and writes them to a destinationarray using a highly scattered and irregular permutation.For a uniform distribution of key values, a processor writescontiguous sets of nr�p keys in the destination array (wherer is the radix used); the r sets that a processor writesare themselves separated by p � 1 other such sets, anda processor's writes to its different sets are temporallyinterleaved in an unpredictable way. This write pattern



induces substantial false-sharing at page granularity.Radix-VMMC A port of the SPLASH-2 integer radixsort kernel to the VMMC API. The versions for automaticupdate and deliberate update differ in the method by whichsorted keys are distributed. In the automatic update version,each processor distributes its keys by placing them directlyinto arrays on remote processors using automatic updatemappings. In the deliberate update version, the keys foreach remote processor are gathered into large messagetransfers, and scattered by remote processors.Ocean-NX A message-passing version of the algorithmdescribed in Ocean-SVM.Barnes-NX A message-passing version of the algorithmdescribed in Barnes-SVM. Because this implementationuses an octree data structure, running on more than eightnodes introduces communication in what would otherwisebe a compute-only phase, limiting speedup. This is alsoevident in the signi�cant performance degradation causedby interrupts on each send (see Table 2).DFS-sockets This application is a distributed cluster �lesystem implemented on top of stream sockets. The �lesystem uses the disks of all nodes to store data, and thememory of all nodes to cache data cooperatively. The �lesystem uses the VMMC sockets library, which includessome non-standard extensions for block transfers. Asynthetic workload is created by running client threads onhalf of the nodes; the client threads read large �les. Cachesare �warmed up� before the experiment begins, and theworkload is chosen so that the working set of a client threadis larger than the memory of a single node, but the collectiveworking sets of all clients will �t in the total memory of thenodes. Thus there are many node-to-node block transfersbut no disk I/O in the experiments.Render-sockets This is a Parallel Fault Tolerant VolumeRenderer [4] which does dynamic load-balancing and runsin a distributed environment. Render-sockets is based on atraditional ray-casting algorithm for rendering volumetricdata sets. It consists of a controller processor thatimplements a centralized task queue and a set of workerprocessors that remove tasks from the queue, process themand send the results back to the controller processor. Thedata set is replicated in all worker processors and is loadedat connection establishment.Figure 3 shows up to 16-processor speedups for severalapplications we have run on the SHRIMP system. For eachapplication, we measured both the automatic update and
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Figure 3. Speedup curves for a variety of
applications running on SHRIMPdeliberate update implementations, and plotted the versionwith the better speedup.4 Experience and Design IssuesThis section describes some key design issues, and whatwe have learned in building the SHRIMP network interface.When feasible, we evaluate our decisions via experimentalevidence using the applications described in Section 3. Inorder to do the evaluation, we altered the network interfacefeatures by reprogramming its �rmware and its low-levelsoftware libraries, to approximate the behavior of alternatedesigns.

4.1 Did It Make Sense to Build Hardware?With nearly any major hardware project in a researchenvironment, a central question is invariably �did it makesense to build hardware?�In our case, the answer is �yes� for two main reasons.The �rst reason is performance. Our communication hasbetter latency than several commercial network interfacessuch as Myrinet [13], even though our nodes are old60 MHz, EISA-bus based Pentium PCs and our networkinterface was designed in 1993. SHRIMP has a deliberateupdate latency of 6 �s, while the best latency achievedwith 166 MHz, PCI-bus based Pentium PCs and Myrinetnetwork interfaces running our optimized �rmware for the
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Figure 4. Comparing automatic update with deliberate update in three cases on a 16-node SHRIMP
system: shared virtual memory, native VMMC, and NX message-passing librarysame API [20] is slightly under 10 �s. Except for theautomatic update mechanism, both systems implement thesame VMMC API. The latency of SHRIMP is substantiallybetter than that of the Myrinet system, even though thenodes in the SHRIMP system are much slower than thosein the Myrinet system.Another reason for building hardware is that it allowedus to experiment with automatic update and compare itwith deliberate update. Our network interface is the onlyone we know of that implements a virtual memory-mappedautomatic update mechanism. By having such a feature, wecould experiment on a real system with real applications tounderstand whether it is a good idea, what the performanceimplications are, and what design decisions make sense.In short, we feel that building this system was useful,since it allowed us to experiment and learn things that wouldhave remained unknown otherwise.

