
Name /csc_mlang_104171/05vitali/Mp_389 06/06/2001 12:30AM Plate # 0 pg 389 # 1

Fabio Vitali, Luca Bompani, and Paolo Ciancarini, “Hypertext functionalities with XML”
Markup Languages: Theory & Practice 2.4 (2001): 389–410

� 2001 by the Massachusetts Institute of Technology

Article

Hypertext functionalities with
XML
Fabio Vitali
University of Bologna, Department of Computer Science
and CNR-IAT (Pisa)
Mura A. Zamboni, 7
I-40127 Bologna BO
Italy

TEL �39 051 2094872
FAX �39 051 2094510
EMAIL fabio@cs.unibo.it

Luca Bompani
University of Bologna
Department of Computer Science
EMAIL bompani@cs.unibo.it

Paolo Ciancarini
University of Bologna
Department of Computer Science
EMAIL ciancarini@cs.unibo.it

Hypertext functionalities represent part of the distilled wisdom of the hypermediacommunity.
Given the peculiar nature of the World Wide Web, it is very difficult to successfully propose
functionalities that can become widely accepted. Yet, standards such as XLink may provide
the needed basic tools to implement most of them. In this paper we briefly discuss the
issues brought forth by the hypertext functionalities and introduce XMLC. XMLC is our pro-
totype of an XML browser that, given its modular architecture and general scope, can be
used as the basis for implementing sophisticated hypertext functionalities on the Web. Our
own implementation of a seminal XLink support is further discussed.

Introduction

The community of hypertext functionalities [HTF] was born in order to
identify and list the functionalities intrinsic to the idea of hypertext, and to either
verify them or introduce them in other communities such as the World Wide Web
([Vitali/Watters 1998] and [Molasavljevic et al. 1999]), software engineering
[Rossi/Ziv 1998], etc.

In particular, the World Wide Web has developed according to ways that
were very peculiar and difficult to predict. For instance, the WWW community
valued the development of standards and protocols more than functionalities.

Name /csc_mlang_104171/05vitali/Mp_390 06/06/2001 12:30AM Plate # 0 pg 390 # 2

Fabio Vitali, Luca Bompani, and Paolo Ciancarini390

Markup Languages: Theory & Practice | Vol 2 No 4

This has lead to the creation of some dozens of different languages and protocols
that are necessary to master the task of creating satisfactory Web sites.

In our opinion this richness of languages shows on the one hand, that there
exist the possibility of implementing a large number of interesting functionalities,
and on the other hand, that unfortunately the WWW does not enforce or even
facilitate them, so that their use depends on the will and awareness of the authors
of Web pages and sites.

Furthermore, this richness of possibilities is coming to the detriment of sim-
plicity, which was once the real advantage of the World Wide Web over other
systems such as Gopher or FTP. In the near future professional Web authors may
have to deal with at least ten different and non-trivial languages or protocols,
such as HTML, CSS, ECMAscript (plus any of its proprietary dialects, such as
Javascript and Jscript), XML, XSLT, XSL-FO, XPath, XPointer, XLink, XML-
Schema, RDF, HTTP, WebDAV, your families of choice of server-side includes,
plus many others that at the moment are starting to catch on. So, while there
really exist the possibility, in the languages, to provide sophisticated hypertext
functionalities, we have to wait for Web applications to actually provide them in
a usable way.

Yet, the XML family is a considerable advancement over previous languages
and standards. The possibility given by XML [Bray et al. 1998] to define a syn-
tax (i.e., a Document Type Definition, or DTD) tailored for one’s document
classes, and to use standard XML tools to create, verify and exchange data is a
real bonus. The strength of XML lies beyond the capabilities to define commu-
nity-specific DTDs: XML is becoming convenient to use even for application-only
data, that is, for objects that are not naturally meant to be displayed to a human
user.

Additionally, XSL provides much to XML in terms of reach and flexibility.
XSL includes a mapping language [Clark 1999] that can be used to transform an
XML document into another one. Currently its most important use is to trans-
form an XML document into a format that can be displayed by a browser: thus
for instance Microsoft Internet Explorer 5 can accept XML documents of any
DTD and use XSL to transform them into an HTML document that can then be
properly displayed on a computer screen. Unfortunately this approach is only as
flexible as the destination format, i.e. as the language that the final browser
understands.

Our long-term purpose is to create an environment that, while relying on
most existing Web languages and protocols, can provide fundamental hypertext
functionalities in a streamlined and easy way. In past papers we discussed “dis-
plets” ([Ciancarini et al. 1998] and [Bompani et al. 1999]), our proposal to pro-
vide flexible support for special rendering needs that authors may have. Displets
are software modules (currently they are Java classes) that are associated to each

Name /csc_mlang_104171/05vitali/Mp_391 06/06/2001 12:30AM Plate # 0 pg 391 # 3

Hypertext functionalities with XML 391

Fall 2001 | Markup Languages: Theory & Practice

element in an XML document and that provide some behavior (usually rendering
behaviors, such as formatting characteristics) for that element. Support for the
most common element types is provided (for instance, text elements and para-
graphs), but it is possible at any time to add new modules enabling specialized
rendering semantics for specific needs.

