
Expressing Structural Hypertext Queries
in GraphLog

Mariano P. Consens
Albert0 0. Mendelzon

Computer Systems Research Institute
University of Toronto
Toronto, Canada M5S 1 A4

ABSTRACT

GraphLog is a visual query language in which queries are formulated by
drawing graph patterns. The hyperdocument graph is searched for all occur-
rences of these patterns. The language is powerful enough to allow the spec-
ification and manipulation of arbitrary subsets of the network and supports
the computation of aggregate functions on subgraphs of the hyperdocument.
It can support dynamically defined structures as well as inference capabilities,
going beyond current static and passive hypertext systems.

The expressive power of the language is a fundamental issue: too little
power limits the applications of the language, while too much makes efficient
implementatioi difficult and probably affects ease of use. The complexity
and expressive power of GraphLog can be characterized precisely by using
notions from deductive database theory and descriptive complexity. In this
paper, from a practical point of view, we present examples of GraphLog queries
applied to several different hypertext systems, providing evidence for the ex-
pressive power of the language, as well as for the convenience and naturalness
of its graphical representation. We also describe an ongoing implementation
of the language.

INTRODUCTION

Hypertext systems are intended to support the organization and manipulation of
networks of text nodes (or multimedia nodes, for hypermedia) connected by typed
links. As current systems start getting more use, several limitations in the basic
approach are becoming apparent. In a recent survey [Hala$8], seven key issues are
identified as requiring work for the next generation of hypertext systems. The first
five of these are:

This work has been supported by the Information Technology Research Centre of
Ontario and the Natural Science and Engineering Research Council of Canada.
The first author was also supported by the PEDECIBA - United Nations
Program for the Development of Basic Sciences, Uruguay.

Hypertext ‘89 Proceedings 269 November 1989

1. Search and query facilities. Current systems are heavily oriented towards
browsing and network navigation. They lack powerful query languages that
allow the specification and manipulation of arbitrary subsets of the network.

2. Augmenting the basic node and link model. The directed graph model is
too low level to support complex ways of organizing the information in a
network.

3. Virtual Structures. Hypertext systems support only manual changes to the
contents or structure of a network, making them relatively static in practice.
It would be desirable to have dynamically defined structures that can make
the network reconfigure itself automatically in response to changes.

4. Computation over graphs. Current systems are passive; for example, they do
not include inference engines that may actively derive new information from
what is explicitly stored.

5. Versioning. When hypertext technoIogy is applied to the maintenance of Iarge
technical documents, or to computer assisted engineering, it is essential to
have mechanisms for managing versions and configurations and to control
concurrent access reliably.

In this paper we describe a powerful query language for hypertext, called GraphLog,
that addresses all points 1 to 5 above. Point 3 is addressed by allowing the defi-
nition of virtual links, point 4, by supporting computation of aggregate functions
on subgraphs of the document graph, and point 5, versioning, by using GraphLog
to specify versioning policies. Finally, GraphLog can be easily extended to more
elaborate object-oriented models that address point 2.

GraphLog queries are visually oriented; they are formulated by drawing with a graph
editor the patterns that are to be searched for in the hypertext network. Halasz
distinguishes in [Hala88] between structural and content based search. Content
based searches will find nodes that contain certain patterns; structural searches look
for whole subgraphs of the overall graph that have a certain structure. GraphLog
emphasizes structural queries, although in the conclusions we suggest the integration
of structural and content-based queries in a single language.

An important issue in the design of such a language is expressive power: too lit-
tle power limits the applications of the language, while too much makes efficient
implementation difficult and probably affects ease of use. We have two sorts of ar-
guments for the adequacy of the expressive power of GraphLog. Elsewhere, we have
used notions from deductive database theory and descriptive complexity to charac-
terize from a theoretical point of view the class of queries that can be formulated
in the languagel[Cons89]. In this paper, from a practical point of view, we survey
several existing hypertext systems and queries described by their authors and show
how they can all be expressed in GraphLog.

lIn fact, the name of the language comes from its close relationship to Datalog, in
turn a relative of Prolog.