4.2 Was Automatic Update a Good Idea?There are two principal advantages to automatic updatecommunication. First, it has extremely low latency.The end-to-end latency is just 3.71 �s for a single-wordtransfer between two user-level processes [9]. Second,it can eliminate the need to gather and scatter data. Inparticular, large data structures that are written sparselycan be exported in their entirety, and mapped remotely forautomatic update.We built three implementations to evaluate the impact ofusing automatic update support to improve the performanceof shared virtual memory [35]. The �rst implements theHLRC protocol [47] which uses only deliberate update

communication. The second is similar to the �rst except thatit uses automatic update to propagate the diffs transparentlyas they are produced, instead of buffering them andsending them explicitly using deliberate update messages.We call this approach HLRC-AU. The third approachimplements the Automatic Update Release Consistency(AURC) protocol [26]. This implementation eliminatesdiffs entirely and uses automatic update mappings topropagate updates eagerly to home pages.The left-hand side of Figure 4 compares the three SVMimplementations using three different applications on the16-node SHRIMP system. The number on top of eachbar indicates the speedup relative to a sequential run. Thebene�t of omitting diffs and relying on the automatic updatemechanism (as in AURC) is quite large (9.1%, 30.2%, and79.3%). AURC outperforms HLRC for applications thatexhibit a large degree of write-write false sharing. Theseapplications pay a signi�cant amount of overhead on dif�ngin the HLRC case, whereas the AURC implementationdoes not have a noticeable increase in computation timeor network contention due to write-through mapping andautomatic update traf�c. Moreover, by eliminating the diffcomputation at synchronization events, the AURC approachreduces the synchronization waiting time, compared toHLRC. This overhead reduction further accounts for theobserved performance improvement. On the other hand,using the automatic update mechanism to simply propagatediffs in the HLRC-AU case has very little bene�t comparedwith HLRC. In fact, in some cases it it can slightly hurt theperformance.Another case showing the bene�t of the automatic



Application System Call CostBarnes-SVM 23.2%Ocean-SVM 17.7%Radix-SVM 2.3%Radix-VMMC 5.9%Barnes-NX 52.2%Ocean-NX 10.1%Render-sockets 6.8%
Table 2. Execution time increase on 16 nodes
due to requiring a system call for every
message sentupdate mechanism is Radix-VMMC (radix sort using thenative VMMC API). As illustrated on the right-hand sideof Figure 4, the automatic update version improves thespeedup of deliberate update by a factor of 3.4.There are two principal drawbacks to our automaticupdate implementation which limit its usefulness forsupporting higher-level APIs other than shared virtualmemory. First, the send and receive buffers must havethe same alignment with respect to page boundaries,and second, the hardware does not guarantee consecutiveordering when a deliberate update transfer initiation isfollowed by an automatic update transfer. In this case,ordering is determined by memory bus sharing betweenthe CPU and the network interface's Deliberate UpdateEngine (Figure 2).Our experiences to date have shown that automaticupdate is not so helpful for applications using high-levelmessage-passing libraries such as NX and stream sockets.These applications tend to do large message sends inwhich the latency of the data movement itself is muchmore signi�cant than the message initiation overhead. Wehave written versions of these libraries that use automaticupdate instead of deliberate update as the bulk data transfermechanism. Comparing the performance of these twoversions, we found that although automatic update deliverslower latency, this effect is often overridden by the DMAperformance of deliberate update.

4.3 Was User-Level DMA Necessary?Designing and building the User-Level DMA (UDMA)mechanism was a major focus of the SHRIMP effort. Theprimary goal of this was to reduce send-side overhead. Wewere able to reduce the send overhead to less than 2 �s for60 MHz Pentium PC nodes that use the EISA bus.In this section, we evaluate the bene�t of UDMA overkernel-level approaches. To isolate the effects of kernel-level vs. user-level implementations, we wrote a kernel-

Application Noti�cations Total Messages %Barnes-SVM 779,136 2,394,690 33%Ocean-SVM 35,624 473,003 8%Radix-SVM 161,627 386,671 42%Radix-VMMC 0 2,160 0%Barnes-NX 10,623 1,024,124 1%Ocean-NX 11,380 1,007,342 1%DFS-sockets 0 3,931,894 0%Render-sockets 0 65,015 0%
Table 3. Per-application characterization of
notification, and notifications as a percentage
of total messages (16 nodes)level driver that simulates what the software would do ina SHRIMP-like architecture that lacked UDMA. We thenmodi�ed the SHRIMP software library to call this kerneldriver before each message send. With this kernel-levelimplementation, we measured application performance andcompared it to performance of the actual SHRIMP system.Table 2 summarizes the results of this experiment. Itshows that the additional system call increases the executiontime by 2% to 52%, depending on the application.

