
Wl6' HEWLETT
a:'aI PACKARD

A Light-Weight Application Sharing Infrastructure
for Graphics Intensive Applications

Ming C. Hao, Dongman Lee*, Joseph S. Sventek
Software Technology Laboratory
HPL-96-114
July, 1996

concurrent
engineering,
application sharing,
reduced event set,
graphic intensive

We describe a light weight application sharing
infrastructure that enables collaborative design
using graphics intensive applications over low
bandwidth networks. The basis of the technology
employs an event-driven mechanism to share a
reduced event set among multiple copies of an
application executing on different workstations.
This technology is referred to as RES-AP (Reduced
Event Set Application Sharing). RES-AP allows
geographically-dispersed engineers to work
together on large complex problems with fast
responses. This capability is achieved without
modification to the applications or to the window
system software.

*Hewlett-Pack.ard Workstation Systems Division, Technical Computing Center,
Corvallis Laboratory.
To be published in and presented at The Fifth IEEE International Symposium on High Performance
Distributed Computing (HPDC-5), Syracuse, New York, August 6-9, 1996.
© Copyright Hewlett·Packard Company 1996

Internal Accession Date Only



A Light-Weight Application Sharing Infrastructure

for Graphics Intensive Applications

Ming C. Hao, Dongman Lee, Joseph S. Sventek

mhao@hpl.hp.com,dlee@cv.hp.com, sventek@hpl.hp.com
Hewlett-Packard. Palo Alto, CA

Abstract

We describe a light weight application sharing infra­
structure that enables collaborative design using graph­
ics intensive applications over low bandwidth networks.
The basis of the technology employs an event driven
mechanism to share a reduced event set among multiple
copies of an application executing on different worksta­
tions. This technology is referred as RES-AP (Reduced
Event Set Application Sharing). RES-AP allows geo­
graphically-dispersed engineers to work together on
large complex problems with fast responses. This capa­
bility is achieved without modification to the applica­
tions or to the window system software.

1.0 Introduction

Technical enterprises in the 90's continuously face
market pressures for higher quality products at a lower
cost and in less time. To achieve this challenging goal,
they have restructured the product development process
to promote maximum parallelism - concurrent engineer­
ing [l]. All product related groups work together from
the beginning and all information is shared, this is com­
monly termed virtual enterprise or virtual co-location.

Collaboration is one of the key technologies to
enable a virtual enterprise, where people transparently
access and share their information and knowledge with­
out any location/organizational boundary. Numerous
sharing technologies [2, 3,4] based on X window sys­
tems have been proposed to fulfill user collaboration
needs supporting application sharing without incurring
any modification of existing application, data, and
underlying computing environments.

1

These sharing technologies work by sharing X pro­
tocol requests with all the collaboration participants' X
servers. However, due to protocol request replication,
users often experience considerable performance degra­
dation when X protocol requests from an application
carry lots of data (e.g. bitmap transfer as a rendering
mechanism), especially over low-bandwidth networks.

This paper describes a light weight application shar­
ing infrastructure that enables collaboration among mul­
tiple users over low bandwidth networks. The paper is
organized as follows. Chapter 2 provides an architec­
tural overview of the existing works: the centralized
architecture and replicated architecture. Chapter 3
describes how RES-AP approach differs from them.
Chapter 4 provides detail description of RES-AP archi­
tecture.

2.0 Centralized vs. Replicated Application
Sharing

Application sharing technologies are based on two
basic architectures [4,5,6]: centralized and replicated
application sharing mechanisms.

In the centralized architecture, there is only one
instance of the shared application. All inputs to the
application are sent to the execution site while the appli­
cation's outputs (Le. X protocol requests) are sent to all
the displays, such as SharedX [3] and NTOS' Shared
Window System [2]. The centralized architecture pro­
vides an identical view by transmitting the X protocol to
each user's display. Existing applications do not have to
be modified, recompiled, or relinked.

The replicated architecture requires each participant
to run locally hislher own copy of the shared applica­
tion. Inputs are multicasted to each participant's shared
application while outputs from the application are deliv-



ered only to its corresponding local display. The replicated
architecture is light-weight but complex to synchronize
due to the different process speeds. Examples are
MMConf [7] and VConf [4]. Both require applications to
be collaboration-aware.

