
ELSEVIER Parallel Computing 23 (1997) 899-913

PARALLEL
COMPUTING

Fast massively parallel progressive radiosity
on the MP-1

Christophe Renaud * , Frangois Rousselle ’

Lnboratoire d’lnformatique du Littoral, BP 719, 62228 Calais Cedex, France

Received I June 1996: revised 25 November 1996

Abstract

Radiosity is a powerful method for solving the global illumination problem in the case of
purely diffuse light reflexions. The progressive refinement algorithm provides interactivity during
computation by displaying intermediate images, and overshooting methods increases the conver-
gence rate of progressive radiosity. However, computation times remain very important. Parallelis-
ing these algorithms is a good way to significantly improve interactivity by reducing computation
time. The aim of this paper is to present a method for the parallelisation of the progressive
refinement radiosity algorithm on a massively parallel SIMD machine. We took care of both the
SIMD machine nature and the high number of available processors on studying the several ways
to efficiently implement the algorithm. The parallel scheme we propose uses a disk projection area
for form factors estimate and decreases dramatically the computation times.

Keyword.s: Progressive radiosity; Form factor calculation; Parallel rendering

1. Introduction

Since it has been introduced in 1984 [lo], the radiosity method has been proved to be
an efficient rendering technique, solving the global illumination problem in the case of
perfectly diffuse surfaces. But it required to compute and to store a large set of form
factors before rendering could occur. Cohen introduced interactivity and low cost
storage by using a progressive refinement radiosity approach [51, reducing the waiting
period between illumination and rendering. However this algorithm requires much more

. Corresponding author. E-mail: renaud@lil.univ-littoral.fr.

’ E-mail: rousselI@lil.univ-littoral.fr.

0167-X I9 I /97/S 17.00 Copyright 8 1997 Elsevier Science B.V. All rights reserved.

PI1 SOl67-Sl91(97)00033-1

!m C. Renaud, . Rousselle/Purallel Computing 23 (1997) 899-913

iterations in order to converge to the final illumination solution. Recently, overshooting
methods [8,25] have been introduced in order to accelerate the resolution convergence.
But even with these new improvements, radiosity is still computationally demanding,
especially because form factors estimate requires a lot of computation. These computa-
tional requirements are not available on sequential machines. Several works have thus
been performed in order to implement the radiosity algorithms on parallel machines. In
this paper, we are interested in implementing a massively parallel approach for the
progressive refinement radiosity algorithm on a SIMD mesh-connected machine, the
MP-1. We focused our attention on the parallelisation of the form factors computation
step. Form factors are computed using a disk projection area, directly based on the
Nusselt equivalent, and uniformly discretised into square proxels. Furthermore, our
approach takes advantage of overshooting too, as the existing overshooting methods can
be efficiently implemented as a part of our SIMD algorithm. As the MP-1 computer uses
a SIMD control, we take care to use optimally all the processors. This allows us to
achieve well balance of each stage of the algorithm.

In the next part, we present the disk projection algorithm we used for the form factors
estimate. Then we recall and analyse the main works in radiosity parallelisation in part
3, and we present the architecture of the MP-1 machine we used for our studies in part
4. In the last two parts, we present our parallel algorithm, and some results we have
obtained.

2. Disk projection area

Form factors estimate requires to compute visibility between each pair of elements.
Several algorithms have been developed for this purpose. They use either projective (e.g.
hemicube [4], single projection plane [14,191) or ray casting approaches [24]. Projective
approaches have several advantages with regard to ray-casting for a SIMD parallelisa-
tion. They involve identical computation for each element (and each proxel of the
projection area>, when computation are different for rays according to the intersected
surface type. Efficiency can only be obtained on SIMD architectures when processors
are well load balanced and when they apply simultaneously the same simple computa-
tion. In order to achieve efficiency, we chose to implement a projective algorithm, based
on the Nusselt equivalent.

2.1. Principle

The disk projection area algorithm is based on the Nusselt equivalent, and has been
first proposed by Spencer [21]. A unit disk is applied on an element, tessellated into
several square proxels, and scene elements are projected onto these proxels through
theoretically 2 projections: the first one projects an element onto the hemisphere
sustained by the disk; this projection is then projected orthogonally onto the disk surface
(see Fig. la>.