XMLC can be considered a very general architecture to add sophisticated
hypertextual functionalities into documents created in the XML format. The
overall design goal is to create a complete authoring environment for sophisti-
cated hypermedia based on the most recent protocols and languages available on
the WWW. One of the most interesting of such protocols is XLink [DeRose et al.
2000], that provides for easy implementation of several sophisticated hypertex-
tual services. In this paper we concentrate on hypothesizing the usefulness of this
protocol for the realization of the sophisticated hypertextual functionalities listed
in [Bieber et al. 1997]. Furthermore, we describe how they are being implemented
in the current version of our XMLC browser. In fact, the architecture of XMLC
can be fruitfully used for more than visualization, for it is an extremely general
way to associate behaviors to XML elements, and thus to produce active docu-
ments that perform computations, enact goals, produce results.

This paper is structured as follows: in the next section we discuss some of the
most important hypertext functionalities on the Web. Next we discuss the current
architecture of XMLC, and provide examples of some of the displet classes we
have created. Then we discuss how the hypertext functionalities can be imple-
mented using XLink, and how XMLC supports XLink. This makes XMLC a
sophisticated architecture for hypertext functionalities using XML.

Hypertext functionalities on the Web

In [Bieber et al. 1997] a list of 9 fundamental (according to the authors’
opinions) hypermedia functionalities were proposed and discussed, with the
understanding that few of them, if any at all, were either available on the World
Wide Web or exploited to their full potential:

• Typed nodes and links
• Link attributes and structure-based queries
• Transclusions, warm and hot links
• Annotations and public vs. private links
• Computed personalized links
• External link databases and link update mechanisms
• Global and local overviews
• Trails and guided tours
• Backtracking and history-based navigation.

Name /csc_mlang_104171/05vitali/Mp_392 06/06/2001 12:30AM Plate # 0 pg 392 # 4

Fabio Vitali, Luca Bompani, and Paolo Ciancarini392

Markup Languages: Theory & Practice | Vol 2 No 4

These items were selected from a longer list of 25 items assembled at the 2nd
HTF workshop in conjunction with the Hypertext ’96 conference [Ashman et al.
1996].

At the moment, probably, all of these functionalities could be easily imple-
mented on the WWW. Server-side CGI applications, servlets and DBMSs, as well
as client-side plug-ins, Java and Javascript programs allow now a degree of free-
dom in customizing the WWW unprecedented in any other hypermedia system
(even those that did implement some of these functionalities). The research and
commercial communities have in fact already explored some of these functionali-
ties in the last few years. Yet, few of them have really caught on with the larger
WWW community, or even found a small visibility stand-point through the avail-
able commercial applications.

It is indeed our opinion that no Java applet, CGI application or other custom
concoction can possibly produce any relevant change in the way the WWW is
used. The reason for this is that these would all be added functionalities to the
core sets in servers and browsers, and, unfortunately, the WWW in neither the set
of server functionalities, nor the set of browser functionalities.

The fact that the WWW is not a system, or a set of interdependent systems,
but a set of protocol and languages, is obvious yet not sufficiently understood.
No single system can provide added value to the WWW as a whole. Almost no
organization (in many cases not even Microsoft or Netscape) can introduce a
new functionality in its products and find out that the WWW as a whole catches
on. The WWW must not be improved in the systems, but in the way it actually
works: by changing the underlying languages and protocols (HTML, HTTP, CGI,
etc.).

We can group the above-mentioned functionalities in two larger families:
those that add to the active participation of the users in the production of infor-
mation, and those that add to the exploration of the available information. On
the one hand, annotations, private links and computed personalized links (that
require external link bases and link update mechanisms to work on a large scale)
allow for the active participation of readers to the nodes they read. On the other
hand, overviews, trails, guided tours and sophisticated backtracking patterns
(that require richer types and attributes for nodes and links) enhance the naviga-
tion and the access to the information of the hyperbase. Finally transclusions and
links of various temperature provide both a richer expressive means for authors,
and a richer exploration means for readers.

Both families share the same problem: they are not functionalities that can be
experienced by the single user, i.e., that one enlightened user can adopt for his/her
own purposes and be enriched by using them: they are functionalities that have
to be actually used by a large community in order for them to fully provide their
benefits: there is little point in using an external link database, if we can’t share

Name /csc_mlang_104171/05vitali/Mp_393 06/06/2001 12:30AM Plate # 0 pg 393 # 5

Hypertext functionalities with XML 393

Fall 2001 | Markup Languages: Theory & Practice

our links with our colleagues; there is little point in annotating or transcluding, if
we can’t publish our notes and transclusions; there is little point in being able to
create overviews and guided tours on some collection of documents, if we can’t
publish them for our readers. Thus these functionalities must be dictated through
the standards and protocols that make up the Web, rather than through any spe-
cific application.

