
Legion - A View From 50,000 Feet 

Andrew S .  Grimshaw, Wm. A. Wulf 
and the whole Legion team 

Department of Computer Science, University of Virginia 
{ grimshawlwulf} @cs.virginia.edu 

Abstract’ 

The coming of giga-bit networks makes possible the 
realization of a single nationwide virtual computer com- 
prised of a variety of geographically distributed high- 
pe6ormance machines and workstations. To realize the 
potential that the physical infrastructure provides, soft- 
ware must be developed that is easy to use, supports 
large degrees of parallelism in applications code, and 
manages the complexity of the underlying physical sys- 
tem for the usel: Legion is a metasystem project at the 
University of Virginia designed to provide users with a 
transparent intelface to the available resources, both at 
the programming interface level as well as at the user 
level. Legion addresses issues such as parallelism, 
fault-tolerance, security, autonomy, heterogeneity, 
resource management, and access transparency in a 
multi-language environment. In this paper we present a 
high-level overview of Legion, its vision, objectives, a 
brief sketch of how some of those objectives will be met, 
and the current status of the project.2 

1 The Opportunity 

The dramatic increase in ubiquitously available net- 
work bandwidth will qualitatively change how the 
world computes, communicates, and collaborates. The 
rapid expansion of the world-wide web, and the changes 
that it has wrought are just the beginning. As high band- 
width connections become available they “shrink” dis- 
tance and change our modes of computation, storage 
and interaction. Inevitably, users will operate in a wide- 
area environment that transparently consists of worksta- 
tions, personal computers, graphics rendering engines, 
supercomputers, and non-traditional devices: e.g., TVs, 

1. This work partially supported by DOE grant DE-FGOZ 
96ER25290, DOE contract Sandia #LD-9391, and NSF 
grant ASC-9201822. 

2. Current members of the Legion team include professors 
James C. French, Paul E Reynolds, Jr., and Alfred C. 
Weaver, research scientist Mark Hyett, and graduate stu- 
dents Adam Ferrari, John Karpovich, Darrell Kienzle, Anh 
Nguyen-Tuong, and Chenxi Wang. 

1082-8907/96 $5.00 0 1996 IEEE 
Proceedings of HPDC-5 ’96 

toasters, etc. The relative physical location of the users 
and their resources will become increasingly irrelevant. 

The realization of such an environment, called a 
“metasystem”, is not without problems. Today’s experi- 
mental high speed networks such as the vBWS and the I- 
way preview both the promise and pitfalls of such tech- 
nology. There are many difficulties: few approaches 
scale to millions of machines, the tools for writing appli- 
cations are primitive, faults abound and mechanisms to 
handle them are not available, issues of security are 
treated in a patchwork manner, and site autonomy - 
controlling ones own resources while still playing in the 
global infrastructure - is often not addressed. 

As usual, the fundamental difficulty is software - 
specifically, we believe the problem is an inadequate 
conceptual model. In the face of the onrush of hardware, 
the community has tried to stretch an existing paradigm, 
interacting autonomous hosts, into a regime for which it 
was not designed. The result is a collection of partial 
solutions - some good in isolation, but lacking coher- 
ence and scalability - that make the development of 
even a single wide-area application demanding at best. 

Thus, the challenge to the computer science commu- 
nity is to provide a solid, integrated, foundation on 
which to build applications that unleash the potential of 
so many diverse resources. The foundation must hide 
the underlying physical infrastructure from users and 
from the vast majority of programmers, support access, 
location, and fault transparency, enable inter-operability 
of components, support construction of larger integrated 
components using existing components, provide a 
secure environment for both resource owners and users, 
and it must scale to millions of autonomous hosts. 

The technology to meet this challenge largely exists: 
(1) parallel compilers that support execution on distrib- 
uted memory machines, (2) advances in distributed sys- 
tems software 1 hat manage complex distributed 
environments, (3) the widespread acceptance of the 
object-oriented paradigm because of its encapsulation 
and reuse properties, and (4) advances in cryptography 
and cryptographic protocols. 

Legion is a mexasystems software project at the Uni- 
versity of Virginia. Begun in the Fall of 1993, our goal is 
a highly usable, efficient and scalable system based on 

89 

mailto:cs.virginia.edu


solid principles. We have been guided by our own work 
in object-oriented parallel processing, distributed com- 
puting, and security, as well as by decades of research in 
distributed computing systems. When complete, Legion 
will provide a single, coherent virtual machine that 
addresses each of the issues raised earlier: scalability, 
programming ease, fault tolerance, security, site auton- 
omy, etc. In short, we believe Legion is a conceptual 
base for the sort of metasystem we seek. 

Our vision of Legion is of a system consisting of 
millions of hosts and trillions of objects co-existing in a 
loose confederation tied together with high-speed links. 
The user will have the illusion of a very powerful com- 
puter on her desk. She will sit at her terminal and manip- 
ulate objects. We use terminal in its most liberal sense. 
Terminal could mean anything, a workstation, an 
immersive environment such as a head-mounted display 
or CAVETM, or a portable Personal Digital Assistant. 
The objects she manipulates will represent data 
resources such as digital libraries or video streams, 
applications such as teleconferencing or physical simu- 
lations, and physical devices such as cameras, tele- 
scopes, or linear accelerators. Naturally the objects 
being manipulated may be shared with other users - 
allowing the construction of shared virtual workspaces. 

It is Legion’s responsibility to support the abstrac- 
tion presented to the user, to transparently schedule 
application components on processors, manage data 
migration, caching, transfer, and coercion, detect and 
manage faults, and ensure that the user’s data and physi- 
cal resources are adequately protected. 