4.4 How Important is Interrupt Avoidance?Another major system design goal was to minimizethe number of receive-side interrupts. In many cases,no interrupts are required. Some communication models,however, rely on receive-side interrupts as part of everymessage arrival, so interrupts cannot be eliminated. Forthese cases, we provide the ability to attach an optional�noti�cation� to each message.How often are noti�cations used? The SVMimplementation relies on the noti�cation mechanism. Asa result, we see in Table 3, a signi�cant fraction of themessages invoke noti�cations. In contrast, the sockets andVMMC applications do not use noti�cations at all. Instead,they rely on polling to detect the arrival of data.How much do we save by avoiding receive-side per-message interrupts? To answer this next question, wemodi�ed VMMC so that every arriving message causes aninterrupt, which triggers a null kernel-level handler. Table 4gives the extra cost imposed by these extra interrupts.The slowdown varies between roughly negligible and 25%,depending on the application. Note that a real systemwould exhibit higher overhead than this since it would haveto do some work in the interrupt handler. If interrupts



Application SlowdownBarnes-SVM 18.1%Ocean-SVM 25.1%Radix-SVM 1.1%Radix-VMMC 0.3%Barnes-NX 6.3%Ocean-NX 15.7%DFS-sockets 18.3%Render-sockets 8.5%
Table 4. Execution time increase due to
requiring an interrupt for every message
arrival. All data is for 16 nodes except for
Barnes-NX (8 nodes)are necessary on each packet rather than each message,overheads will be even higher in some cases.

4.5 Other Design IssuesWe saw above that some of the areas where we focusedour effort were fruitful, leading to very signi�cant bene�tsin practice. On the other hand, there were some issues onwhich we spent considerable time that ended up having aminimal impact on performance. This subsection considerssome of these issues.4.5.1 Automatic Update CombiningAs discussed in the previous section, the two mainadvantages of automatic update are low latency and implicitscatter/gather of data. In order to achieve the lowest latency,the basic automatic update mechanism creates a packet forevery individual store, and launches it immediately. Asa result, large automatic update transfers suffer a loss ofbandwidth because each packet generates an individual bustransaction at the receiver.However, when automatic update is used to send a largeamount of data, the focus is not necessarily on achievingthe lowest possible latency. In this case, the networkinterface hardware can automatically combine a sequenceof consecutive stores into a single packet to improve thebandwidth. Although large packets have a higher latency,they make ef�cient use of data streaming on the backplaneand burst DMA at the receiver.Automatic update combining is speci�ed on a per-pagebasis in the outgoing page table when a binding is created.The basic combining mechanism accumulates consecutivestores into a single packet until either a non-consecutive

store is performed, a page boundary is crossed, a speci�edsub-page boundary is crossed, or a timer expires.We ran Radix-VMMC and several AURC SVMapplications using automatic update with and withoutcombining. In all cases, enabling combining had less thana 1% effect on overall performance. This is because theseapplications write sparsely, so very little combining takesplace. Additionally, the lazy character of the SVM protocolmakes combining even less effective.In the absence of deliberate update, however, combiningis very helpful for applications that would otherwise usedeliberate update. These applications send large messagesto contiguous addresses�an ideal situation for combining.For example, DFS-sockets runs about a factor of two slowerwhen forced to use automatic update without combining.4.5.2 Outgoing FIFO CapacityThe Outgoing FIFO (Figure 2) was included in the designof the network interface in order to provide �ow control forautomatic update. The Xpress memory bus connector thatthe network interface uses does not allow a memory writeto be stalled, so some sort of buffer for automatic updatepackets is required. Furthermore, we need somemechanismto keep this buffer from over�owing.To prevent over�ow, the network interface generates aninterrupt when the amount of data in the FIFO exceedsa programmable threshold. The system software is thenresponsible for de-scheduling all processes that performautomatic update until the FIFO drains suf�ciently.The lower bound on Outgoing FIFO capacity is thememory write bandwidth multiplied by the time it takes theCPU to recognize the threshold interrupt. On our system,the lower bound is roughly 1K bytes, so a large FIFO is notrequired.However, the software �ow control is costly, so it isdesirable to choose a FIFO capacity that minimizes itsoccurrence. The FIFO drains faster than it �lls, so the onlyway it can over�ow is if it is unable to drain. There aretwo ways this can happen. First, incoming packets havetop priority for access to the NIC, so the FIFO cannot drainwhen an incoming packet is arriving. Second, the FIFOmaybe unable to drain if there is network contention.The �rst scenario is unlikely to occur on theSHRIMP system because the memory bus cannot sharecycles between the CPU and the network interface.Therefore, incoming packets effectively block the CPUfrom performing automatic update writes to memory. Thesecond scenario is likely to occur under conditions of highcommunication volume, especially when there is a many-to-one communication pattern. In this case, there is atradeoff between FIFO capacity and threshold interruptfrequency, and that tradeoff is application dependent.