More recently, in [Vitali/Bieber in press] four hypermedia functionalities were
further identified:

• editing browsers
• storing document content and link anchors separately
• external linkbases
• displaying link spans, node and link attributes

In all these cases, actual WWW protocols were cited that could provide the
necessary expressive power to implement these functionalities: WebDAV [Goland
et al. 1999] provides clients with remote writing power, thus make editing brows-
ers a real possibility. XPointer [DeRose/Daniel 1999] and XLink [DeRose et al.
2000] allow external links, thus making it possible to separate content and link,
and to put links into external linkbases. RDF [Brickley/Guha 2000] allows arbi-
trary meta-information to be added to any Web document, and to be used for
classification, indexing, and searches.

A shareable long term goal is to identify a single, simple and streamlined
architecture to provide all these functionalities using WWW protocols and hiding
the complexities behind the protocols used. With XMLC, which will be described
in the next section, we are providing a single, easy to use and easy to expand
architecture for browsing XML documents. We consider it a first step in that
direction.

XMLC

XSLT [Clark 1999] is an important tool to guarantee the generality and flexi-
bility that are the most evident characteristics of XML. XSLT is a mapping lan-
guage for XML documents, allowing any XML structure to be transformed into
another structure by means of contextual rules. Since it is general and rule-based,
XSLT allows data creators to determine the ontologies used in their data frag-
ments more or less independently of the needs of the data consumers, provided
that XSLT rules can be created to transform the fragments.

An important use of XSLT, currently, is to transform XML documents so
that they may be shown on an XML browser. Internet Explorer 5, for instance,
relies on the rendering model of HTML, and therefore can shown XML docu-
ments that can be transformed into HTML by applying XSL stylesheets. In the

Name /csc_mlang_104171/05vitali/Mp_394 06/06/2001 12:30AM Plate # 0 pg 394 # 6

Fabio Vitali, Luca Bompani, and Paolo Ciancarini394

Markup Languages: Theory & Practice | Vol 2 No 4

near future, XSL-FO (or simply XSL), [Adler et al. 2000] will be an alternative
rendering model, much more sophisticated than HTML. XSL-FO is being devel-
oped as a standard part of the XML family, and provides detailed control of the
appearance of text and simple images, providing thus a sophisticated typographi-
cal management of XML documents.

The main drawbacks of these approaches is that, on the one hand XML pro-
vides sophisticated ways to customize one’s own document models and XSLT
provides a very general transformation mechanism for arbitrary XML document,
but on the other hand both HTML and XSL-FO will provide a closed set of ren-
dering elements to choose from. Although XSL-FO will be much more sophisti-
cated than HTML, it will still provide only a limited and inextensible set of
formatting objects.

Clearly, something is missing. What will be adequate is a generic rendering
engine that can select and activate dynamically the set of formatting objects it
needs to use, and a way to make this library extensible and open to all sorts of
needs. Displets are our proposal for this task. Displets are small independent ren-
dering modules that are used within a modular browser to provide any kind of
rendering behavior for XML elements. In our current architecture displets are
small and simple JavaBeans that are associated to XML elements by our XMLC
application.

The architecture of XMLC
XMLC (XML Compiler) is our architecture for rendering displets. XMLC relies
on technologies and languages such as XML, XSL and DOM, to provide its func-
tionalities.

The main purpose of XMLC is to read an XML document and to produce a
displayable tree of Java objects. This happens in a few steps: first, the XML docu-
ment is read and transformed by a normal XML parser into an internal tree rep-
resentation based on DOM. Then one or more layers of XSL stylesheets are
applied to the DOM tree through the use of an XSLT processor. This creates a
final DOM tree that is ready to be displayed. This final DOM tree has an impor-
tant property: for every element type in the tree there is an available displet to
activate. XMLC instantiate all the required displets associating them to the ele-
ments of the final DOM tree, and creates thus a tree of runnable objects. Run-
ning the root of this tree we obtain an application dynamically generated
according to the elements contained in the original document and the associated
stylesheets. Figure 1 shows a schema of the architecture.

Each element in the DOM tree is transformed into a displet according to the
following rules:

• the DOM element’s name determines the Java class to be loaded
• the DOM element’s attributes determine the settable properties of the instance

of the class

Name /csc_mlang_104171/05vitali/Mp_395 06/06/2001 12:30AM Plate # 0 pg 395 # 7

Hypertext functionalities with XML 395

Fall 2001 | Markup Languages: Theory & Practice

Figure 1 | The architecture of the XMLC application.

• the DOM element’s content (both sub-elements and text content) is added to
the tree as children of the class instance.

The current implementation of the XMLC architecture is in Java; a displet
can be any sort of Java classes, but using the concept of JavaBeans it is easy to
create sophisticated and interoperable displets: the use of JavaBeans Containers
and Components, which can be easily organized in hierarchies, nicely fits with the
hierarchical nature of DOM trees and XML documents.