In this paper we present a high-level overview of 
Legion, its vision, objectives, brief sketches of how 
some of those objectives will be met, and the current 
status of the project. Unfortunately, because of the scope 
of the project we cannot hope to present the details 
needed to satisfy the serious reader in just twelve pages. 
There are several sources for more information. First, 
there is a paper in these proceedings by Mike Lewis on 
the core object model. That paper describes the object 
model in much more detail. There are also a series of 
technical reports available on-line off of the Legion 
home page, http://www.cs.virginia.edu/-legion. This 
includes technical reports on experiences with the proto- 
type system [lo], the security model [24], resource man- 
agement [13], persistence, and a large number of slides 
that have been used for various presentations. The cur- 
rent implementation as well as all design documents and 
interfaces are also available at the web-site. 

We begin with a discussion of project objectives. We 
next present the object foundation and the philosophical 
themes that drive all of our design decisions. Next we 
take a look at how we intend to achieve five of our 
objectives. We finish with discussions of the project sta- 
tus and what the future holds. 

2 Project Objectives 

To realize the Legion vision is not a trivial matter. 
We have distilled ten design objectives that are central to 
the success of the project: site autonomy; an extensible 
core; scalability; an easy-to-use, seamless computa- 
tional environment; high performance via parallelism; a 
single persistent object space; security for both users 
and resource providers; resource management and 
exploitation of resource heterogeneity; multi-language 
support and inter-operability ; and fault tolerance. 
0 Site autonomy: Legion will not be a monolithic sys- 

tem. It will be composed of resources owned and 
controlled by an array of organizations. There is sim- 
ply no way that thousands of organizations and mil- 
lions of users will subject themselves to the dictates 
of a “big brother” centralized control mechanism or 
subject their resources and data to external manage- 
ment. Organizations, quite properly, will insist on 
having control over their own resources, e.g., speci- 
fying how much resource can be used, when it can 
be used, and who can and cannot use the resource. 
Another aspect of site autonomy is autonomy of 
implementation. Sites must be able to choose which 
implementations of Legion components to use, 
either because they “trust” one implementation over 
another, for performance, or for whatever reason 
they may have to choose one implementation over 
another. 

90 

http://www.cs.virginia.edu/-legion


Extensible core: We cannot know the future or all of 
the many and varied needs of users. Therefore, 
mechanism and policy must be realized via extensi- 
ble, replaceable, components. This will permit 
Legion to evolve over time and will allow users to 
construct their own mechanisms and policies to meet 
specific needs. 
Further, consistent with our site autonomy objective, 
the core system components themselves must be 
extensible and replaceable. This will allow third 
party (or site local) implementations which provide 
value added services to be developed and used. 
Scalable architecture: Because Legion will consist 
of millions of hosts, it must have a scalable software 
architecture; there must be no centralized structures 
or servers - the system must be totally distributed. 
Easy-to-use, seamless computational environment: 
Legion must mask the complexity of the hardware 
environment and of communication and synchroni- 
zation of parallel processing - for example, 
machine boundaries should be invisible to users. As 
much as possible, compilers, acting in concert with 
run-time facilities, must manage the environment for 
the user. If Legion is not transparent and easy to use 
then it will provide little benefit over the status quo 
and will not be used. 
Tempering our transparency objective is the knowl- 
edge that there are “power users” with demanding 
applications that will require, and demand, the capa- 
bility to make low-level decisions and to interface 
with low-level system mechanism. Therefore we 
must accommodate both end users that just want to 
get their work done and not worry about the details, 
and power users who are compelled to tune their 
applications. 
High pedormance via parallelism: Legion must sup- 
port easy-to-use parallel processing with large 
degrees of parallelism. This includes task and data 
parallelism and their arbitrary combinations. 
We do not mean though that all applications will be 
parallel - Legion will necessarily best support rela- 
tively coarse-grain applications. Our high-perfor- 
mance via parallelism objective should not be mis- 
interpreted to mean that we think a single huge 
application will ever use all of the computers in the 
country. Most parallel applications will use only a 
small subset of the total resource pool at any time. 
Single, persistent object space: One of the most sig- 
nificant obstacles to wide area paraIleI processing is 
the lack of a single name space for data and resource 
access. The existing multitude of disjoint name 
spaces makes writing applications that span sites 

extremely difficult. Any Legion object should be 
able to transparently access (subject to security con- 
straints) any other Legion object without regard to 
location or replication. 
Security for  users and resource owners: We believe 
very firmly that security must be built firmly into the 
core from the very beginning. To try to patch secu- 
rity on as an afterthought, as is being attempted 
today in many contexts, is fundamentally flawed. We 
also believe that there is no one security policy that 
is perfect for all users. 
Because we cannot replace existing host operating 
systems, we cannot significantly strengthen existing 
operating system protection and security mecha- 
nisms. However, we must ensure that existing mech- 
anisms are no1 weakened by Legion. Therefore, we 
must provide mechanism for users to seIect policies 
that fit their needs; Legion should not define the 
security policy or require a “trusted” Legion. 
Management tznd exploitation of resource heteroge- 
neity: Clearly, Legion must support inter-operability 
between heterogeneous hardware and software com- 
ponents. In addition, some architectures are better 
than others at executing particular applications, e.g., 
vecaorizable codes. These affinities, and the costs of 
exploiting them, must be factored into scheduling 
decisions and ]policies. 
Multiple language support and inter-operability: 
Legion applications will be written in a variety of 
languages. It must be possible to integrate heteroge- 
neous source language application components in 
much the same manner that heterogeneous architec- 
tures are integrated. Inter-operability also means that 
we must be able to support legacy codes as well as 
work with emerging standards such as CORBA [2] 
and DCE [ 161. 
Fault-tolerance: In a system as large as Legion, it is 
certain that at any given instant, several hosts, com- 
munication links, and disks will have failed. Thus, 
dealing with failure and dynamic re-configuration is 
a necessity - both for Legion itself, and for applica- 
tions. 