The disk projection algorithm has several advantages as compared to the other
projective algorithms:

. Only one projection surface is used compared to the hemicube for which 5
projection surfaces (and consequently 5 projection steps) are required.

C. Rena& . Rousselle /Parallel Compuhng 23 (1997) 899-913 901

Fig. 1. (a) Nusselt equivalent, (b) elliptic arcs based outlines

. The disk projection surface lies onto the element, and it does not ‘forget’ the
grazing directions like the single plane projection approaches do.

. The elementary form-factor connected to each proxel is the same for each one.
This allows the disk to reduce the number of proxels to use, and to cancel out the
oversampling that appears in each other projective approaches (for more details about
projective approaches comparisons, see [161).

One problem with this algorithm is that the projection outlines are not linear: the
image of a 3D edge on the disk is an elliptic arc (see Fig. lb). Commonly used outline
filling algorithms are thus not available. In [9], Goldfeather proposed a method to fill
such elliptic arcs based boundary, for the Pixel-Planes 5 machine. We derived a simpler
solution from his work in [15], which is summarized below.

2.2. The jilling algorithm

We suppose first that the proxels coordinates are expressed in an (u, u) orthonormal
coordinate system, like the one that appears in Fig. lb. In this coordinate system, each
ellipse equation can be rewritten as

Au+Bu+Ca=O.

An N-edges element projection is thus represented as an intersection of the N ellipses.
By appropriately orienting each ellipse equation, it is then easy to know whether a
proxel is inside or outside the projection. In order to reduce the number of proxels to
test, the projection bounding rectangle of the projected outline is computed and only the
proxels inside this disk subarea are taken into account (see [15] for more details).

3. Previous work

3.1. Parallel progressive radiosity

The progressive radiosity approach offers three different levels for parallelisation:
- Several emissions are computed in the same time, each one from a different

emitting element, according to the number of available processors [2,3,7,12,14].

902 C. Renaud, . Rousselle/Parallel Computing 23 (1997) 899-913

* Only one emission is computed, by distributing the involved computations between
the processors 1201.

* The processors collaborate for computing the form factor between the shooting
element and a given element [ll. Note however that this approach only occurs for
projective methods.

All these levels have been exploited both on MIMD and SIMD architecture. MIMD
parallelisation has mainly focused on the first two levels. Differences between imple-
mentations proceed from the form factor algorithm, the network topology and the
duplication/distribution/share schemes of the database. It appears however that as the
database size grows, the elements have to be distributed between the processors. This
distribution involves a very high number of communications, and the efficiency of these
approaches decreases rapidly when the number of processors increases [13].

3.2. Overview of SIMD parallel radios@

SIMD machines require all the processors to perform the same instruction at the same
time. This centralized control requires to use data parallelism, and to take care of the
load-balancing between the processors. The processors are generally organized as an
array, which is close to the projection plane organisation used in projective methods.
Consequently, several approaches have been proposed for this kind of form factors
computation algorithms. In [16] we proposed to exploit the third level of parallelism we
described, by projecting successively each element onto the sampling surface. Each
proxel is handled by a processor, which computes whether the projected element is
inside or outside the proxel, and applies the depth-buffer operations. However, a large
number of proxels are not covered by the projected element, and the efficiency of such
an approach is small. Varshney [23] proposed to simultaneously compute several
element projections. Each PE manages a block of neighbouring proxels, and a part of the
element database. The first step of its algorithm distributes the elements to the processor
managing a part of the sampling area where the elements have to be projected. Then all
the processors determine in which of their proxels the elements they received are visible,
and apply the depth comparisons. However, the projection work is not distributed
equally between the processors, as the number of elements that are visible in each
sampling direction can be very different, and imbalances occurs.

Parallel ray casting for form factor computation has been implemented too. Drucker
[6] used a processor allocation technique for computing all the possible intersections
between a ray and the voxels that lie on the ray way. Several rays are treated
simultaneously, according to the number of available processors. However, unnecessary
work is performed as all the intersections are computed along the ray path, even if an
intersection exists in the first voxels. Then, the SIMD nature of the approach quickly
decreases the performances when several objects types are intersected onto different
processors.

4. The MP-1 architecture

The MP-I computer is made up of a host workstation, a large number of simple
processing elements (PEs), and a specialized processor, so called the array control unit

C. Rena& . Rousselle/ Parallel Computing 23 (1997) 899-913 903

Fig. 2. (a) The Xnet, (b) the global router.