Currently, our main use of XMLC is wrapped inside an applet within an
HTML document. Parameters of the applet are the XML document to be dis-
played and the XSL stylesheets to be applied to it. This allows us to display XML
documents within well-known Internet browsers. Furthermore, since XML ele-
ments are transformed into JavaBeans objects, complex behaviors can be easily
added during the lifetime of the visualization, providing support for hypertext
jumps, animations, interactions with the reader, and in general all the computa-
tional capabilities of the Java language. In the following we briefly report on the
simple, display-oriented displets that have been implemented.

Text and images
We have implemented support for text oriented XML elements. The level of sup-
port is comparable to that of HTML 1.0 text elements: basic blocks (P, UL, OL
and header elements) and inline chunks (like I, B, TT elements, etc.), plus an

Name /csc_mlang_104171/05vitali/Mp_396 06/06/2001 12:30AM Plate # 0 pg 396 # 8

Fabio Vitali, Luca Bompani, and Paolo Ciancarini396

Markup Languages: Theory & Practice | Vol 2 No 4

image tag and a simple inline hypertextual link. In table 1 we show a simple
HTML document, and show how this is transformed via XSL into a displayable
tree.

There are three basic Java displets taking care of the display of text elements:
Paragraph, Word and MultiWord. A Paragraph is a container spaced vertically
(that is, two or more Paragraphs are put one above the other), with parameter-
ized margins, line height and several other aspects. A Word is a component tak-
ing care of the display of a single word (separated by variable-width white space).
Words are spaced horizontally and can control font, size, style, baseline and a
few other parameters of their content. A MultiWord is a container for Words that
is still spaced horizontally. It is used to group together Words that share a com-
mon propriety (for instance, that belong to the same run of bold characters, or to
the same hypertext anchor).

Managing layouts
We have developed a displet, called LMXML (Layout Manager for XML), that
realizes a flexible layout manager for displets. LMXML was design to provide
arbitrary and flexible positioning of text blocks, and to generalize the behaviors
of HTML tables, frames and layers.

A few generic containers were created in order to display data regions that:

• can contain any other displets;
• support absolute positioning;
• can be overlapped in transparent or opaque mode;
• their size can be fixed or dynamically computed by contents;
• can be interactively resized by the user;

In Figure 3 we show regions that partially overlap and have different back-
ground transparencies.

The Z notation
A complete support for the Z notation has been implemented (see also [Ciancar-
ini et al. 1999]). The DTD for the notation we use is based on the ZIF Inter-
change Format [Brien/Nicholls 1992], although, through the use of different XSL
stylesheets, other syntaxes can be used as well.

The support for Z elements is provided through the use of a single displet
class, zElement, for all the box types that are present in Z specifications (e.g.,
schema, axioms, etc.), and a special downloadable font for all the mathematical
glyphs specific of the Z language (e.g., function, subset, the set of integers, etc.).
All other elements of the Z language are mapped onto plain HTML elements
such as P, DIV and SPAN. An additional layer of XSL will then transform them
into Paragraph and Word objects as needed.

In table 3 we show a small fragment of a Z specification (expressed in ZIF)
and in Figure 4 the display of the whole specification in a Web browser.

Name /csc_mlang_104171/05vitali/Mp_397 06/06/2001 12:30AM Plate # 0 pg 397 # 9

Hypertext functionalities with XML 397

Fall 2001 | Markup Languages: Theory & Practice

Figure 2 | An HTML document showing the text displets

Name /csc_mlang_104171/05vitali/Mp_398 06/06/2001 12:30AM Plate # 0 pg 398 # 10

Fabio Vitali, Luca Bompani, and Paolo Ciancarini398

Markup Languages: Theory & Practice | Vol 2 No 4

<HTML> <BODY>
...
<P>

This is normal text,
 this is a new line:
start bold<I>italic</I> end bold this
is normal text

</P>
<H1>

</H1>
...

</BODY></HTML>

Figure 3 | A fragment of the HTML document in fig. 2

<Block>
...
<Paragraph> <Word text�’This’/>

<Word text�’is’/>
<Word text�’normal’/>
<Word text�’text,’/>
<NewLine/>
<Word text�’this’/>
<Word text�’is’/>
<Word text�’a’/>
<Word text�’new’/>
<Word text�’line:’/>
<Word bold�’true’ text�’start’/>
<Word bold�’true’ text�’bold’/>
<Word bold�’true’ italic�’true’ text�’italic’/>
<Word bold�’true’ text�’end’/>
<Word bold�’true’ text�’bold’/>
<Word text�’this’/>
<Word text�’is’/>
<Word text�’normal’/>
<Word text�’text’/>

</Paragraph>
<Paragraph font-size�’30’ alignment�’CENTER’>

<Picture font-size�’30’ alignment�’CENTER’
src�’images/java.gif’/>

</Paragraph>
...