2.1 Constraints; 
In addition to these goals, several constraints restrict our 
design--for example: 

We cannot replace host operating systewns. Organiza- 
tions will not permit their machines to be used if 
their operating systems must be replaced. Operating 
system replace.ment would require them to rewrite 
many of their applications, retrain many of their 
users, and posisibly make them incompatible with 

91 



other systems in their organization. Our experience 
with Mentat [9] indicates that it is sufficient to layer 
a system on top of an existing host operating system. 
We cannot leg islate changes to the interconnection 
network. We must initially assume that the network 
resources, and the protocols in use, are a given. 
Much as we must accommodate operating system 
heterogeneity, we must live with the available net- 
work resources. However, we can layer better proto- 
cols over existing ones, and we can state that 
performance for a particular application on a particu- 
lar network will be poor unless the protocol is 
changed. 
We cannot require that Legion run as “root” (or the 
equivalent). Indeed, quite the contrary - to protect 
themselves, most Legion users will want it to run 
with the least possible privileges. Of course we do 
not prohibit Legion implementations that require 
root privilege - it may provide some additional 
benefit and be acceptable to some sites. 

Legion’s Object Foundation 

The common framework that enables a coherent 
solution to these problems is object-orientation. In 
Legion all components of interest to the system are 
objects, and all objects are instances of defined classes. 
Thus users, data, applications and even class definitions 
are objects. Use of an object-oriented foundation, 
including the paradigm’s encapsulation and inheritance 
properties, will make accessible a variety of the benefits 
often associated with the paradigm, including, software 
reuse, fault containment, and reduction in complexity. 
The need for the paradigm is particularly acute in a sys- 
tem as large and complex as Legion. 

Objects, written in either an object-oriented lan- 
guage or other languages such as HPF Fortran, will 
encapsulate their implementation, data structures, and 
parallelism, and will interact with other objects via well- 
defined interfaces. In addition they may also have asso- 
ciated inherited timing, fault, persistence, priority, and 
protection characteristics. Naturally these may be over- 
loaded to provide different functionality on a class by 
class basis. Similarly, a class may have multiple imple- 
mentations with the same interface. 

3.1 System philosophy 
Complementing our use of the object-oriented para- 

digm is one of our driving philosophical themes-we 
cannot design a system that will satisfy every user’s 
needs. We must design Legion to allow users and class 
implementors the greatest flexibility in the semantics of 
their applications: We must, therefore, resist the tempta- 
tion to provide “the solution” to a wide range of system 

functions. Users should be able, whenever possible, to 
select both the kind and the level of functionality, and 
make their own trade-offs between function and cost. 

Neither the “kind” nor the “level” of functionality 
are linearly ordered, but a simplistic model is that of a 
multi-dimensional space. The needs of users will dictate 
where they need to be and/or can afford to be in this 
space; we, the designers of the supporting conceptual 
system have no way of knowing what those needs are, or 
what they will evolve to be in the future. Indeed, if we 
were to dictate a system-wide “solution” to almost any 
of the issues raised in our list of objectives we would 
preclude large classes of potential users and uses. 

t 

kind of functionality 
Consider security with respect to both kind and level 

of functionality. Some users are mostly concerned with 
privacy, while others are more concerned with the integ- 
rity of their data - both banks and hospitals are in the 
later category for example. Some users are content with 
password authentication, while others might feel the 
need for stronger user identification - signature analy- 
sis, fingerprint verification, or whatever. Both of these 
are examples of differences in the kind of security func- 
tionality. The size of cryptographic key, on the other 
hand, is an issue of the degree, or level, of security. 
Without changing the basic nature of the security pro- 
vided, users can get a greater degree of security by pay- 
ing the higher cost of using a longer key or a stronger 
algorithm. 

In the Legion approach, rather than providing a fixed 
security mechanism, with the result that no one is com- 
pletely satisfied, users may choose their own trade-offs 
by implementing their own policies or by using existing 
policies via inheritance [24]. Some users may require a 
policy that requires every method invocation to have all 
of its parameters encrypted, that the caller be separately 
authenticated, and that the user on whose behalf the call 
is being made be fully authenticated as well. Such a pol- 
icy will be expensive (CPU, bandwidth, time). Alterna- 
tively, an application that requires low overhead cannot 
afford such a policy and should not be forced to use it. 
Such an application could instead choose a light-weight 
policy that simply checks if the caller is its parent (cre- 

92 



ator) without any authentication or encryption, or per- 
haps does not check anything at all. 

Next consider consistency semantics in a distributed 
file system. To achieve good performance it is often 
desirable to make copies of all or portions of a file. If 
updates to the file are permitted the different copies may 
begin to diverge. There are many ways to attack this 
problem, don’t replicate writable files, use a cache inval- 
idate protocol, use lazy updates to a master copy, and so 
on. Each has an associated cost and semantics. Some 
applications don’t require all copies to be the same, oth- 
ers require a strict “reads deliver the last value written’’ 
semantics, others know that the file is read only so that 
consistency protocols are a waste of time, while others 
may need different semantics for the file in different 
regions of the application. Independent of the file 
semantics, some users may need automatic backup and 
archiving frequently, while others may not. The point is 
that the system should not make such decisions for 
users, they should select the kind and level of service 
they require. 