Hypertext ‘89 Proceedings 270 November 1989

THE QUERY LANGUAGE

The graph-based query language GS provided a starting point for GraphLog. We
have extended G+ by adding negation and changing the semantics to make the defi-
nition of the language simpler. In GraphLog, an interrelated collection of documents
- a hyperdocument - is viewed as a directed labelled graph. A query is a graph
pattern containing one distinguished edge. The effect of the query is to find all
instances of the pattern that occur in the hyperdocument and for each one of them
define the “virtual link” represented by the distinguished edge. Graph patterns are
themselves graphs, and they can be specified by drawing them on a screen.

The formal semantics of the language is given in [Cons89]. Each query is given a
precise meaning by associating it with a set of recursive Horn clauses defined on the
relations that make up the graph. Instead of giving the full definition of the language
here, we will introduce it by a series of examples and informal explanations.

Consider a hierarchical document where there are nodes for each chapter, section,
subsection, etc., and edges labelled contains relate each part to its subparts. The
query in Figure 1 defines a virtual link top that points from each component of the
document directly to the top-level component. In this case the pattern is a pair
of nodes connected by an arbitrary sequence of contains links such that the second
node has no incoming contains link. For each such pattern, the query defines a
top link between these nodes. Note the regular expression contains+ labelling a
dashed edge in the query. This means the pattern to be found is a path composed
of any number of edges, each one labelled with contains. In general, any regular
expression may be used; for example, if instead of contains, the graph used several
different link types such as has-chapter, has-section, has-subsection, we could replace
the regular expression contains+ with (has-chapter 1 has-section 1 has-subsection)+.

The crossed-out edge in the query means that a node only qualifies as a top node if
there is no contains edge coming into it.

This simple example already shows that GraphLog can express queries that are
not expressible in conventional database languages such as relational algebra. The
dashed edge, standing for a path of arbitrary length, corresponds to an arbitrarily
long sequence of “join” operators, and there is no single relational algebra query
equivalent to it, as is well known in database theory [Aho79].

What can we do with a virtual link such as top once we have defined it? We have
three possibilities. First, we may wish to treat it simply as the answer to a query,
that is,, to display it to the user in some form and then forget it. Second, we may
wish to incorporate it into the document, treating it as a snapshot. In this case,
the link as computed by the query will remain in the document, but it will not be
affected by future changes. Finally, we may make it into a view, meaning that not
only does it get incorporated to the document, but it is also kept dynamically up to
date, so that if, say, a new leaf node is added to the tree, its top link is automatically
inserted. This choice is independent of the query language and would be made by
the user interface in consultation with the user.

From the point of view of a user, once a link is created it can be manipulated in the
same ways no matter whether it is a snapshot, a view, or a manually created set

Hypertext ‘89 Proceedings 271 November 1989

H
0

contains

(

I

top 1 contains+

I

0

Figure 1: Defining a virtual link.

of edges. As an example of this, suppose that after creating the top link we realize
that the network is not really a hierarchy, because there are nodes that belong to
more than one document. We now want to link explicitly all top level nodes that
share a component document. The query in Figure 2 generates a shares-with link
between any two top nodes that have a common sub-document.

So far we have shown edges labelled only with a property name. This is the simplest
case, and the label corresponds to the type of the link. In general, an edge may be
labelled with a literal of the form p(cl, c,), associating n atomic values with the
relationship between the endpoints.

Consider for example a rather different hyperdocument that might be used by a
travel agency. The nodes contain textual and pictorial information about, cities.
One type of link between cities represents flights. We could then have edge labels
of the form flight(Airline,Departure,Arrival). Another type of link gives distance
information. Edge labels for this kind of links have the form dist(Distance). These
values can be used in queries in many ways. Figure 3 shows a query that defines
a link ind-dist(D) between Toronto and Vancouver by adding the Toronto-Calgary
distance to the Calgary-Vancouver distance.. Note that we are modelling node
attributes such as city name by edges going to rectangular nodes. This is just to
keep the data model as simple as possible; it is straigthforward to incorporate node
attributes explicitly if we wish.