This approach assumes that if an identical set of
applications are started in the same initial state and pro­
cess an identical sequence of event sets, then the appli­
cations will continue to be in an identical state after
processing each event.

FIGURE 1. Centralized vs. Replicated

The key differences between the two architecture are
illustrated in Figure 1.

Centralized

Ex.
3DCAD/CAM
images
videolmpeg

Single-site execution:

- simple to synchronize
- high network traffic

Replicated/Distributed

low cf
Im.a~

0"0
o :display

D :application/processor

Multi-site execution:

- complex to synchronize
- low network traffic

The goal of the concurrent engineering collaboration
research at the Hewlett-Packard Research Laboratories
is to solve the following problems:

• light weight (work well over a typical spectrum of
network bandwidths)

• no change to existing application and window sys­
tems

• support real-time 3D rendering (X based and non-X
based rendering)

4.0 The RES·AP Architecture

RES-AP is built on a multiple server-clients model.
It employs an event driven approach with a reduced
event set. It contains three basic components:

1. event-driven and reduction (capturing)

2. event multicasting

3. event synchronization

3.0 Our Approach

Our approach, RES-AP, is based on the replicated
architecture. To achieve fast responses, RES-AP replicates
application program data and execution on each site. For
easy synchronization, RES-AP uses a floor control mecha­
nism to guarantee that a single deterministic event stream
is sent to the shared applications for processing.

RES-AP only shares a reduced set of events generated
from user interactions instead of multiplexing all window
messages (input/output, queries/ replies, and errors)
among shared applications. There is no need to send X
protocol requests and other unrelated events to shared
workstations. Our technology resolves serious latency
problems due to insufficient bandwidth. This enables
graphics intensive application (e.g. 3D CAD/CAM) users
to have an interactive, collaborative design session with­
out significant performance degradation.

2

These components have the following characteris­
tics:

• forces a single input event stream for easy synchro­
nization through an explicit floor control mecha­
nism.

• separates application program data, execution, and
control for fast response time.

First, the RES-AP agent captures a reduced set of
input events, such as mouse and keyboard inputs, and
sends them to RES-AP. It analyzes the events and their
states, puts them in proper execution order, and multi­
casts them to each instance of the shared application. As
needed, RES-AP slows down the event processing to
synchronize multiple views.

RES-AP employs an agent on each remote worksta­
tion to: (1) retrieve and send the local application win­
dow hierarchy array for mapping; (2) capture input
events; (3) maintain event consistency among instances
of the shared application; and (4) mediate environmen-



FIGURE 2. RES-AP Architecture
Workstation 1 Workstation 2 Workstation 3

1. capture 2. muticasting

RES·AP

3. synchronizing

Clients

connection

Server

tal differences to allow for different window sizes, key
codes, colormaps, etc.

Figure 2 illustrates the RES-AP overall architecture.
Each of these components is described further in the fol­
lowing sections.

4.1 Event Driven & Reduction

A common method for sharing a window among
multiple workstations by the same application is to
intercept existing application messages and pass them to
each user's workstation. With a centralized architecture,
it usually generates heavy network traffic due to contin­
ual shipping of graphics primitives among the partici­
pating workstations.

RES-AP explores a new event capturing mechanism
[8] instead of processing all the window messages.
RES-AP captures only input events on a shared window
that should be shared (e.g. user inputs) or synchronized
(e.g. map notification). RES-AP ignores all other events.

3

4.2 Event Multicasting

After analyzing the captured input events, RES-AP
[6] orders or groups them if necessary and sends the
shared input events to the target application windows.
Applications automatically trigger their own event han­
dlers to execute received events. Events are processed
just as they would be if the window events had been
directly entered into the application windows.

The key functions are:

• Grouping: to allow users to select the input event
distribution scope.

• Ordering: to sequence events from multiple sources
into a proper execution order.

• Multicasting: to distribute events to the appropriate
targets.

To ensure the process is light-weight, RES-AP only
multicast mouse, keyboard events/states, and curs<;>r
movements.

Figure 3 illustrates the RES-AP basic muticasting
function flow.