The philosophy has been extended into the system 
itself. The Legion object model specifies the composi- 
tion and functionality of Legion’s core objects-those 
objects that cooperate to create, locate, manage, and 
remove objects from the Legion system. Legion speci- 
fies the functionality, not the implementation, of the sys- 
tem’s core objects. Therefore, the core will consist of 
extensible, replaceable components. The Legion project 
will provide implementations of the objects that com- 
prise the core, but users will not be obligated to use 
them. Instead, Legion users will be encouraged to select 
or construct objects that implement mechanisms and 
policies that meet the users’ own specific requirements. 

The object model provides a natural way to achieve 
this kind of flexibility. Files, for example, are not part of 
Legion itself. Anyone may define a new class whose 
general semantics we would recognize as those of a file, 
but whose specifics match the particular semantics 
match that user’s needs. We (the Legion team) need to 
provide an initial collection of file classes that reflect the 
most common needs - but we do not have to anticipate 
all possible future requirements. 

4 Achieving Our Objectives 

Below we briefly sketch how we intend to achieve 
five of our ten objectives. See our home page and techni- 
cal reports for more information, particularly on secu- 
rity. 

4.1 Multiple languages and inter-operability 
While we are committed to the object-oriented para- 

digm we recognize that Legion will need to support 

applications written in a variety of languages in order to 
support existing legacy code, permit organizations to 
use familiar languages (C, Fortran), and support parallel 
processing languages. We intend to provide multilan- 
guage support, and inter-operability between user 
objects written in different languages in three ways, by 
generating object “wrappers” for codes written in lan- 
guages such as Fortran, ADA, and C; by exporting the 
Legion run-time system interface and retargeting exist- 
ing coimpilers and by a combination of the two. 

Figure 1 Object. wrappers applied to (a) sequential 
codes and (b) parallel codes. 

Object wrappers: Legacy codes and other language 
codes can be incorporated into Legion applications by 
encapsulating them in an object wrapper as shown in 
Figure 1-a. Object wrappers can be either hand gener- 
ated using the Mentat programming language or by 
using an IDL and an interface compiler. In the IDL case 
the programmer provides a “class definition” of the 
object that lists the functions, the type and number of 
parameters, whether the object has persistent state, etc., 
and a compiler generates the interface. This is a com- 
mon technique arid is used in the OMG ORB [2]. We 
intend lo support (CORBA and possibly OSF DCE [ 161. 
Additional IDL‘s can be readily supported because class 
objects have the capability to export multiple interfaces 
or views of a class. 

Exposing the Legion run-time system: Our second 
method of supporting other languages is to export the 
Legion interface to third party compiler writers and tool 
builders, allowing them to readily port their products. 

93 



This is particularly important for parallel systems (see 
section 4.2). 

Finally, our thrd method is to combine object wrap- 
pers and retargeting compilers for other parallel lan- 
guages, permitting the use of parallel applications 
developed under other systems as components of meta- 
applications. Thus, the components would be distributed 
across Legion, as opposed to across a single MPP. 

4.2 High performance via parallelism 
High performance for applications will be achieved 

in Legion in one of two ways, resource selection (sched- 
uling) of jobs using resource availability information 
and resource affinity information, and via parallel com- 
putation. The former method exploits resources avail- 
able throughout the system and is an extension of 
existing job-based schedulers in wide-spread use such as 
Condor [3], DQS [7], and LoadLeveler [12]. 

The second mechanism, parallel execution of appli- 
cation components, is one of the major thrust areas for 
the project. Legion will support task and data parallel- 
ism, as well as combined task and data parallel applica- 
tions, that are written in a variety of languages. 

An application will not become a parallel applica- 
tion simply by executing in Legion, it must first be par- 
allelized. We intend to support parallel execution in 
Legion using four mechanisms, wrapping existing paral- 
lel codes in Legion wrappers (see 4. l), supporting paral- 
lel method invocation and object management, exposing 
the Legion run-time interface to parallel language com- 
pilers and toolkit builders, and by supporting popular 
message passing API's such as PVM [22] and MPI [7]. 

Naturally not all applications will benefit from paral- 
lel execution under Legion. As is true in any parallel 
processing system there will be applications that either 
do not parallelize well, or are too fine-grain for the envi- 
ronment. Applications that will perform well under 
Legion will be latency tolerant and relatively large- 
grain. 

Object wrappers for parallel components: In addi- 
tion to encapsulating sequential codes, object wrappers 
can be used to encapsulate parallel programs as compo- 
nents, such as a C* program for the TMC CM-2 or CM- 
5. This permits the use of optimized parallel applica- 
tions as components in larger meta-applications, such as 
multi-disciplinary optimization (MDO) problems (Fig- 
ure 1-b). 

Parallel method invocation: We will support the 
Mentat programming language (MPL) with Legion from 
the very beginning. MPL is an extension of C++ 
designed to support the parallel execution of applica- 
tions. Several real applications have been developed 
using MPL. These applications will be used to test the 
efficacy of our approach from a very early stage. 

Exposing the Legion run-time: Legion will be an 
open system in order to encourage third party software 
development. We will expose the Legion run-time to 
compiler writers and toolkit builders to permit third 
party providers (e.g., HPF Fortran, DataParallel C, C*, 
pC++, ADA) to port their compilers to Legion. Already 
two toolkits, POOMA E201 and POET [17] have been 
ported to Legion. 

