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Abstract 

Radiosity is a powerful method for solving the global illumination problem in the case of 
purely diffuse light reflexions. The progressive refinement algorithm provides interactivity during 
computation by displaying intermediate images, and overshooting methods increases the conver- 
gence rate of progressive radiosity. However, computation times remain very important. Parallelis- 
ing these algorithms is a good way to significantly improve interactivity by reducing computation 
time. The aim of this paper is to present a method for the parallelisation of the progressive 
refinement radiosity algorithm on a massively parallel SIMD machine. We took care of both the 
SIMD machine nature and the high number of available processors on studying the several ways 
to efficiently implement the algorithm. The parallel scheme we propose uses a disk projection area 
for form factors estimate and decreases dramatically the computation times. 

Keyword.s: Progressive radiosity; Form factor calculation; Parallel rendering 

1. Introduction 

Since it has been introduced in 1984 [lo], the radiosity method has been proved to be 
an efficient rendering technique, solving the global illumination problem in the case of 
perfectly diffuse surfaces. But it required to compute and to store a large set of form 
factors before rendering could occur. Cohen introduced interactivity and low cost 
storage by using a progressive refinement radiosity approach [51, reducing the waiting 
period between illumination and rendering. However this algorithm requires much more 
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iterations in order to converge to the final illumination solution. Recently, overshooting 
methods [8,25] have been introduced in order to accelerate the resolution convergence. 
But even with these new improvements, radiosity is still computationally demanding, 
especially because form factors estimate requires a lot of computation. These computa- 
tional requirements are not available on sequential machines. Several works have thus 
been performed in order to implement the radiosity algorithms on parallel machines. In 
this paper, we are interested in implementing a massively parallel approach for the 
progressive refinement radiosity algorithm on a SIMD mesh-connected machine, the 
MP-1. We focused our attention on the parallelisation of the form factors computation 
step. Form factors are computed using a disk projection area, directly based on the 
Nusselt equivalent, and uniformly discretised into square proxels. Furthermore, our 
approach takes advantage of overshooting too, as the existing overshooting methods can 
be efficiently implemented as a part of our SIMD algorithm. As the MP-1 computer uses 
a SIMD control, we take care to use optimally all the processors. This allows us to 
achieve well balance of each stage of the algorithm. 

In the next part, we present the disk projection algorithm we used for the form factors 
estimate. Then we recall and analyse the main works in radiosity parallelisation in part 
3, and we present the architecture of the MP-1 machine we used for our studies in part 
4. In the last two parts, we present our parallel algorithm, and some results we have 
obtained. 

2. Disk projection area 

Form factors estimate requires to compute visibility between each pair of elements. 
Several algorithms have been developed for this purpose. They use either projective (e.g. 
hemicube [4], single projection plane [ 14,191) or ray casting approaches [24]. Projective 
approaches have several advantages with regard to ray-casting for a SIMD parallelisa- 
tion. They involve identical computation for each element (and each proxel of the 
projection area>, when computation are different for rays according to the intersected 
surface type. Efficiency can only be obtained on SIMD architectures when processors 
are well load balanced and when they apply simultaneously the same simple computa- 
tion. In order to achieve efficiency, we chose to implement a projective algorithm, based 
on the Nusselt equivalent. 

2.1. Principle 

The disk projection area algorithm is based on the Nusselt equivalent, and has been 
first proposed by Spencer [21]. A unit disk is applied on an element, tessellated into 
several square proxels, and scene elements are projected onto these proxels through 
theoretically 2 projections: the first one projects an element onto the hemisphere 
sustained by the disk; this projection is then projected orthogonally onto the disk surface 
(see Fig. la>. 

The disk projection algorithm has several advantages as compared to the other 
projective algorithms: 

. Only one projection surface is used compared to the hemicube for which 5 
projection surfaces (and consequently 5 projection steps) are required. 
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Fig. 1. (a) Nusselt equivalent, (b) elliptic arcs based outlines 

. The disk projection surface lies onto the element, and it does not ‘forget’ the 
grazing directions like the single plane projection approaches do. 

. The elementary form-factor connected to each proxel is the same for each one. 
This allows the disk to reduce the number of proxels to use, and to cancel out the 
oversampling that appears in each other projective approaches (for more details about 
projective approaches comparisons, see [ 161). 