(ACU), which controls the set of PEs. The processing elements have their own local
memory and run following a SIMD scheme: each PE performs simultaneously the same
instruction onto its private data. The ACU broadcasts instructions and global data, while
the local data are fetched from the PE memory. PEs can be disabled temporally, when
they do not have to perform some instructions (for example when a if statement is
broadcast).

The processing elements, which we will simply call the processors in the following of
the paper, are build around a simple 4 bits architecture; they dispose of thirty two 32 bits
registers, and up to 64 KB RAM. They are connected together according to a rectangular
grid, its size varying from 1,024 (32 X 32 array) up to 16,384 (128 X 128 array)
processors.

Two communication networks are provided, either for neighbouring or distant
communications. The Xnet network connects each processor to its 8 nearest neighbours
(see Fig. 2a). A processor lying on the edge of the grid is connected to the opposite edge
processor. Communication through this network are SIMD controlled: all the processors
must send their message in the same direction, or wait for an other communication step.

The Global Router is the second communication network of the MP-1. It is able to
perform communications between every pair of processors, through a three stage
hierarchy of crossbars (see Fig. 2b). However, only one link to the GR is available per
cluster of 4x4 processors. Communication through the GR from or to a cluster are thus
necessarily sequentialised. Consequently, conflicts (and then inefficiency) occur when
several processors of a cluster have to send or to receive a message.

We have developed our parallel radiosity approach on a 16,384 processors MP- 1,
each processor managing 64 Kb RAM (1 Gb global memory).

5. A massively parallel approach

Our goal is to develop an efficient SIMD implementation of the disk projection
algorithm as the heart of a massively parallel progressive radiosity approach. SIMD
architectures are often characterized by a high number of very simple processors: the
power is provided by the number of processors rather than by they computation
capabilities. In the same way, processors have their own memory; this one is often of

904 C. Rena&, Rousselle/ Parallel Computing 23 (1997) 899-913

small size (a few Kbytes), but the use of several thousands of processors provides
generally a very large amount of global memory. In order to benefit from this two
unusual features, it is necessary on one hand to apply simultaneously the same
operations onto all the processors and to assure that all these operations are really useful.
On the other hand, the distribution of the data is necessary, but it allows the approach to
process very large scenes.

5.1. Data ‘distribution’

Two kinds of data are mainly handled by a radiosity algorithm, when using a
projective approach: the elements (with both geometric and photometric features) and
the proxels used for approximating the form factors. All these data have to be distributed
over the processors, in order both to be directly available for the computation (no
communication required for fetching the data) and to take advantage of the large amount
of global memory available on the target machine.

Element distribution scheme is very simple, as no particular property is required for
the form factor computation step: elements are extracted from the database file and send
one by one to a different processor. When the number of elements is greater than the
number of processors, the process is cyclically repeated, in order for each processor to
finally manages N or N - 1 elements.

Proxels distribution scheme is more subordinate to the MP-1 architecture. The proxel
array is mapped cyclically onto the processor array, so that 2 neighbouring proxels (both
along u and u axis) are managed by 2 neighbouring processors. This will allow some
steps of the algorithm to be well load balanced, as described further.

5.2, The filling principle

Each element needs to be projected onto the disk, and a depth-buffer operation has to
be performed in each inner proxel. However both the elements and proxels are
distributed across the processor array. It is also impossible for a processor to apply the
depth-buffer computation in each proxel covered by its element projection, since these
proxels are managed by some other unknown processors.

We investigated a way to solve this problem by communicating a projected element
to all the processors [151. Thus each one is able to compute whether the element appears
in one or more of the proxels it manages. But this solution involves a lot of useless
computation, because projected elements are generally small and cover a few part of the
entire proxel set. The main part of the processors is consequently used for useless
computation (as compared to a sequential approach), and provides an inefficient
approach.

In order to provide useful computation, it is necessary to compute, locally to an
element handling processor, which proxels this element covers. This information can
then be sent only to the processors that handle the covered proxels. However such an
approach would provide an important drawback: a large amount of communication is
required, as one message is necessary for each covered proxel. We propose to reduce
this amount of messages by computing first only the covered spans (we call span a

C. Renuud, Rousselle / Parallel Computing 23 (1997) 899-913 90.5

Fig. 3. Span conversion of the projected outlines.

continuous set of proxels lying on the same projection plane line). Each of this span is
then sent to the processor handling its first proxel, which can apply the depth
comparison. The depth-buffer for the other span proxels is then easy to perform, by
remembering that proxels have been distributed cyclically. That means that the second
proxel of a span is managed by the neighbouring processor of the one that manages the
first span proxel, and so on. Communications are of course required, but they are
efficiently performed by using the Xnet network, which is very well designed for
proximity communications.