Projects such as the above typically consist of a 
compiler and a run-time environment. The RTE is often 
built upon a primitive set of operations, e.g., load, send, 
receive, broadcast, global sum, etc.,. These operations 
are either provided by the host operating system, or by a 
portable communication fabric such as PVM or MPI. 

Retaweted Comuiler- " 

Figure 2 Exposing the Legion run-time system to 
other parallelizing compilers. 

We intend to support these other parallel processing 
systems by providing the same underlying communica- 
tion fabric that is typically found. The compiler writers 
may either retarget their compilers to directly use our 
communication facilities, or to use a compatibility 
library. 

Message passing APZ A large number of parallel 
applications have been written using low-level message 
passing. While we do not believe that this is the right 
paradigm for the construction of large software systems 
we recognize that we must support these applications, at 
least in transition. Therefore we will provide several 
message passing compatibility libraries to programmers. 
We already have PVM support and are working on MPI. 

4.3 Single, persistent object space 
File and data access is one of the most crucial issues 

for Legion, particularly with respect to providing a 
seamless environment. Today distributed file systems 
such as NFS, Andrew, and Locus are commonplace in 
local area networks. The unified level of service and the 
naming scheme that they present to their users make 
them one of the most successful components of contem- 

94 



porary distributed systems. In Legion we intend to pro- 
vide the same level of naming and access transparency 
provided in local area networks. This cannot be accom- 
plished though either by directly extending current sys- 
tems onto a national scale, or by imposing a single file 
system for both local and Legion access. Instead we pro- 
pose to adopt a federated file system approach in much 
the same manner that federated database systems are 
constructed. The Legion file system will provide nam- 
ing, access, location, fault, and replication transparency. 
It will permit users (or library writers) to extend the 
basic services provided by the file system in a clean and 
consistent fashion via class derivation and file-object 
instantiation and manipulation. The extensions that we 
intend to design and implement ourselves include appli- 
cation specific file objects designed to improve applica- 
tion performance by reducing observed U 0  latency. 

Although we will continue to refer to the Legion 
“file system”, we intend to create a persistent object 
space as has been proposed for distributed object man- 
agement systems [18], [19]. There are several other 
efforts in the distributed object literature with which we 
share many goals, for example SHORE [4] and CORBA 
[ 2 ] .  However, Legion is distinguish from these efforts by 
the emphasis we place on performance -- Legion 
expects to provide a high performance computing envi- 
ronment and this goal is paramount. To this end we will 
focus more on file system support rather than database 
support. 

The model that we will employ is simple and driven 
by the observation that the traditional distinction 
between files and other objects is somewhat of an anach- 
ronism. Files really are objects - they happen to live on 
disk, and as a consequence are slower to access and per- 
sist when the computer is turned off. We define a file- 
object as a typed object with an interface. The interface 
defines the operations that can be performed on it such 
as the traditional open, seek, and read, as well as other 
operations defined on a class by class basis such as 
read-vector, select-sub-space, etc.The interface can 
also define object properties such as its persistence, 
fault, synchronization, and performance characteristics. 
Thus, not all files need be the same, eliminating the need 
to, for example, provide Unix synchronization seman- 
tics, for all files even when many applications simply do 
not require those semantics. Instead, the right semantics 

access patterns and locality to tailor the caching and 
prefetch strategies to the application. ( 2 )  Asynchronous 
UO. ELFS permits overlapping U0 operations, includ- 
ing prefetching, with the applications’s computation. (3)  
Multiple outstanding U0 requests. ELFS allows the 
application to request data long before it is actually 
needed. The application can then do some computation 
while I/O is being processed. By the time the data is 
needed, it can be had with almost zero latency. (4) Data 
format heterogeneity. ELFS classes may be constructed 
so as to hide data format heterogeneity, automatically 
translating data as it is read or written. 

4.4 Management and exploitation of resource 
heterogeneity 

A Legion system will encompass a potentially huge 
number of heterogeneous physical resources (e.g. pro- 
cessors, memory, networks, permanent storage, etc.) 
each with different capabilities and owners. Legion 
users will accomplish their tasks by invoking objects 
which will need to consume some portion of these phys- 
ical resources, The question is, how do Legion objects 
get assigned to physical resources? 

We believe that in order for a system lilce Legion to 
work, the rights of both resource providers and resource 
consumers must he respected. Our philosophy is that 
resource allocation should be by mutual consent and we 
therefore support a negotiation process between con- 
sumers and providers. Legion itself does not make 
resource allocation decisions, but rather it provides the 
basic mechanisms needed to 1) make informed mapping 
decisions between resources and objects, and 2)  carry 
out these mapping decisions. 

Figure 4 shows our model of the placement process. 

Figure 3 Object Placement Process Model along many dimensions can be selected on a file by file 
basis, and potentially changed at run-time. 

95 



already exists. By allowing users to control both the 
objective function and the search technique for the 
placement process, Legion can support a wide range of 
users and application types, including new ones not yet 
even imagined. 

However, since users can create their own CMs, 
these CMs can possibly generate decisions that violate 
either host or object constraints. To ensure that object 
constraints are met, object activation is managed by the 
object’s class object which can perform any checks it 
deems important and reject the placement decision if 
necessary. If the class object approves of the mapping 
decision, it contacts the target host object to request that 
the object be placed on the specified host. The host 
object is responsible for enforcing the policies of the 
resource provider and may accordingly also reject the 
request. In order to avoid generating a rash of unaccept- 
able mappings, the LegionHost and Legionclass base 
classes will include member functions to allow retrieval 
of policy information and to allow CMs to probe to see 
whether particular mappings are acceptable. For more 
information about our plans for object placement in 
Legion, see [13]. 