One problem with this algorithm is that the projection outlines are not linear: the 
image of a 3D edge on the disk is an elliptic arc (see Fig. lb). Commonly used outline 
filling algorithms are thus not available. In [9], Goldfeather proposed a method to fill 
such elliptic arcs based boundary, for the Pixel-Planes 5 machine. We derived a simpler 
solution from his work in [15], which is summarized below. 

2.2. The jilling algorithm 

We suppose first that the proxels coordinates are expressed in an (u, u) orthonormal 
coordinate system, like the one that appears in Fig. lb. In this coordinate system, each 
ellipse equation can be rewritten as 

Au+Bu+Ca=O. 

An N-edges element projection is thus represented as an intersection of the N ellipses. 
By appropriately orienting each ellipse equation, it is then easy to know whether a 
proxel is inside or outside the projection. In order to reduce the number of proxels to 
test, the projection bounding rectangle of the projected outline is computed and only the 
proxels inside this disk subarea are taken into account (see [15] for more details). 

3. Previous work 

3.1. Parallel progressive radiosity 

The progressive radiosity approach offers three different levels for parallelisation: 
- Several emissions are computed in the same time, each one from a different 

emitting element, according to the number of available processors [2,3,7,12,14]. 
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* Only one emission is computed, by distributing the involved computations between 
the processors 1201. 

* The processors collaborate for computing the form factor between the shooting 
element and a given element [ll. Note however that this approach only occurs for 
projective methods. 

All these levels have been exploited both on MIMD and SIMD architecture. MIMD 
parallelisation has mainly focused on the first two levels. Differences between imple- 
mentations proceed from the form factor algorithm, the network topology and the 
duplication/distribution/share schemes of the database. It appears however that as the 
database size grows, the elements have to be distributed between the processors. This 
distribution involves a very high number of communications, and the efficiency of these 
approaches decreases rapidly when the number of processors increases [13]. 

3.2. Overview of SIMD parallel radios@ 

SIMD machines require all the processors to perform the same instruction at the same 
time. This centralized control requires to use data parallelism, and to take care of the 
load-balancing between the processors. The processors are generally organized as an 
array, which is close to the projection plane organisation used in projective methods. 
Consequently, several approaches have been proposed for this kind of form factors 
computation algorithms. In [16] we proposed to exploit the third level of parallelism we 
described, by projecting successively each element onto the sampling surface. Each 
proxel is handled by a processor, which computes whether the projected element is 
inside or outside the proxel, and applies the depth-buffer operations. However, a large 
number of proxels are not covered by the projected element, and the efficiency of such 
an approach is small. Varshney [23] proposed to simultaneously compute several 
element projections. Each PE manages a block of neighbouring proxels, and a part of the 
element database. The first step of its algorithm distributes the elements to the processor 
managing a part of the sampling area where the elements have to be projected. Then all 
the processors determine in which of their proxels the elements they received are visible, 
and apply the depth comparisons. However, the projection work is not distributed 
equally between the processors, as the number of elements that are visible in each 
sampling direction can be very different, and imbalances occurs. 

Parallel ray casting for form factor computation has been implemented too. Drucker 
[6] used a processor allocation technique for computing all the possible intersections 
between a ray and the voxels that lie on the ray way. Several rays are treated 
simultaneously, according to the number of available processors. However, unnecessary 
work is performed as all the intersections are computed along the ray path, even if an 
intersection exists in the first voxels. Then, the SIMD nature of the approach quickly 
decreases the performances when several objects types are intersected onto different 
processors. 

4. The MP-1 architecture 

The MP-I computer is made up of a host workstation, a large number of simple 
processing elements (PEs), and a specialized processor, so called the array control unit 
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Fig. 2. (a) The Xnet, (b) the global router. 

(ACU), which controls the set of PEs. The processing elements have their own local 
memory and run following a SIMD scheme: each PE performs simultaneously the same 
instruction onto its private data. The ACU broadcasts instructions and global data, while 
the local data are fetched from the PE memory. PEs can be disabled temporally, when 
they do not have to perform some instructions (for example when a if statement is 
broadcast). 