Computing spans is easy for linear convex outlines, but is more computationally
demanding for elliptic arc based boundaries. For this reason the exact covered spans are
not directly computed. Rather one can compute more easily the spans covered by the
outline bounding rectangle, cutting this rectangle in equal length size spans (see Fig. 3).

The inner test is then performed proxel per proxel just before the depth-buffer
comparison, on the processor managing the proxel.

5.3. The parallel algorithm

By developing our approach on a SIMD architecture, we have to take care of each
step of the algorithm in order to achieve load balancing and efficiency. For this purpose,
the entire form factors computation process has been carefully studied and cut into
several successive steps, each one being designed for a SIMD implementation.

5.3.1. Geometric transformation

The geometric transformations are first applied on the elements stored on each
processor. These transformations include coordinate transformations, back-face culling
and clipping. Note that the first two ones require exactly the same amount of computa-
tion, when clipping involves small unbalancing.

5.3.2. Spans conversion

As described before, projected elements are cut into spans: the bounding rectangle is
first computed, and each of the covered row of the projection disk is then deduced. For
each one, the first span proxel coordinates is stored into a local span list. Some other

906 C. Renaud, . RousseIle/Parallel Computing 23 (1997) 899-913

informations are stored too, like the length of the span and various parameters for the
z-buffer step.

When a processor detects that its current element span conversion has been com-
pleted, it dynamically loads a new element from its local element list. This avoids the
unbalance that would occur if it had to wait for the completion of some other processor.

5.3.3. Span passing
Computing the spans locally to each processor involves communications before

applying the z-buffer. As explained in Section 5.2, the proxel covered by a span are
generally managed by some other processor than the one managing the span itself. The
span is thus sent to the processor managing its first proxel. This communication is
performed through the Global Router, which is better-suited for connecting any pair of
processor than the Xnet.

5.3.4. Z-buffer
After the previous step, each processor has a new span list, each of them beginning in

a locally managed proxel. These spans are z-buffered by taking each one successively,
and by applying the following operations:

. the first proxel of the span is extracted from the span;
- if this proxel is inside the projected outline, it is depth-buffered;
* the span length is decreased, and the span is sent to the right-neighbour processor;
- a span is received from the left-neighbour. If its length is null, a new span is fetch

from the span list;
. the steps are applied again for the current span, until no more spans are stored on

any processor.
Remember that this algorithm is applied simultaneously for all the processors. This

allows us to depth-buffer a very high number of spans simultaneously. As proxels are
distributed cyclically over the processor array, communications are very efficiently
performed through the Xnet.

5.3.5. Form factors update
For the same reason than previously (covered proxels and elements are not managed

by the same processor), communications are required in order for an element to known
its form factor with the emitting element. These communications are performed through
the Global Router, by sending each proxel associated elementary form factor to the
corresponding element. As many proxels are generally covered by the same element,
this involves both a lot of communications (one per covered proxel) and a large amount
of conflicts (because several proxels are sent to the same processor). One can however
reduce the communication time by studying proxel coherency properties:

. Several conflicts appear when many processors attempt to communicate with the
same one. This problem appears frequently in projective approach, because the probabil-
ity for 2 neighbouring proxels to be covered by the same element is very high. A simple
‘blending’ function has been implemented in order for 2 neighbouring processors to
choose the proxels they have to send simultaneously. This choice is performed in such a
way that the two processors do not send neighbouring proxels.

C. Renaud, . Rousselle / Parallel Computing 23 (1997) 899-913 901

. The previous approach reduces the conflicts, but does not reduce the number of
proxels that have to be sent. Using the horizontal coherency between the proxels
(neighbour proxels are often covered by the same element), a collect step is performed
along each disk line. After this step, the line form factor of each visible element has
been accumulated in only one processor (the one managing the first visible proxel of the
element). Only one communication is then performed for this new form factor.

These two solutions have been implemented in [17], and have dramatically reduced
the communication time for this step of the algorithm.