</Block>

Figure 4 | The same fragment after the XSL transformation

Name /csc_mlang_104171/05vitali/Mp_399 06/06/2001 12:30AM Plate # 0 pg 399 # 11

Hypertext functionalities with XML 399

Fall 2001 | Markup Languages: Theory & Practice

...
<schemadef style�’vert’ purpose�’state’>

PhoneDB
<decpart>

<declaration> _known: &pset; NAME </declaration>
<declaration> phone: NAME &fpfun; PHONE
</declaration>

</decpart>
<formals> K,L,Z </formals>
<axpart>

<predicate> known � &dom; phone </predicate>
</axpart>

</schemadef>
...

Figure 6 | A small fragment of a Z specification

Figure 5 | A complex layout with LMXML

Finite state machines
A very simple notation for finite state machines has been implemented. Lacking
any agreed-upon DTD for it, we have created our own, which is very simple,
being composed of just three elements: StateMate (the general container), State

Name /csc_mlang_104171/05vitali/Mp_400 06/06/2001 12:30AM Plate # 0 pg 400 # 12

Fabio Vitali, Luca Bompani, and Paolo Ciancarini400

Markup Languages: Theory & Practice | Vol 2 No 4

Figure 7 | The visualization of the Z specification

(representing a State in the Finite State Machine, shown as a rounded-rect box in
the display) and Arc (representing a transition in the Finite State Machine, and
shown as an arrow in the display).

Each state has a position and a label, while the arcs have a label but start
from and arrive to the center of the state box. The labels are the content of the
State and Arc elements, and can be of any kind (that is, one can use any other
displet for them, including HTML elements or any other notations, as strange as
needed).

Name /csc_mlang_104171/05vitali/Mp_401 06/06/2001 12:30AM Plate # 0 pg 401 # 13

Hypertext functionalities with XML 401

Fall 2001 | Markup Languages: Theory & Practice

<StateMate>
LEVEL_MANAGER_CONTROL
<Arc from�’state2’ to�’state1’>

LM_ACTIVE
</Arc>
<Arc from�’state1’ to�’state3’>

LM_MORE
</Arc>
<Arc from�’state3’ to�’state2’>

UPDATE
</Arc>
<State id�’state1’ start�’true’ origin�’0,50’>

WAIT
</State>
<State id�’state2’ origin�’250,50’>

NEW_VAL
</State>
<State id�’state3’ end�’true’ origin�’100,200’>

PUMP_ACTIVE
</State>

</StateMate>

Figure 8 | A simple finite state machine in XML format

Each state has an identifier, which is used by the arcs to identify their origin
and destination. States can be initial or final. The author must specify the posi-
tion of the states, while labels are automatically drawn in the correct position. In
table 5 we provide an example of a simple StateMate fragment, which is then
shown in Figure 5.

Statemate schemas are an example of active displets, since both states and
arcs are active. The active state is highlighted, and by clicking either on a transi-
tion or on a destination state, it is possible to traverse the available transitions
and execute the finite state machine. Non-reachable states and transitions cannot
be activated.

TBJava
Toolbook books are closely related to Hypercard stacks, one of the first commer-
cial hypertext systems: books are collections of pages that contain widgets such
as buttons, images and text fields. Each object has some default characteristics
and can be further enhanced by associating scripts to events that the widget may
be subjected to. The scripts are written in a scripting language called OpenScript,
that closely resemble scripting language of Hypercard. Toolbook allows very
complex applications to be created with the composition of these simple widgets
and the specification of fairly simple scripts.

Name /csc_mlang_104171/05vitali/Mp_402 06/06/2001 12:30AM Plate # 0 pg 402 # 14

Fabio Vitali, Luca Bompani, and Paolo Ciancarini402

Markup Languages: Theory & Practice | Vol 2 No 4

Figure 9 | The representation of the finite state machine of table 3

TBJava is a prototype that uses XMLC to display Toolbook books within an
Internet browser. TBJava translates Toolbook books in XML documents, and dis-
plays and activates them within an XMLC applet. TBJava is composed of four
different elements:

• The TBJava DTD, which is the definition of a class of XML documents that
match the elements and the properties of a ToolBook book.

• TBK2XML: a ToolBook filter that transforms ToolBook books into TBJava
XML documents according to the TBJava DTD

• A Java-based OpenScript interpreter to execute the scripts associated to the
objects of the book.

• A set of JavaBeans that implement the ToolBook runtime widget and interact
with the OpenScript interpreter.

Name /csc_mlang_104171/05vitali/Mp_403 06/06/2001 12:30AM Plate # 0 pg 403 # 15

Hypertext functionalities with XML 403

Fall 2001 | Markup Languages: Theory & Practice

TBJava relies on XMLC as the runtime environment of the ToolBook book
displayed in the Internet browser. XMLC supports all ToolBook objects, their
associated properties, behaviors and scripts. Furthermore, it proposes a set of lan-
guage-independent and modular paradigms for message passing and event han-
dling. This allows ToolBook books to include transparently both ToolScript and
Javascript scripts.