The processing elements, which we will simply call the processors in the following of 
the paper, are build around a simple 4 bits architecture; they dispose of thirty two 32 bits 
registers, and up to 64 KB RAM. They are connected together according to a rectangular 
grid, its size varying from 1,024 (32 X 32 array) up to 16,384 (128 X 128 array) 
processors. 

Two communication networks are provided, either for neighbouring or distant 
communications. The Xnet network connects each processor to its 8 nearest neighbours 
(see Fig. 2a). A processor lying on the edge of the grid is connected to the opposite edge 
processor. Communication through this network are SIMD controlled: all the processors 
must send their message in the same direction, or wait for an other communication step. 

The Global Router is the second communication network of the MP-1. It is able to 
perform communications between every pair of processors, through a three stage 
hierarchy of crossbars (see Fig. 2b). However, only one link to the GR is available per 
cluster of 4x4 processors. Communication through the GR from or to a cluster are thus 
necessarily sequentialised. Consequently, conflicts (and then inefficiency) occur when 
several processors of a cluster have to send or to receive a message. 

We have developed our parallel radiosity approach on a 16,384 processors MP- 1, 
each processor managing 64 Kb RAM (1 Gb global memory). 

5. A massively parallel approach 

Our goal is to develop an efficient SIMD implementation of the disk projection 
algorithm as the heart of a massively parallel progressive radiosity approach. SIMD 
architectures are often characterized by a high number of very simple processors: the 
power is provided by the number of processors rather than by they computation 
capabilities. In the same way, processors have their own memory; this one is often of 
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small size (a few Kbytes), but the use of several thousands of processors provides 
generally a very large amount of global memory. In order to benefit from this two 
unusual features, it is necessary on one hand to apply simultaneously the same 
operations onto all the processors and to assure that all these operations are really useful. 
On the other hand, the distribution of the data is necessary, but it allows the approach to 
process very large scenes. 

5.1. Data ‘distribution’ 

Two kinds of data are mainly handled by a radiosity algorithm, when using a 
projective approach: the elements (with both geometric and photometric features) and 
the proxels used for approximating the form factors. All these data have to be distributed 
over the processors, in order both to be directly available for the computation (no 
communication required for fetching the data) and to take advantage of the large amount 
of global memory available on the target machine. 

Element distribution scheme is very simple, as no particular property is required for 
the form factor computation step: elements are extracted from the database file and send 
one by one to a different processor. When the number of elements is greater than the 
number of processors, the process is cyclically repeated, in order for each processor to 
finally manages N or N - 1 elements. 

Proxels distribution scheme is more subordinate to the MP-1 architecture. The proxel 
array is mapped cyclically onto the processor array, so that 2 neighbouring proxels (both 
along u and u axis) are managed by 2 neighbouring processors. This will allow some 
steps of the algorithm to be well load balanced, as described further. 

5.2, The filling principle 

Each element needs to be projected onto the disk, and a depth-buffer operation has to 
be performed in each inner proxel. However both the elements and proxels are 
distributed across the processor array. It is also impossible for a processor to apply the 
depth-buffer computation in each proxel covered by its element projection, since these 
proxels are managed by some other unknown processors. 

We investigated a way to solve this problem by communicating a projected element 
to all the processors [ 151. Thus each one is able to compute whether the element appears 
in one or more of the proxels it manages. But this solution involves a lot of useless 
computation, because projected elements are generally small and cover a few part of the 
entire proxel set. The main part of the processors is consequently used for useless 
computation (as compared to a sequential approach), and provides an inefficient 
approach. 

In order to provide useful computation, it is necessary to compute, locally to an 
element handling processor, which proxels this element covers. This information can 
then be sent only to the processors that handle the covered proxels. However such an 
approach would provide an important drawback: a large amount of communication is 
required, as one message is necessary for each covered proxel. We propose to reduce 
this amount of messages by computing first only the covered spans (we call span a 
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Fig. 3. Span conversion of the projected outlines. 

continuous set of proxels lying on the same projection plane line). Each of this span is 
then sent to the processor handling its first proxel, which can apply the depth 
comparison. The depth-buffer for the other span proxels is then easy to perform, by 
remembering that proxels have been distributed cyclically. That means that the second 
proxel of a span is managed by the neighbouring processor of the one that manages the 
first span proxel, and so on. Communications are of course required, but they are 
efficiently performed by using the Xnet network, which is very well designed for 
proximity communications. 