This last example was somewhat artificial; it would make more sense, if we do not
know the distance between Toronto and Vancouver, to estimate it as the smallest
sum of distances from Toronto to some city C and from C to Vancouver. Figure 4
shows how the aggregate operator min can be used in GraphLog to express this.
The distinguished edge will be labelled by ind-dist(S) where S is the smallest of
all sums defined above. The fact that the intermediate node is doubly circled is

Hypertext ‘89 Proceedings 272 November 1989

r

Figure 2: Documents that share a component.

“Calgary” Y name

Figure 3: Distance between two cities via a third one.

Hypertext ‘89 Proceedings 273 November 1989

meant to suggest that we are computing an aggregate over all possible choices of
this intermediate node.

Figure 4: Distance between two cities via any third one.

Next, as the reader may expect, we are going to generalize Figure 4 to compute
the shortest distance between Toronto and Vancouver independently of how many
intermediate cities we go through. Instead of simply adding two distances, we
now need to be able to add all distances appearing along a path of arbitrary length
between Toronto and Vancouver. The dashed edge in Figure 5 between the two cities
represents these paths. The distinguished edge will be labelled with the minimum
over all paths of the sum of the distances along each path. Note the label on the
path between Toronto and Vancouver is dist({D})+, not dist(D)+. This is because a
label dist(D)+ would mean we are looking for paths such that, for some distance D,
all hops along the path are of length D, which is not what we want. The notation
{D) is meant to suggest that we want to collect the set of all distances because we
are going to apply the path summarization operator sum to them.

EXPRESSIVE POWER

The expressive power of GraphLog can be characterized precisely from a theoretical
point of view by relating it to the language of function-free Horn clauses called
Datalog. Ignoring aggregate operators, GraphLog turns out to be equivalent to
what is called piecewise-linear, stratified Datalog, a version of Datalog in which
recursive rules are restricted to use the predicate being defined only once in its
definition and negation is allowed in a controlled way [Ullm88]. Interestingly, the
queries expressible in the language are exactly those than can be computed in space
logarithmic in the size of the database. GraphLog with aggregate operators is more
expressive than the relational algebra and calculus with aggregates of [I<lug82]. We

Hypertext ‘89 Proceedings 274 November 1989

ind-dist(min(sum(D)))

I name

41 “Vancouver”

Figure 5: Shortest distance between two cities.

will not present these results here; see [Cons891 for the details.

From a practical point, we will now present examples of how GraphLog could be
used in the context of several different hypertext systems, providing evidence for
the expressive power of the language, as well as for the convenience and naturalness
of its graphical representation.

NoteCards

NoteCards [Hala87] is an “idea processing” hypertext system. Nodes in NoteCards
are the electronic analog of the 3x5 familiar paper notecard. A web of typed links
interconnect the note cards in a hyperdocument.

An application of the NoteCards system described in [Hala87] consisted in authoring
a public policy research paper. One kind of link used by the author, supports links,
connected notecards with supporting arguments. The next two examples illustrate
the possibilities of GraphLog in an idea processing hypertext system.

Example 1: Assume that in addition to linking notecards with supporting argu-
ments, the author indicated her belief in the strength of the support by assigning
it a number between 0 and 1. The strength could be represented by an edge label
of the form supports(S).

The graphical query in Figure 6 defines a virtual link most-reliable(R) that connects
notecard Nl to the notecard N2 containing its most reliable unsupported argument,
and also gives the reliability R of this argument. A notecard N2 not supported by
any other card is defined to be the most reliable unsupported argument for Nl if the
weakest link in the chain of arguments from N2 to Nl is stronger than the weakest

Hypertext ‘89 Proceedings 275 November 1989

link in any other such chain. Making this connection into a virtual link would keep
it updated as the author’s beliefs change and new arguments are incorporated or
old ones deleted.

Note there are two boxes in this query. The first one defines a property of nodes
called supported; the bottom one uses this property to find most reliable unsup-
ported arguments. The two queries could have been combined into one box in this
case; in general, it is convenient to be able to break a query down into several steps,
defining at each step intermediate links that can be used in subsequent steps. The
user need not be concerned with the exact order in which the different steps are
executed; the system will determine an ordering that ensures each link is computed
before it needs to be used, as long as there are no cycles in this ordering. Sets of
queries with cyclic orderings are syntactically forbidden. o

1 YES]

most-reliable(max(min(S)))

/ r ik / p po r t ed

I
/

/

1 ’ / supports({ S})
,

u

.