Hypertext functionalities with XMLC

Hypertext functionalities revolve around the sophistication of the concept of
link, which is particularly limited in the form provided with HTML. All the ele-
ments of the list shown in section 2 constitute a sophistication of the linking
model presented in HTML.

W3C is proposing two languages to express hypertext links in XML. XPoin-
ter [DeRose/Daniel 1999] provides a way to express sub-resource addresses
within XML documents and other resources, and XLink[DeRose et al. 2000]
defines a syntax for hypertextual links between XML documents.

XPointers can specify locations within XML documents by collecting pro-
gressively detailed location specifiers. This makes it possible to specify an arbi-
trarily small location without marking it with a tag as in HTML. XPointer makes
use of XPath addresses to refer to subtrees of the XML document, and extends it
providing more specific address types, such as points and ranges.

XLinks extends HTML links by introducing several new features:

• Links can refer to multiple end-points;
• Links can be multi-directional;
• Links can be stored externally to the resources they link;
• Links can be activated in a variety of ways (they may open a new window,

substitute the current content, or expand within the current content, etc.);
• Links can create groups of related documents that can for instance, be loaded

together.

Most of the functionalities present in the list at the beginning of section 2
can be most probably created with the aid of XPointer and XLink. For instance:

• Typed nodes and links: since XML and XLink do not impose names on con-
tent elements and link elements, it is very easy to create typed nodes and links,
allowing document authors to supply the names that would type these entities.

• Transclusions: XLink provides a way to specify behavioral attributes that
allow links, among other properties, to embed their destinations in place of
their sources, and furthermore to activate the embedding at loading time. This
easily allows the creation of virtual documents that include fragments of other
documents through transclusion, so that the content is always updated to the

Name /csc_mlang_104171/05vitali/Mp_404 06/06/2001 12:30AM Plate # 0 pg 404 # 16

Fabio Vitali, Luca Bompani, and Paolo Ciancarini404

Markup Languages: Theory & Practice | Vol 2 No 4

<?xml version�’1.0’?>
<Book size�’9000,6000’>

<Background size�’9000,6000’>
<Page name�’page1’>

<Button bounds�’4500,4100,6000,4600’
caption�’page2’>

<Script type�’OpenScript’>
<Handler type�’to handle buttonClick’>
to handle buttonClick

go to page 2
end

</Handler>
</Script>

</Button>
<Field bounds�’1000,1500,8000,1200’

text�’page 1’
textAlignment�’center’/>

</Page>
<Page name�’page2’>

<Button bounds�’4500,4100,6000,4600’
caption�’page1’>

<Script type�’OpenScript’>
<Handler type�’to handle buttonClick’>
to handle buttonClick

go to page 1
end

</Handler>
</Script>

</Button>
<Field bounds�’1000,1500,8000,1200’

text�’page 2’
textAlignment�’center’/>

</Page>
</Background>

</Book>

Figure 10 | a Toolbook book as an XML document

latest version of the transcluded documents. XLink, on the other hand, does
not provide any mechanism for verifying the correctness of the transclusion,
which would lead to what in literature is known as the problem referential
integrity of links NEWNEWNEWDavis 1998. In NEWNEWNEWVitali
2000a justification for using versioning to solve this problem is shown.
External linkbases: XLink explicitly mentions linkbases as possible repositories
for external extended links, and calls for an out-of-band method for specifying
their locations. Nonetheless, it defines the “external-linkset” role in order to

Name /csc_mlang_104171/05vitali/Mp_405 06/06/2001 12:30AM Plate # 0 pg 405 # 17

Hypertext functionalities with XML 405

Fall 2001 | Markup Languages: Theory & Practice

Figure 11 | The representation of a Toolbook book in a Web browser

help document authors to specify the location of possible link repositories that
apply to their documents. XLink, thus, explicitly supports external linkbases.
Overviews, trails and guided tours: as mentioned in NEWNEWNEWGrøn-
baek et al. 2000, XLink does not explicitly support the creation of ordered
collections of links that could shape and organize the navigation through a
complex maze of documents by providing overviews, trails and guided tours.
Nonetheless, an appropriate use of external linkset could easily allow
restricted link sets to be created and used as overviews , trails and guided
tours.

In [Grønbaek et al. 2000] one other limitation of XPointer was pointed out,
and namely the impossibility of XPointer to refer to location in non-XML docu-
ments. The Open Hypermedia community [OHSWG] has often discussed the
issue of actually integrating hypermedia with our daily tools, and referencing

Name /csc_mlang_104171/05vitali/Mp_406 06/06/2001 12:30AM Plate # 0 pg 406 # 18

Fabio Vitali, Luca Bompani, and Paolo Ciancarini406

Markup Languages: Theory & Practice | Vol 2 No 4

Figure 12 | The XLink-enabled architecture of XMLC

non-XML content is an important issue in this community. Their proposals (e.g.
[Grønbaek 1998]) could easily be integrated in the syntax of XPointers, so that a
standard referencing mechanism could be provided for all types of media.