When designing the SHRIMP network interface, wedecided to use 4K-byte-deep, 1-byte-wide FIFO chipsbecause they represented the knee in the price/capacitycurve at that time. The Outgoing FIFO is actually 8 byteswide in order to keep up with the memory bus burstbandwidth, so its total capacity is 32K bytes.We ran our applications with the FIFO size set arti�ciallyto 1K bytes, and there was no detectable difference inperformance compared to the normal-sized FIFO. Thisoccurred because our applications have relatively lowcommunication requirements.4.5.3 Deliberate Update QueueingThe SHRIMP deliberate update mechanism operates byperforming user-level DMA [10] transfers from mainmemory to the network interface. Transfers of up to apage (4K bytes) are speci�ed with two user-level memoryreferences to proxy memory, which is mapped to thenetwork interface. Protection of local and remote memoryis provided through proxy memory mappings.A signi�cant drawback of this protection scheme is thatdeliberate update transfers cannot cross local or remotepage boundaries, since protection is enforced by the abilityto reference proxy pages. Therefore, large data transfersmust be performed as multiple, individual deliberate updatetransfers.This drawback can be overcome by adding a queue onthe network interface to store deliberate update transferrequests. This adds some complexity to the design, since itrequires an associative memory to allow the host operatingsystem to check whether a particular page is involved ina transfer request. To avoid incorrect data transfers, theoperating system must avoid replacing any page that isinvolved in a pending transfer request.To evaluate queueing, we implemented a 2-deep queueon the SHRIMP network interface. We tested several SVMapplications because we expected them to bene�t the most(due to their small transfer sizes). To expose the effectof queueing we used asynchronous sends, i.e. the sendoperation returned without waiting until the data was sentto the network.The impact of queueing on performance was verysmall�within 1% of the total execution time. We suspectthis is because the memory bus in our PCs cannot be cycle-shared between the CPU and I/O. As a result, even ifthe CPU wants to initiate multiple message transfers withqueueing, it must compete for the memory bus with theongoing DMA.

5 Related WorkSpanning the areas of communications research, parallelsystem design, and parallel software, the research in thispaper relates to several large bodies of prior work. Here wediscuss a selection of closely-related papers.A key contribution of this paper is an empirical designretrospective based on a working 16-node SHRIMP system.In that sense, this paper can be categorized along withprevious design evaluations of research machines suchas the DASH multiprocessor [33], the Illinois Cedarmachine [32], the MIT Alewife multiprocessor [1], andthe J-machine multicomputer [38]. SHRIMP has leveragedcommodity components to a much greater degree thanJ-machine, Cedar, Alewife or even DASH, thus this paperfocuses primarily on evaluating its custom hardware supportfor communication.In terms of networking fabric, the Intel Paragonbackplane used in SHRIMP is admittedly not �commodity�hardware, but to �rst-order it resembles (both in designand performance) current commodity networks such asTandem's ServerNet [41] and Myrinet [13].At the network interface, SHRIMP uses its automaticand deliberate update mechanisms to support particularparallel programming models and constructs. This workrelates to several prior efforts. Spector [40] proposed aremotememory referencemodel to perform communicationover a local area network and the implementation isprogrammed in a processor's microcode. This model hasbeen revived by Thekkath et al. [42] using fast traps.Druschel et al. [19] proposed the concept of applicationdevice channels which provide protected user-level accessto a network interface. U-Net [5] uses a similar abstractionto support high-level protocols such as TCP/IP.The automatic update mechanism in SHRIMP is derivedfrom the Pipelined RAM network interface [36], but isable to perform virtual memory-mapped communicationand map DRAM memory instead of dedicated memory onthe network interface board. SHRIMP's automatic update isalso similar to MemoryChannel (developed independentlyand concurrently at Digital), in which memory updatesare automatically re�ected to other nodes [24]. Page-based automatic-update approaches were also used inMemnet [18], Merlin [37], SESAME [45], Plus [8] andGalactica Net [30]. These prior systems did not, however,provide for both automatic and deliberate update.This paper also quanti�es the relationshipbetween particular low-level hardware primitives and theperformance of the higher-level software they support. Aswith active messages [22], SHRIMP's mechanisms providelow-level support for fast communication and for effectiveoverlap of communication with computation. The �sender-based� communication in Hamlyn also supports user-level