Computing spans is easy for linear convex outlines, but is more computationally 
demanding for elliptic arc based boundaries. For this reason the exact covered spans are 
not directly computed. Rather one can compute more easily the spans covered by the 
outline bounding rectangle, cutting this rectangle in equal length size spans (see Fig. 3). 

The inner test is then performed proxel per proxel just before the depth-buffer 
comparison, on the processor managing the proxel. 

5.3. The parallel algorithm 

By developing our approach on a SIMD architecture, we have to take care of each 
step of the algorithm in order to achieve load balancing and efficiency. For this purpose, 
the entire form factors computation process has been carefully studied and cut into 
several successive steps, each one being designed for a SIMD implementation. 

5.3.1. Geometric transformation 

The geometric transformations are first applied on the elements stored on each 
processor. These transformations include coordinate transformations, back-face culling 
and clipping. Note that the first two ones require exactly the same amount of computa- 
tion, when clipping involves small unbalancing. 

5.3.2. Spans conversion 

As described before, projected elements are cut into spans: the bounding rectangle is 
first computed, and each of the covered row of the projection disk is then deduced. For 
each one, the first span proxel coordinates is stored into a local span list. Some other 
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informations are stored too, like the length of the span and various parameters for the 
z-buffer step. 

When a processor detects that its current element span conversion has been com- 
pleted, it dynamically loads a new element from its local element list. This avoids the 
unbalance that would occur if it had to wait for the completion of some other processor. 

5.3.3. Span passing 
Computing the spans locally to each processor involves communications before 

applying the z-buffer. As explained in Section 5.2, the proxel covered by a span are 
generally managed by some other processor than the one managing the span itself. The 
span is thus sent to the processor managing its first proxel. This communication is 
performed through the Global Router, which is better-suited for connecting any pair of 
processor than the Xnet. 

5.3.4. Z-buffer 
After the previous step, each processor has a new span list, each of them beginning in 

a locally managed proxel. These spans are z-buffered by taking each one successively, 
and by applying the following operations: 

. the first proxel of the span is extracted from the span; 
- if this proxel is inside the projected outline, it is depth-buffered; 
* the span length is decreased, and the span is sent to the right-neighbour processor; 
- a span is received from the left-neighbour. If its length is null, a new span is fetch 

from the span list; 
. the steps are applied again for the current span, until no more spans are stored on 

any processor. 
Remember that this algorithm is applied simultaneously for all the processors. This 

allows us to depth-buffer a very high number of spans simultaneously. As proxels are 
distributed cyclically over the processor array, communications are very efficiently 
performed through the Xnet. 

5.3.5. Form factors update 
For the same reason than previously (covered proxels and elements are not managed 

by the same processor), communications are required in order for an element to known 
its form factor with the emitting element. These communications are performed through 
the Global Router, by sending each proxel associated elementary form factor to the 
corresponding element. As many proxels are generally covered by the same element, 
this involves both a lot of communications (one per covered proxel) and a large amount 
of conflicts (because several proxels are sent to the same processor). One can however 
reduce the communication time by studying proxel coherency properties: 

. Several conflicts appear when many processors attempt to communicate with the 
same one. This problem appears frequently in projective approach, because the probabil- 
ity for 2 neighbouring proxels to be covered by the same element is very high. A simple 
‘blending’ function has been implemented in order for 2 neighbouring processors to 
choose the proxels they have to send simultaneously. This choice is performed in such a 
way that the two processors do not send neighbouring proxels. 
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. The previous approach reduces the conflicts, but does not reduce the number of 
proxels that have to be sent. Using the horizontal coherency between the proxels 
(neighbour proxels are often covered by the same element), a collect step is performed 
along each disk line. After this step, the line form factor of each visible element has 
been accumulated in only one processor (the one managing the first visible proxel of the 
element). Only one communication is then performed for this new form factor. 

These two solutions have been implemented in [17], and have dramatically reduced 
the communication time for this step of the algorithm. 