4.5 Fault-Eolerance 
Three primary observations guide our approach to 

fault-tolerance in Legion: (1) in a large system, hard- 
ware and software failures affecting hosts, networks and 
devices will be routine occurrences, (2) fault-tolerance 
is not a static concept; each application may have differ- 
ent requirements, some may need to tolerate host fail- 
ures, others network partitioning, and yet others will 
require no fault-tolerance at all, and (3), writing fault- 
tolerant applications is difficult and error prone. 

Thus, Legion will not mandate any fault-tolerance 
policies. Instead, applications will be responsible for 
selecting the level of fault-tolerance that they need and 
are willing to pay for. This philosophy also applies to 
Legion itself: core Legion services may provide differ- 
ent fault-tolerance guarantees. 

Legion will facilitate the writing of fault-tolerant 
applications by encapsulating fault-tolerance protocols 
within generic base classes. Users will then be able to 
select from a wide variety of protocols simply by using 
inheritance. The key point is that users will concern 
themselves with writing their applications and will not 
need to worry about fault-tolerance. 

To realize this goal, we are investigating methods to 
allow objects to override their default method invocation 
behavior. By inheriting from a fault-tolerance class, the 
user is essentially allowing that class to define the 

default invocation mechanism and redirect the flow of 
control. For example, a replication base class can inter- 
cept method invocations to object X, multicast it to X’s 
replicates, vote on the reply, and return the result to X’s 
caller, all without any user intervention. 

In addition, the Legion core model presents several 
features that will enable fault-tolerance: (1) the ability to 
dynamically query class objects for their IDL and obtain 
semantic information on a per class or per method basis 
(2) built-in support for object replications, (3) the man- 
datory inclusion of the Savestate() and Restorestate() 
methods in legion objects. These are the basic building 
blocks for fault-tolerance protocols based on check- 
pointhestart. 

5 Experiences - The CWVC and the I-way 

In the summer of 1995 we released our first proto- 
type Legion implementation, the Campus Wide Virtual 
Computer (CWVC). This first implementation is based 
on an earlier object-oriented parallel processing system, 
Mentat [9]. Mentat was originally designed to operate in 
homogenous, dedicated environments but has been 
extended to operate in an environment with heteroge- 
neous hosts, disjoint file systems, local resource auton- 
omy, and host failure. We could have continued to 
stretch Mentat but felt that one can only transform a sys- 
tem so far before it begins to show signs of the stress; it 
is often better to design from the ground up so that the 
resulting system has a clean coherent architecture, rather 
than a patchwork of modifications based on a solution 
for a different problem. 

The campus-wide virtual computer is a direct exten- 
sion of Mentat onto a larger scale, and is a prototype for 
the nationwide system and reflects the fact that the uni- 
versity is a microcosm of the world. The computational 
resources at the University are operated by many differ- 
ent departments, there is no shared name space, and 
sharing of resources is currently rare. 

Even though the CWVC is much smaller, and the 
components much closer together, than in the envi- 
sioned nationwide Legion, it still presents many of the 
same challenges. The processors are heterogeneous, the 
interconnection network is irregular, with orders of 
magnitude differences in bandwidth and latency, and the 
machines are currently in use for on-site applications 
that must not be negatively impacted. Further, each 
department operates essentially as an island of service, 
with its own NFS mount structure, and trusting only 
machines in the island. 

96 



The CWVC is both a prototype and a demonstration 

demonstrate the usefulness of network-based, heter- 
ogeneous, parallel processing to university computa- 
tional science problems, 
provide a shared high-performance resource for uni- 
versity researchers, 
provide a given level of service (as measured by 
turn-around time) at reduced cost, 
act as a testbed for the nationwide Legion. 
The CWVC consists of over one hundred worksta- 

tions and an IBM SP-2 in six buildings using two com- 
pletely disjoint underlying file systems. We have 
developed a suite of tools to address common problems 
encountered (Table 1). In collaboration with domain sci- 
entists both at the University of Virginia and elsewhere 
we have also developed a set of applications that exploit 
the environment (Table 2). 

In addition to the local production environment we 
have also demonstrated the CWVC on wide-area sys- 
tems. During Supercomputing ‘95 in San Diego we ran 
the CWVC on the I-Way, an experimental network con- 
necting the NSF supercomputer centers, several of the 
DOE and NASA labs, and a number of other sites. Many 
of the connections were at DS-3 (45 mb/sec) and OC-3 

project. The objectives are to: 

TABLE 1. Campus Wide Virtual Computer Toolsel 

(155 mb/sec) rates. The CWVC was installed at three 
sites w n g  seven hosts of three different architectures. 
At NCSA (Urbana) we used for SGI Power Challenges 
and the Convex Exemplar. At the CTC (Cornell) and 
ANL, (Argone) we used IBM SP-2’s. 

Once the IP routing tables had been properly config- 
ured moving the CWVC to the wide-area environment 
was relatively simple. We copied the CWVC to the plat- 
forms, adjusted the tables to use IP names that routed 
through the high-speed network, and tested the system. 
As expected, files could be accessed in a location trans- 
parent fashion, executables were transparently copied 
from one location to another as needed, the scheduler 
worked, and the system automatically reconfigured on 
host failure. Utilities and tools such as the debugger also 
migrated easily. The real bonus though was that user 
applications required no changes to run in the new envi- 
ronment. 