Our research group has provided a basic implementation of XLink based on
displets for our XMLC architecture. This has added a few steps to the sequence
of transformations of the XMLC application, as shown in Figure 7. The XMLC
applications does not simply add the document to be displayed and the XSL sty-
lesheet, but it also looks for additional XML documents forming a document
group. These documents could contain XLinks that need to be added to the doc-
ument before displaying it.

After parsing the XML documents, all link elements are identified and added
to a list. Then, an identifier is added to all the addressable elements of the docu-
ment, since after the application of the XSL stylesheets the structure of the docu-

Name /csc_mlang_104171/05vitali/Mp_407 06/06/2001 12:30AM Plate # 0 pg 407 # 19

Hypertext functionalities with XML 407

Fall 2001 | Markup Languages: Theory & Practice

ment can become arbitrarily different from the original one, and it is necessary to
provide a way to identify the elements that can be located through XPointers.
The document then are subjected to the usual XSL transformations. Before dis-
playing, though, additional wrapper classes are added around the document ele-
ments that are starting points of links, to provide the most appropriate
navigational functionality. When the user clicks on one such element, the class
reacts, consults the list of destinations, and activates the navigation.

The implemented management of document groups is quite sophisticated and
implements the ‘show’ attribute of XLink, controlling whether the destination
document will replace the current one, or it will be created in a new window, or
it will integrate with the current document. Figure 8 shows a sample hyperlinked
document group.

Conclusions

Hypertext functionalities will be slow in implementation, and even slower in
acceptance. It is just too difficult to take care of them by non-professionals. Fur-
thermore the Web, born as an exchange medium for professionals, has clearly
become a graphic, impact-oriented one-way medium for the presentation of cor-
porate truths or inflated egos.

The kind of ideas and functionalities presented here and in the literature on
hypermedia functionalities present important characteristics anyway, that we pre-
sume will become more and more important as the public gets acquainted with
the possibilities of the new medium.

Yet, in order to provide easily sophisticated functionalities as the ones men-
tioned, the current architecture of the clients and the servers needs to be
rethought. In particular, fewer and more powerful protocols and standards need
to be used.

The XML family is in our opinion an important step in that direction. XML
and its cohort can actually let users and authors express their data and wishes in
a sophisticated, customizable and expandable way. But a new software architec-
ture needs to be implemented to take advantage of the generality of these lan-
guages.

XMLC in our opinion is the most customizable and expandable architecture
for displaying XML documents. Being expandable, it has been easy to add sup-
port for several sophisticated hypertext functionalities, such as the ones allowed
by XLinks and XPointers. Word is under way to add more of them to future
implementations.

XMLC is a working prototype, and can be examined, downloaded and used.
We gladly point the interested reader to the URL:http://www.cs.unibo.it/projects/
displets/

Name /csc_mlang_104171/05vitali/Mp_408 06/06/2001 12:30AM Plate # 0 pg 408 # 20

Fabio Vitali, Luca Bompani, and Paolo Ciancarini408

Markup Languages: Theory & Practice | Vol 2 No 4

Figure 13 | A simple hyperlinked document group

Acknowledgments

We would like to acknowledge here the contribution of all the people that have
worked on this architecture: Michael Bieber, Chao-Min Chiu, Cecilia Mascolo,
Stefano Pancaldi, Alfredo Rizzi, Alessandro Rocca, Alessandro Ronchi, Silvia
Villa, and all the students of the undergraduate course in Software Engineering at
the Computer Science Department of the University of Bologna. We also wish to
thank CNR-IAT and Microsoft Research UK for their partial support to this
research.

Received 29 August 2000

Name /csc_mlang_104171/05vitali/Mp_409 06/06/2001 12:30AM Plate # 0 pg 409 # 21

Hypertext functionalities with XML 409

Fall 2001 | Markup Languages: Theory & Practice

References

[Ashman et al. 1996] Ashman, H., V.
Balasubramanian, M. Bieber, and H. Oinas-
Kukkonen, ed., Proceedings of the 2nd
International Workshop on Incorporating
Hypertext Functionality into Software Systems
(HTFII), Hypertext ’96 Conference.
Washington, 1996. http://
www.cs.nott.ac.uk/�hla/HTF/HTFII/
Proceedings.html

[Adler et al. 2000] Adler, S., A. Berglund, J.
Caruso, S. Deach, P. Grosso, E. Gutentag, A.
Milowski, S. Parnell, J. Richman, and S. Zilles.
Extensible Stylesheet Language (XSL) Version
1.0. W3C Candidate Recommendation 21
November 2000. http://www.w3.org/TR/xsl

[Bompani et al. 1999] Bompani, L., P. Ciancarini,
and F. Vitali. “Active Documents in XML”. ACM
SigWeb Newsletter 8.1 (1999): 27–32.