4.3 Event concurrency control and
synchronization

With a replicated execution approach, RES-AP syn­
chronizes multiple copies of a shared application running
on each site. The need for synchronization arises due to
the mismatch of processing speeds of various processors.
Our synchronization mechanism employs motion event
compression and a two-phase protocol. RES-AP ensures
that all shared applications are in a consist state before
processing the next incoming event. In case synchroniza­
tion is lost, RES-AP allows users to easily re-synchronize
the application in local mode.

FIGURE 3. Multicast User Events

mouse

1~~
multicasting

5.0 Summary

RES-AP is an on-going experiment in Hewlett­
Packard Research Laboratories. We have built a series
of increasingly powerful prototypes to demonstrate and
evaluate the key technology in the X Window system.
Our experience with the sharing of unmodified 3D
CAD/CAM applications has been promising. The
response time is almost instantaneous.

The most interesting feature of RES-AP is that we
are able to share graphics intensive applications by cap­
turing, multicasting, and synchronizing a reduced event
set. This technology is extremely light weight (tested on
as low as 56 kbps network). RES-AP has been used to
support collaborative CAD/CAM 3D modeling among
multiple workstations. Its event-multicast design center
permits it to be usable over a variety of network band­
widths.

Acknowledgment

Thanks to Mary Loomis and Chris Hsiung from HP
Labs for their encouragement and suggestions, and to
Jerrie Andreas, Milon Mackey for many technical sug­
gestions and discussions.

References

4.4 A Shared Cursor

RES-AP allows users to have a shadow image of the
current floor holder's cursor; we call this a shared cursor
mechanism. This improves visual perception of collabora­
tion among participants since every cursor movement of
the current floor holder's cursor is exactly replicated to the
rest of the participants.

In order to synchronize the graphical output of shared
applications on all displays, RES-AP defines two basic
coordination methods with a light-weight reduced event
set [9]:

• cursor movement compression to reduce network traf­
fic.

• forced multicast of the last cursor movement to syn­
chronize position of all participants' cursors before a
non-cursor input event is sent, such as button press.

4

[1] Donald E. Carter, and Barbara Stiwell Baker,
Concurrent Engineering: The Product Development
Environment for the 1990s, Addison-Wesley Publishing
Co., 1992.

[2] Thomas Gutekunst et ai, "A Distributed and Pol­
icy-Free General Purpose Shared Window System,"
IEEElACM Transactions on Networking, Vol. 3, No. I,
Feb. 1995, pp. 52-62.

[3] John R. Portherfield, "Mixed Blessings" and "HP
SharedX," HP Professional, Vol. 5, Issue 9, Sep, 1991.

[4] J. Chris Lauwers, Thomas A. Joseph, and Keith
A. Lantz, "Replicated Architectures for Shared Window
Systems: A Critique, "Proc. ACM Conf. Office Infor­
mation System, 1990, pp. 249-260.

[5] S. R. Ahuja, J. R. Ensor, and S. E. Lucco "A
Comparison of Application Sharing Mechanisms in
Real-Time Desktop Conferencing Systems," Pmc.
ACM Conf. Office Information System 1990, pp. 238­
248.



[6] Daniel Garfinkel, and Randy Branson, "A Com­
parison of Application Sharing Architectures in the X
Environment," Xhibition 91.

[7]Terrence Crowley, Paul Milazzo, Ellie Baker,
Harry Forsdick, and Raymond Tomlinson, "MMConf:
An Infrastructure for Building Shared Multimedia
Applications," Proc. ACM CSCW 90, Los Angeles, pp.
329-342.

[8] M. Hao, U. S. Patent pending on "A Mechanism
to Control and Use Window Events Among Applica­
tions in Concurrent Computing" and "A Mechanism to
Sense and Multicast to a Plurality of Exisiting Applica­
tions for Concurrent Execution in a Distributed Envi­
ronment," Hewlett-Packard, Oct, 1994 and May, 1993.

[9] M. Hao, D. Lee, and J. Sventek, "A mechanism
to share cursor for concurrent execution and consistent
graphical views among plurality of existing applica­
tions," in preparation for US Patent.

5