5.4. Parallel overshooting

At each step of the progressive radiosity algorithm, when some radiosity is shot from
an element i to the environment, a part of this energy returns to the emitter due to single
or multiple reflections by elements j (j # i). The aim of overshooting’s methods is to
provide an estimate of the amount of this returned radiosity and to add it to the current
unshot radiosity of the emitter before it shoots this one. The overall number of iterations
required by the progressive radiosity algorithm is thus reduced.

Several overshooting methods have been proposed recently. Methods by Gortler et al.
[l l] and Shao et al. [18] compute precisely the radiosity reflected directly by other
elements but do not take care of the multiple reflections. On the other hand, Feda and
Purgathofer’s method [S] estimates the radiosity due to all reflections (single and
multiple) using a global ambient term.

In environments with large reflectivities, Feda and Purgathofer’s method converges
faster than the others. But in the case of small reflectivities, it might not converge as fast
as Shao et al.‘s and Gortler et al.‘s methods because the returned radiosity due to
multiple reflections is less significant. In such environments, Feda and Purgathofer’s
rough overshooting’s estimate might be less accurate than Shao et al.‘s and Gortler et
al . ‘s computation.

Another approach described by Xu and Fussell [25] takes advantage of the latest
ones. This method not only computes the radiosity reflected directly but estimates the
radiosity due to multiple reflections too. This algorithm provi,des better results in
environments with any reflectivities.

We have implemented Xu and Fussell’s algorithm on the MP-I taking advantages of
its architecture. The amount of radiosity to shoot at each step of the algorithm Asi. can
be described as the sum of the unshot radiosity of the emitter ASi with the radiosity due
to the two kinds of reflection [25]

A~i=hB,+p~ iFjiABj+pa,,Ambient
j= I

In order to compute the radiosity due to direct reflections, C:= , Fj,ABj, each processor
first computes the product FjiABj locally for each of the elements it manages. The sum
of these products is then performed locally too. Finally, these partial results are quickly
summed through a reduction operation.

908 C. Rena& . Rousselle/Parallel Computing 23 (1997) 899-913

The radiosity due to multiple reflections is expressed as p,,,Ambient, the Ambient

term being described by

Ambient = R 2 ABjF., j,
j= I

where R is the overall interreflection factor

1
R = 1 + pa,, + p,‘“, + . . . = -

1 - Paw

and Pa,, is the average reflectivity of the environment

k= I k= 1

where A, is the area of element k. The overall interreflection R and the average

reflectivity pave are computed once at the beginning of the algorithm using reduction

functions.
Finally, the form-factor F, , is approximated by

F,j~Aj iA,

I k= I

It is thus obvious that implementing Xu and Fussell’s overshooting approach, which has

been shown to reduce considerably the number of shooting steps, in our parallel
algorithm does not have any significant overcost using the MP-I machine.

6. Some results

We have applied our algorithm onto 4 different scenes, with increasing complexities
and various illumination properties. Theoretically, the MP-I is able to store about
10,000,000 elements (assuming about 100 bytes data per element), but the more

complex scene we present (scene 4) is restrained to only 100,000 elements. A close-to 1
million elements scene is currently being designed. We present in Figs. 4 and 5 a view

of these four scenes.
- In Fig. 4 top, a simple deskroom with few objects and only one source; in Fig. 4

bottom, a more complex deskroom including several objects and 4 sources. The first

scene has been tessellated into about 8,000 elements and the second one into about
25,000 elements.

. Fig. 5 presents in the top part a classroom with a very large number of sources
(windows, ceiling lighting sources); in the bottom part, a sports hall where sources are

windows and ceil lighting. The classroom contains about 39,000 elements and the sports
hall about 108,000 ones.

The average computation time per shooting step is presented in Table 1, for 3
different projection plane resolutions. Resolution N means that the bounding square of

C, Rena& . Rousselle/Parallel Computing 23 (1997) 899-913 909

Fig. 4. Scenes 1 and 2: two deskrooms.

the projection disk has been cut into N X N proxels. Obviously only the proxels inside
the disk are used for form factors estimate.