5.4. Parallel overshooting 

At each step of the progressive radiosity algorithm, when some radiosity is shot from 
an element i to the environment, a part of this energy returns to the emitter due to single 
or multiple reflections by elements j (j # i). The aim of overshooting’s methods is to 
provide an estimate of the amount of this returned radiosity and to add it to the current 
unshot radiosity of the emitter before it shoots this one. The overall number of iterations 
required by the progressive radiosity algorithm is thus reduced. 

Several overshooting methods have been proposed recently. Methods by Gortler et al. 
[l l] and Shao et al. [18] compute precisely the radiosity reflected directly by other 
elements but do not take care of the multiple reflections. On the other hand, Feda and 
Purgathofer’s method [S] estimates the radiosity due to all reflections (single and 
multiple) using a global ambient term. 

In environments with large reflectivities, Feda and Purgathofer’s method converges 
faster than the others. But in the case of small reflectivities, it might not converge as fast 
as Shao et al.‘s and Gortler et al.‘s methods because the returned radiosity due to 
multiple reflections is less significant. In such environments, Feda and Purgathofer’s 
rough overshooting’s estimate might be less accurate than Shao et al.‘s and Gortler et 
al . ‘s computation. 

Another approach described by Xu and Fussell [25] takes advantage of the latest 
ones. This method not only computes the radiosity reflected directly but estimates the 
radiosity due to multiple reflections too. This algorithm provi,des better results in 
environments with any reflectivities. 

We have implemented Xu and Fussell’s algorithm on the MP-I taking advantages of 
its architecture. The amount of radiosity to shoot at each step of the algorithm Asi. can 
be described as the sum of the unshot radiosity of the emitter ASi with the radiosity due 
to the two kinds of reflection [25] 

A~i=hB,+p~ iFjiABj+pa,,Ambient 
j= I 

In order to compute the radiosity due to direct reflections, C:= , Fj,ABj, each processor 
first computes the product FjiABj locally for each of the elements it manages. The sum 
of these products is then performed locally too. Finally, these partial results are quickly 
summed through a reduction operation. 
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The radiosity due to multiple reflections is expressed as p,,,Ambient, the Ambient 

term being described by 

Ambient = R 2 ABjF., j, 
j= I 

where R is the overall interreflection factor 

1 
R = 1 + pa,, + p,‘“, + . . . = - 

1 - Paw 

and Pa,, is the average reflectivity of the environment 

k= I k= 1 

where A, is the area of element k. The overall interreflection R and the average 

reflectivity pave are computed once at the beginning of the algorithm using reduction 

functions. 
Finally, the form-factor F, , is approximated by 

F,j~Aj iA, 

I k= I 

It is thus obvious that implementing Xu and Fussell’s overshooting approach, which has 

been shown to reduce considerably the number of shooting steps, in our parallel 
algorithm does not have any significant overcost using the MP-I machine. 

6. Some results 

We have applied our algorithm onto 4 different scenes, with increasing complexities 
and various illumination properties. Theoretically, the MP-I is able to store about 
10,000,000 elements (assuming about 100 bytes data per element), but the more 

complex scene we present (scene 4) is restrained to only 100,000 elements. A close-to 1 
million elements scene is currently being designed. We present in Figs. 4 and 5 a view 

of these four scenes. 
- In Fig. 4 top, a simple deskroom with few objects and only one source; in Fig. 4 

bottom, a more complex deskroom including several objects and 4 sources. The first 

scene has been tessellated into about 8,000 elements and the second one into about 
25,000 elements. 

. Fig. 5 presents in the top part a classroom with a very large number of sources 
(windows, ceiling lighting sources); in the bottom part, a sports hall where sources are 

windows and ceil lighting. The classroom contains about 39,000 elements and the sports 
hall about 108,000 ones. 

The average computation time per shooting step is presented in Table 1, for 3 
different projection plane resolutions. Resolution N means that the bounding square of 
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Fig. 4. Scenes 1 and 2: two deskrooms. 

the projection disk has been cut into N X N proxels. Obviously only the proxels inside 
the disk are used for form factors estimate. 