For our demonstration we exercised our utilities, and 
ran one of our applications, complib, on the I-way. Com- 
plib compares two DNA or protein sequence databases 
using one of several selectable algorithms [ll]. The first 
database was located at ANL, while the second was 
located at NCSA. The application transparently 
accessed the databases using the Legion file system 

Problem Tools available 

Writing parallel application 

Multiple separate file systems 

CWVC-aware PVM, parallel C++, Fortran wrappers 

Federated file system - transparent file access 

Heterogeneous resources 

Multiple resource owners 

Automatic scheduling, binary selection and migration, 
application specific scheduling tools 

Owner control of resource consumption, detailled 
resource consumption accounting 

Debugging parallel programs is hard 

Hosthetwork failure 

Post-mortem playback using off-the-shelf debuggers, 
e.g., dbx. 

Automatic system reconfiguration and limited applica- 
tion fault-tolerance 

TABLE 2. Sample of existing CWVC applications -- 

Computer Science 
Electrical Engineering 
Engineering Physics 
Physics 

Automatic test pattern generation, VLSI routing, 

Trajectory and range of ions in matter 
2D electromagnetic finite element mesh 

97 



while the underlying system schedulers placed applica- 
tion computation objects throughout the three-site sys- 
tem. All communication, placement, synchronization, 
and code and data migration was handled completely 
transparently by Legion. 

Since Supercomputing we have repeated the demon- 
stration several times, and are now in the process of con- 
structing a more permanent prototype. The new 
prototype will span NCSA and SDSC and will operate 
as a part of the DARPA funded Distributed Object Com- 
putation Testbed. 

6 Related work 

The vision of a seamless metacomputer such as 
Legion is not novel; worldwide computers have been the 
vision of science fiction authors and distributed systems 
researchers for decades. However, to our knowledge no 
other project has the same broad scope and ambitious 
goals of Legion. Fortunately, it is not necessary to 
develop all of the required technology from scratch. A 
large body of relevant research in distributed systems, 
parallel computing, fault-tolerance, management of 
workstation farms, and pioneering wide area parallel 
processing projects, provide a strong foundation on 
which to build. 

Related efforts such as OSFDCE [16] and CORBA 
[2] are rapidly becoming industry standards. Legion and 
DCE share many of the same objectives, and draw upon 
the same heterogeneous distributed computing literature 
for inspiration. Consequently, both projects use many of 
the same techniques, e.g., an object-based architecture 
and model, IDL‘s to describe object behavior, and wrap- 
pers to support legacy code. However, Legion and DCE 
differ in several fundamental ways. First, DCE does not 
target high-performance computing; its underlying com- 
putation model is based on blocking RPC between 
objects. Further, DCE does not support parallel comput- 
ing; instead, the emphasis is on client-server based dis- 
tributed computing. Legion, on the other hand, is based 
upon a parallel computing model, and one of our pri- 
mary objectives is high performance via parallel compu- 
tation. Another important difference is that Legion 
specifies very little about the implementation. Users and 
resources owners are permitted-even encouraged-to 
provide their own implementations of “system” ser- 
vices. Our core model is completely extensible and pro- 
vides choice at every opportunity-from security to 
scheduling to fault-tolerance. Similarly, CORBA[2] 
defines an object-oriented model for accessing distrib- 
uted objects. CORBA includes an Interface Description 
Language, and a specification for the functionality of 
runtime systems that enable access to objects (ORB’S). 
But like DCE, CORBA is based on a client-server model 

rather than a parallel computing model, and less empha- 
sis is placed on issues such as object persistence, place- 
ment, and migration. 

Other projects share many of the same objectives but 
not the scope of Legion. Nexus[6] provides communica- 
tion and resource management facilities for parallel lan- 
guage compilers. CastleES] is a set of related projects 
that aims to support scientific applications, parallel lan- 
guages and libraries, and low-level communications 
issues. The NOW[ 13 project provides a somewhat more 
unified strategy for managing networks of workstations, 
but is intended to scale only to hundreds of machines 
instead of millions. Globe[23] is an architecture for sup- 
porting wide area distributed systems, but does not yet 
seem to address important issues such as security and 
site autonomy. 

In its intended application for distributed collabora- 
tion and information systems, Legion might be com- 
pared to the World Wide Web. In particular, the object- 
oriented, secure, platform independent remote execution 
model afforded by the Java language[21] has added 
more Legion-like capabilities to the Web. The most sig- 
nificant differences between Java and Legion lie in 
Java’s lack of a remote method invocation facility, lack 
of support for distributed memory parallelism, and its 
interpreted nature, which even in the presence of “just- 
in-time’’ compilation leads to significantly lower perfor- 
mance than can be achieved using compilation. Further- 
more, the security and object placement models 
provided by Java are rigid and are a poor fit for many 
applications. 

7 Summary and the Future 

Legion is an ambitious middleware project that will 
provide a solid, integrated, conceptual foundation on 
which to build applications. One could argue that 
Legion is perhaps too ambitious, that there are just too 
many different complex issues to address. The number 
of different issues is certainly a risk. On the other hand, 
eventually there will be Legion-like metasystem soft- 
ware; it is a necessary condition for a large scale digital 
society. The real issue is whether it will come about by 
design, in an organized and coherent fashion, or by past- 
ing together different solutions. Legion’s strength is that 
its object model that was designed from its very incep- 
tion both for the intended environment and for extensi- 
bility. We feel that these attributes will permit Legion to 
readily adapt to an ever changing world. 