These results highlight the great performances of our approach, either for small or
large databases. Note however that computation times are surprisingly similar both for
simple or complex scenes, especially for high resolutions. This can be explained by
taking into account the size of each scene, and the fact that the size of each element is
almost the same for all the scenes. When elements of scene 1 are projected, they covers
a large amount of proxels, because distances between objects are relatively small.
Consequently, a lot of spans per element have to be computed, distributed and
z-buffered. In case of scene 4, distances between the objects are large; the projected
elements cover thus less proxels than for scene I. Less spans per element have to be
computed. But as the number of elements is greater in the more complex scene, global
computation times are almost the same for each scene. It will be interesting to see what
will happen in case of very large database.

It is uneasy to compute efficiency of the approach using the MP-1 architecture.
Obviously it is impossible to run the algorithm on one processor. Furthermore, it is

910 C. Rena& Rousselle/Parallel Computing 23 11997) 899-913

Table 1
Average commutation times oer shooting steo (s)

Resolution

256 X 256
512X512
1024X 1024

Scene 1 Scene 2 Scene 3 Scene 4
8,000 elts 25,000 elts 39,000 elts 108,000 elts

0.296 0.431 0.551 0.673
0.524 0.583 0.692 0.821
1.183 1.125 1.175 1.293

uneasy to modify the architecture in order to have a smaller processor array. Thus we
have simulated smaller processor grids, by disabling some PEs of the MP-1 during the
computations. Two configurations have been tested: 1,024 processors (32 X 32) and
4,096 processors (64 X 64). The results of the simulation have shown a quiet linear
speedup for the four scenes.

It is interesting to analyse the computation/communication cost of each step of the

Fig. 5. Scenes 3 and 4: a classroom and a sports hall.

C. Rena& . Rousselle/Parallel Computing 23 11997) 899-913 911

RmduUon 512x512 Resciution lU24x1024

Fig. 6. Computation times distribution for two disk resolutions.

approach. For each of the five steps that we have previously described, we have
measured their average computation time for each of the four scenes. These measures
are presented in the two following histograms (see Fig. 6).

The steps appear with the notation S, for the geometric tranformations, S, for the
spans computation, S, for the spans passing, S, for the depth-buffer and S, for the
radiosity update. Obviously the time of step S, is the same, as it involves only
computations on the elements. Both computation time for step S, and S,, and communi-
cation time for step S, increase, as the number of spans increases when resolution
grows. It appears that the form factor update time is smaller for complex scenes than for
large ones. This can be explained by the use of the Global Router. When the scene is
small, several proxels have to be sent to the same element. This generates many
conflicts, because access are sequential. When the scene is very large, these conflicts
decreases, in the same way the number of covered proxels per element decreases.

7. Conclusion and perspectives

We have presented in this paper a massively parallel approach for progressive
radiosity. Form factors are estimated through the use of a disk sampling area, that
reduces the number of proxels required for sampling, and avoids the loss of energy
through the grazing directions. The parallel implementation of this algorithm has taken
care of the SIMD features of the target architecture. Each algorithm step has been
studied in order to provide SIMD-like code, providing a very high efficiency through the
large set of processors. Furthermore, we have shown that recent overshooting methods
can be easily added to our approach. Parallel form factors estimate and parallel
overshooting allow our approach to provide fast progressive solving of the radiosity
equations system, even for large databases. Despite our algorithm has been developed by
intensively using MP-1 features, especially the communication networks, it seems to be
made suitable to other SIMD architecture, subject to take into account their own
communication ways.

Projective algorithms are prone to errors during form factors estimate. One of this

912 C. Renaud, Rousselle/Parallel Computing 23 (1997) 899-913

error source, known as aliasing, is today investigated within the framework of our
parallel approach. Aliasing occurs because of the discontinuities that appears during the
sampling process. It can be reduced by increasing the number of samples (here the
number of proxels), but this increases the computation time too. We are currently
studying the adequacy of antialiasing techniques other than oversampling, that could be
applied on the disk sampling method.

In our current approach, spans are computed from the projected outline bounding
rectangle. This simplify the span conversion process, but involves more computation
during the z-buffer step. We are studying whether computing the exact span would
provide better results than those that have been presented.

Finally it seems important to still reduce the communication times. This can be
achieved by considering coherency properties during span distribution and form factors
computation.

References

[l] D.R. Baum, J.M. Winget, Real time radiosity through parallel processing and hardware acceleration,

Comput. Graph. 25 (4) (1991) 51-60.

[2] A.G. Chalmers, D.J. Paddon, Parallel processing of progressive refinement radiosity methods, in: 2nd

Eurographics Workshop on Rendering, Barcelona, May 1991.