These results highlight the great performances of our approach, either for small or 
large databases. Note however that computation times are surprisingly similar both for 
simple or complex scenes, especially for high resolutions. This can be explained by 
taking into account the size of each scene, and the fact that the size of each element is 
almost the same for all the scenes. When elements of scene 1 are projected, they covers 
a large amount of proxels, because distances between objects are relatively small. 
Consequently, a lot of spans per element have to be computed, distributed and 
z-buffered. In case of scene 4, distances between the objects are large; the projected 
elements cover thus less proxels than for scene I. Less spans per element have to be 
computed. But as the number of elements is greater in the more complex scene, global 
computation times are almost the same for each scene. It will be interesting to see what 
will happen in case of very large database. 

It is uneasy to compute efficiency of the approach using the MP-1 architecture. 
Obviously it is impossible to run the algorithm on one processor. Furthermore, it is 
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Table 1 
Average commutation times oer shooting steo (s) 

Resolution 

256 X 256 
512X512 
1024X 1024 

Scene 1 Scene 2 Scene 3 Scene 4 
8,000 elts 25,000 elts 39,000 elts 108,000 elts 

0.296 0.431 0.551 0.673 
0.524 0.583 0.692 0.821 
1.183 1.125 1.175 1.293 

uneasy to modify the architecture in order to have a smaller processor array. Thus we 
have simulated smaller processor grids, by disabling some PEs of the MP-1 during the 
computations. Two configurations have been tested: 1,024 processors (32 X 32) and 
4,096 processors (64 X 64). The results of the simulation have shown a quiet linear 
speedup for the four scenes. 

It is interesting to analyse the computation/communication cost of each step of the 

Fig. 5. Scenes 3 and 4: a classroom and a sports hall. 
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RmduUon 512x512 Resciution lU24x1024 

Fig. 6. Computation times distribution for two disk resolutions. 

approach. For each of the five steps that we have previously described, we have 
measured their average computation time for each of the four scenes. These measures 
are presented in the two following histograms (see Fig. 6). 

The steps appear with the notation S, for the geometric tranformations, S, for the 
spans computation, S, for the spans passing, S, for the depth-buffer and S, for the 
radiosity update. Obviously the time of step S, is the same, as it involves only 
computations on the elements. Both computation time for step S, and S,, and communi- 
cation time for step S, increase, as the number of spans increases when resolution 
grows. It appears that the form factor update time is smaller for complex scenes than for 
large ones. This can be explained by the use of the Global Router. When the scene is 
small, several proxels have to be sent to the same element. This generates many 
conflicts, because access are sequential. When the scene is very large, these conflicts 
decreases, in the same way the number of covered proxels per element decreases. 

7. Conclusion and perspectives 

We have presented in this paper a massively parallel approach for progressive 
radiosity. Form factors are estimated through the use of a disk sampling area, that 
reduces the number of proxels required for sampling, and avoids the loss of energy 
through the grazing directions. The parallel implementation of this algorithm has taken 
care of the SIMD features of the target architecture. Each algorithm step has been 
studied in order to provide SIMD-like code, providing a very high efficiency through the 
large set of processors. Furthermore, we have shown that recent overshooting methods 
can be easily added to our approach. Parallel form factors estimate and parallel 
overshooting allow our approach to provide fast progressive solving of the radiosity 
equations system, even for large databases. Despite our algorithm has been developed by 
intensively using MP-1 features, especially the communication networks, it seems to be 
made suitable to other SIMD architecture, subject to take into account their own 
communication ways. 

Projective algorithms are prone to errors during form factors estimate. One of this 
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error source, known as aliasing, is today investigated within the framework of our 
parallel approach. Aliasing occurs because of the discontinuities that appears during the 
sampling process. It can be reduced by increasing the number of samples (here the 
number of proxels), but this increases the computation time too. We are currently 
studying the adequacy of antialiasing techniques other than oversampling, that could be 
applied on the disk sampling method. 

In our current approach, spans are computed from the projected outline bounding 
rectangle. This simplify the span conversion process, but involves more computation 
during the z-buffer step. We are studying whether computing the exact span would 
provide better results than those that have been presented. 

Finally it seems important to still reduce the communication times. This can be 
achieved by considering coherency properties during span distribution and form factors 
computation. 
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