message passing, but places more burden on applicationprograms by requiring them to construct their own messageheaders [15].Some previous machines have worked to streamline thehardware-software interface by mapping network interfaceFIFOs into processor registers [14, 25, 38]. Suchapproaches go against SHRIMP's goal of using commodityCPUs. A slightly less integrated approach�mappingFIFOs to memory rather than registers�was employed inthe CM-5 [43]. CM-5 implementation restrictions limitedthe degree of multiprogramming, however, and applicationswere still required to construct their own message headers.Finally, at the applications level, our softwareevaluations draw on prior work on several programmingmodels. The shared virtual memory used here relates toa signi�cant body of prior SVM research [16, 31, 34, 47].We also leverage off of the NX model for message passingprograms [39].6 ConclusionsWe constructed a 16-node prototype SHRIMP systemand experimented with applications using various high-level APIs. We found that the SHRIMP multicomputerperforms quite well for applications that do not performvery well with traditional network interfaces.Using applications built on four different communicationAPIs, we evaluated several of our design choices. Welearned several lessons, many of which we would not havelearned without building the real system.� The virtual memory-mapped communication modelallows applications to avoid taking receive-sideinterrupts and to avoid using explicit receive calls.This improves application performance signi�cantly.� Building custom hardware was dif�cult, but it allowedus to achieve signi�cantly better performance than waspossible with off-the-shelf hardware, and it allowed usto evaluate issues like automatic update vs. deliberateupdate, which would not have been possible otherwise.� The automatic update mechanism is quite useful forapplications using the native VMMC API and forshared virtual memory applications, but it does nothelp message-passing applications, which performbetter when using a high-performance deliberateupdate communication mechanism.� The user-level DMA mechanism can signi�cantlyreduce the overhead of sending a message, andleads to signi�cantly better performance than evenan aggressive kernel-based implementation. On theother hand, many of our ideas about how to design

an aggressive kernel-based implementation came fromour study of SHRIMP.� The automatic update combining mechanism cansigni�cantly reduce the network traf�c by combiningconsecutive updates into a single packet. Combiningis most useful when the automatic update mechanismis used to replace the deliberate update mechanismfor bulk data transfers. But combining provides littleperformance bene�t for SVM applications and ourRadix-sort application which uses the native VMMCAPI. This result surprised us.� We see no application performance improvementswith a hardware mechanism to queue multipleasynchronous deliberate update requests because thememory bus in our PCs cannot be cycle-sharedbetween the CPU and I/O.� We learned that a small outgoing FIFO is adequatefor our network interface due to both the existenceof FIFOs in the network interface chip and theconstrained bus arbitration strategy of the PC nodes inour system.Although some of these results were what we expected,others took us by surprise. Building and using the systemgave us a much better understanding of the design tradeoffsin cluster architectures.We look forward to greater insight as we continue to usethe SHRIMP system.7 AcknowledgementsThis project is sponsored in part by ARPA under grantN00014-95-1-1144, by NSF under grant MIP-9420653,and by Intel Corporation. Edward Felten is supported byan NSF National Young Investigator Award and a SloanFellowship. Margaret Martonosi is supported in part by anNSF Career award.We would like to thank Paul Close, George Cox andJustin Rattner for helping us access the routing networktechnology used in the Intel Paragon multicomputer,David Dunning and Roger Traylor for patiently helpingus understand the details of the Intel iMRC and NIC,and Konrad Lai and Wen-Hann Wang for helping usunderstand the Pentium memory subsystem. MalenaMesarina designed an experimental version of the networkinterface, and David Oppenheimer contributed with systemprogramming and testing. We also would like to thankDavid DeWitt, Richard Lipton, and Jeffrey Naughton fortheir help to start the research project, and Michael Careyfor his contribution of the acronym SHRIMP.
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