[3] S.E. Chen, A progressive radiosity method and its implementation in a distributed processing environ-

ment, M.Sc. thesis, Cornell University, Ithaca, 1989.

[4] M.F. Cohen, D.P. Greenberg, The hemicube: a radiosity solution for complex environments, SJGGRAPH

85, pp. 31-40.

[5] M.F. Cohen, S.E. Chen, J.R. Wallace, D.P. Greenberg, A progressive refinement approach to fast

radiosity image generation, SIGGRAPH 88, pp. 75-84.

[6] SM. Drucker, P. Schroder, Fast radiosity usin g a data parallel architecture, in: 3rd Eurographics

Workshop on Rendering, Bristol, 1992, pp. 247-258.

[7] M. Feda, W. Purgathofer. Progressive refinement radiosity on a transputer network, in: 2nd Eurographics

Workshop on Rendering, Barcelona, I99 I.
[8] M. Feda, W Purgathofer, Accelerating radiosity by overshooting, in: Proc. 3rd Eurographics Workshop

on Rendering, 1992, pp. 21-32.

[9] J. Goldfeather, Progressive radiosity using hemispheres, Technical report TR 89-002, University of North

Carolina at Chapel Hill.

[lo] CM. Goral, K.E. Torrance, D.P. Greenberg, Modeling the interaction of light between diffuse surfaces,

SIGGRAPH 84, pp. 213-222.

[l I] S. Gortler, M. Cohen and P. Slusallek, Radiosity and Relaxation Methods, Technical Report, Computer

Science Department, Princeton University, 1993.

[12] P. Guitton, J. Roman, C. Schlick, Two parallel approaches for progressive radiosity, in: 2nd Eurographics

Workshop on Rendering, Barcelona, I99 I.
[13] P. Guitton, J. Roman, G. Subrenat, Implementation results and analysis of a parallel progressive radiosity,

in: Proc. of IEEE/ACM 1995 Parallel Rendering Symp., 1995, pp. 31-38.

[14] R.J. Reeker, D.W. George, D.P. Greenberg, Acceleration techniques for progressive refinement radiosity,

Comput. Graph. 24 (2) (I 990) 59-66.

[15] C. Renaud, F. Bricout, E. Lepretre. Massively parallel hemispherical projection for progressive radiosity,

Comput. Graph. I9 (2) (1995) 273-279.
[16] C. Renaud, Approches parallelcs pour In radiosite, Ph.D. thesis, University of Lille, 1993.

[l7] C. Renaud, F. Bricout, E. Lcpr~tre. An object parallel approach for radiosity on the MP-I, in: Int. Conf.

on Massively Parallel Processin, 0 .i\pplications and Development, Delft, 1994, pp. 887-894.

C. Rena&, . Rousselle / Parallel Compuring 23 (1997) 899-913 913

[18] M.Z. Shao, N.I. Badler, Analysis and acceleration of progressive refinement radiosity method, in: Proc.
4th Eurographics Workshop on Rendering, 1993.

[19] F. Sillion, C. Puech, A general two-pass method integrating specular and diffuse reflection, Comput.
Graph. 23 (3) (1989) 335-344.

[20] D.B. Singh, S.G. Abraham, F.H. Westervelt, Computing radiosity solution on a high performances
workstation LAN, in: 1st High Performance Distributed Computing, N.Y., 1992, pp. 248-257.

[21] S.N. Spencer, The hemisphere radiosity method: a tale of two algorithms, in: Eurographics Workshop on
Photosimulation, realism and Physics in Computer Graphics, Rennes, 1990, pp. 127-135.

[22] T. ThCoharis, I. Page, Parallel incremental polygon rendering on a SIMD processor array, Parallel
Processing for Computer Vision and Display, pp. 329-337.

[23] A. Varshney, J.F. Prins, An environment-projection approach to radiosity for mesh connected computers,
in: 3rd Eurographics Workshop on Rendering, Bristol, 1992, pp. 271-281.

[24] J.R. Wallace, K.A. Elmquist, E.A. Haines, A ray tracing algorithm for progressive radiosity, Comput.
Graph. 23 (3) (1989) 315-324.

[25] W. Xu, D.S. Fussell, Constructing solvers for radiosity equation systems, in: Proc. of 5th Eurographics
Workshop on Rendering.