[Bompani et al. 2000] Bompani, L., P. Ciancarini,
and F. Vitali. “Software Engineering and the
Internet: a roadmap”. In The Future of
Software Engineering, ed. A. Finkelstein. ACM
Press, in press

[Bray et al. 1998] Bray, T., J. Paoli, and C. M.
Sperberg-McQueen, ed. Extensible Markup
Language, (XML) 1.0. W3C Recommendation
10 February 1998. http://www.w3.org/TR/
REC-xml

[Bieber et al. 1997] Bieber, M., F. Vitali, H.
Ashman, V. Balasubramanian, and H. Oinas-
Kukkonen, “Fourth Generation Hypertext:
Some Missing Links for the World Wide Web”.
International Journal of Human-Computer
Studies 47 (1997): 31–65.

[Brickley/Guha 2000] Brickley, D., and R.V.
Guha, ed. Resource Description Framework
(RDF) Schema Specification 1.0W3C
Candidate Recommendation, 27 March 2000.
http://www.w3.org/TR/rdf-schema

[Brien/Nicholls 1992] Brien, S., and J. Nicholls.
Z Base standardProgramming Research
Group, Oxford, UK, 1992.

[Clark 1999] Clark, J., ed. XSL Transformations
(XSLT) Version 1.0. W3C Recommendation 16
November 1999. http://www.w3.org/TR/
xslt

[Ciancarini et al. 1998] Ciancarini, P., A. Rizzi
and F. Vitali. “An Extensible Rendering Engine
for XML and HTML”. Computer Networks and
ISDN Systems30 (1998): 225–238.

[Ciancarini et al. 1999] Ciancarini, P., F. Vitali,
and C. Mascolo. “Managing complex
documents over the WWW: a case study for
XML”. IEEE Transactions on Knowledge and
Data Engineering11.4 (1999): 629–638.

[Davis 1998] Davis, H. C. “Referential Integrity of
Links in Open Hypermedia Systems”.
Hypertext 98 Proceedings (Pittsburgh, PA).
New York: ACM Press, 1998, pp. 207–216.

[DeRose/Daniel 1999] DeRose, S., E. Maler,
and R. Daniel Jr., ed. XML Pointer Language
(XPointer) Version 1.0. W3C Last Call Working
Draft 8 January 2001. http://www.w3.org/
TR/xptr

[DeRose et al. 2000] DeRose, S., E. Maler, and
D. Orchard, ed. XML Linking Language (XLink)
Version 1.0W3C Proposed Recommendation
20 December 2000. http://www.w3.org/TR/
xlink

[Goland et al. 1999] Goland, Y., E. Whitehead, A.
Faizi, S. Carter, and D. Jensen. HTTP
Extensions for Distributed Authoring —
WEBDAV. IETF RFC 2518, February 1999.
http://www.ietf.org/rfc/rfc2518.txt

[Grønbaek 1998] Grønbaek, K. “OHS
interoperability — issues beyond the
protocol”. Proceedings of OHS Workshop 4.0,
Hypertext 98, Pittsburgh, 1998

[Grønbaek et al. 2000] Grønbaek, K., L. Sloth,
and N. O. Bouvin. “Open Hypermedia as User
Controlled Meta Data for the Web”. In 9th
International World Wide Web Conference
Proceedings. Amsterdam, May 2000, pp.
553–566.

[HTF] The Hypertext Functionality Workshop
series: The International workshop series on
incorporating hypertext functionality into
software systems. http://
www.cs.nott.ac.uk/�hla/HTF/

[Molasavljevic et al. 1999] Milosavljevic, M., F.
Vitali, and C. Watters, organizers. Proceedings
of the Workshop on Virtual Documents,
Hypertext Functionalities and the Web, VIII
International World Wide Web Conference,
Toronto, Canada, May 1999. http://
www.cs.unibo.it/�fabio/VD99/

[OHSWG] The Open Hypermedia Systems
Working Group, http://www.ohswg.org/

[Rossi/Ziv 1998] Rossi, G., and H. Ziv, ed.
Proceedings of the Fifth International

Name /csc_mlang_104171/05vitali/Mp_410 06/06/2001 12:30AM Plate # 0 pg 410 # 22

Fabio Vitali, Luca Bompani, and Paolo Ciancarini410

Markup Languages: Theory & Practice | Vol 2 No 4

Workshop on Engineering Hypertext
Functionality into Future Information Systems
(HTF5), ICSE 98 Conference, Kyoto, 1998,
http://www.ics.uci.edu/pub/kanderso/
htf5/papers/

[Vitali/Bieber in press] Vitali, F., and M. Bieber.
“Hypermedia on the Web: What Will It Take?”
ACM Computing Survey, in press.

[Vitali/Watters 1998] Vitali, F., and C. Watters,
ed. Proceedings of the Fourth International
Workshop on Hypertext functionality and the
WWW (HTF4), 7th International WWW
Conference, Brisbane, 1998, http://
dragon.acadiau.ca/�cwatters/htf4/

[Vitali 2000] Vitali, F. “Versioning Hypermedia”.
ACM Survey, 2000, in press.