Legion - as defined by our objectives, is not yet a 
reality. While we have a prototype, the purpose of the 
prototype is to demonstrate the feasibility of construct- 
ing a wide-area system and to permit application and 
tool development to occur concurrently with system 

98 



implementation. I t  is not designed to  evolve directly into 
a complete Legion implementation. 

In March of 1996 we began our implementation of 
the core Legion object model. Unlike the existing proto- 
type the new implementation incorporates mechanism 
for security, fault-tolerance, application directed sched- 
uling, autonomy, scalable binding, etc. This “full 
blown” implementation re-uses many components of the 
prototype, e.g., the compiler, debuggers, and so on, but 
for the most part is being written from the ground up. 
We expect to have a usable, documented, system avail- 
able for public use in mid 1997. The  system, and 
sources, will be  publicly available. 

8 References 

T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW 
team, “A Case for NOW (Networks of Workstations),” to 
appear in IEEE Mlcro. 
Ron Ben-Naten, CORBA: A Guide to the Common Object 
Request Broker Architecture, McGraw-Hill, 1995. 

A. Bricker, M. Litzkow, and M. Livny, “Condor Technical 
Summary,” Computer Sciences Department, University of 
Wisconsin - Madison, 10/9/91. 

M.J. Carey, et. al., “Shoring Up Persistent Applications,” 
SIGMOD I994. 

The Castle Project, University of California, Berkeley, 
http://http.cs. berkeley.edu/projects/parallelYcastldcas- 
tle.html. 

I. Foster, Carl Kesselman, Steven Tuecke, “Nexus: Runt- 
ime Support for Task-Parallel Programming Languages,” 
Argonne National Laboratories, http://www,mcs.anl.gov/ 
nexus/paper/. 

T.P. Green and J. Snyder, “DQS, A Distributed Queueing 
System,” Florida State University, March 1993. 

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable 
Parallel Programming with the Message-Passing Inter- 
face, MIT Press, 1994. 

[9] A. S. Grimshaw, A. J. Ferrari, and E. A. West, “Mentat” 
Parallel Programming Using C++, Editor: Greg Wilson, 
MIT Press, 1996. 

“Campus-Wide Computing: Early Results Using Legion at 
the University of Virginia,” University of Virginia Com- 
puter Science Technical Report CS-95-19, March 1995. 

[I I ]  A. S. Grimshaw, E. A. West, and W.R. Pearson, “NO Pain 
and Gain! - Experiences with Mentat on Biological Appli- 

[IO] A.S. Grimshaw, A. Nguyen-Tuong, and W.A. Wulf, 

cation,” Concurrency: Practice & Experience, pp. 309- 
328, Vol. 5, issue 4, June, 1993. 

[ 121 IBM, “IBM LoadLeveler: User’s Guide (3H26-7226- 
02):’ IBM Publication number STOO-9696, October 1994. 

[I31 J . E  Karpovich, “Support for Object Placement in Wide 
Area Heterogeneous Distributed Systems“, University of 
Virginia Department of Computer Science Technical 
Report CS-96-03, January 1996. 

[ 141 J.F. Karpovich, A.S. Grimshaw, J.C. French, “Extensible 
File Systems (ELFS): An Object-Oriented Approach to 
High Performance File Y O ,  Proceedings ofthe Ninth 
Annual Conference on Object-Oriented Programming 
Languages, Systems, and Applications (OOPSLA), pp. 
191-204, Portland, OR, October 1994. 

[15] M.J. Lewis, A S. Grimshaw, “The Core Legion Object 
Model,” Proceedings of High Pegormance Distributed 
Computing Conference, Syracuse, NY, August 1995. 

[16] H.W. Lockhan, Jr., OSF DCE Guide to Developing Dis- 
tributed Applications, McGraw-Hili, Inc. New York 1994. 

[ 171 J. EMacfarlanr: and R. Armstrong, “POET A Parallel 
Object-Oriented Environment and Toolkit for Enabling 
High-Performance Scientific Computing,” http://www- 
stag.lbl.gov/poer/Poet.html. 

[ 181 S. Muilender ed., Distributed Systems, ACM Press, 1989. 

[19] J.R. Nicol, C.T. Wilkes, and EA. Manola, “Object-Onen- 
tation in Heterogeneous Distributed Systems,” IEEE Com- 
puter, Vol. 26, No. 6, pp. 57-67, June 1993. 

[20] J. Rynders, ‘The POOMA Framework,” http:// 
www.acl.lanl.gov/PoomaFramework/PoomaPrame- 
work.htm1. 

[21] Sun Microsystems, “The Java Language Specification,” 
Version 1.0 Beta,Oct. 30, 1995 

[22] V.S. Sunderam, “PVM: A framework for parallel distrib- 
uted computing,” Concurrency: Practice and Experience, 
vol. 2(4), pp. 31Li-339, December 1990. 

baum, and W. de Jonge. “Towards Object-based Wide 
Area Distributed Systems”. In L.-E Carbrera and M. The- 
imer, (eds.), Proreedings International Workshop on 
Object Orientation in Operating Systems, pp. 224-227, 
Lund, Sweden, August 1995. 

[24] W.A. Wulf, C. Wang, D. Kienzle, A New Model ofSecu- 
rityfor Distributed Systems, University of Virginia Com- 
puter Science Technical Report CS-95-34, August 1995. 

[23] M. van Steen, I? Homburg, L. van Doom, A S .  Tanen- 

99 

http://http.cs
http://www,mcs.anl.gov
http://www