Nl

Figure 6: Creating a virtual link to the most reliable unsupported evidence.

Example 2: Suppose an author is writing a collaborative research paper and need
to see what cards have been created recently by her co-authors. Figure 7 shows the
query graph that defines a set of nodes with the notecards created by someone other
than the author in the last three days (the constant TODAY is a “system provided”
value for the current date). Note that, instead of defining any new links, we simply

Hypertext ‘89 Proceedings 276 November 1989

highlight one of the nodes in the query to indicate that we just want the resulting
set of nodes as the answer. 0

Figure 7: Nodes created by someone else in the last three days.

glBlS

The gIBIS hypertext system has a specific objective: “to provide a systems de-
sign team with a medium in which all of their work can be computer-mediated
and supported” [Bege88]. It provides a hypertext environment for the IBIS design
methodology. IBIS supports the constructive discussion of the issues that arise
during the design process by presenting positions that respond to the issues and
arguments that support or object to the positions.

Nodes in gIBIS are of three kinds: they hold either an issue, a position or an
argument. There is also a fixed number of link types. For example, a position
responds-to an argument and an argument either supports or objects-to its position.

Example 3: Figure 8 shows the graphical query that finds the issues with at least
two positions without arguments (another example query from [Hala88]). q

Example 4: This example illustrates the use of GraphLog in a typical “ad-hoc”
query: how popular are an author’s positions in a gIBIS hyperdocument? We will
break this query down into three steps. The first two associate with each position
P two links called count-s and count-o that point to nodes containing respectively

Hypertext ‘89 Proceedings 277 November 1989

supports 1 objects-to

supports 1 objects-to

Figure 8: Issues with at least two positions without arguments.

the total number of arguments that support P and the total number of arguments
that object to P. The third step computes the average of the support-to-objection
ratio for the author’s positions and stores this average as the “popularity” of the
author. Figure 9 shows the graphical query that results. q

In gIBIS, a user can also group an issue together with its positions and correspond-
ing arguments into what constitutes an IPA (issue-position-argument) composite
node. This IPA composite node is used to record the decision reached on an issue.
GraphLog would allow a flexible selection of what nodes should be grouped in a
composite.

History Mechanism

A very useful aid to avoid dissorientation when browsing a hyperdocument is the
history mechanism. Systems that support a history mechanism (like ZOG/KMS
and HyperCard) provide the user with virtual links that connect in sequence the
last nodes visited.

A slightly more sophisticated history mechanism would create attributes for the
nodes in the history trace, recording for each node the time at which the user
opened and closed the node. The following example illustrates a GraphLog query
that uses the history mechanism to locate previously neglected relevant information.

Example 5: After a couple of hours of working within a hyperdocument, a user
realizes that while avoiding distractions by not following links named digression he

Hypertext ‘89 Proceedings 278 November 1989

supports objects-to

I I

ME

Figure 9: Finding out how popular are an author’s positions.

Hypertext ‘89 Proceedings 279 November 1989

probably missed some important point. He wonders:

“Where did I see a link labelled “digression”? I remember that it was
between 2 and 3 hours ago.”

Figure 10 shows the query graph that helps the user to trim down the search. The
constants HERE and NOW are “system provided” values for the currently open node
and the current time, respectively. Note how the arithmetic comparisons “<” and
‘5” are represented by links like any other relationship between nodes, although
both the links and the nodes to which they point are virtual in this case. q

hist-previous+

Figure 10: Searching back the history mechanism,

DynamicDesign

DynamicDesign [Bige87, Bige88] is a CASE (Computer-Aided Software Engineer-
ing) environment for the C programming language implemented as a front-end to
the HAM hypertext storage system.

The nodes store all the components of a software engineering project. A node at-
tribute, project-component, takes values that indicate the kind of component stored
in the node: requirement, specification, object-code, source-code (one C function is
stored per node), library, comment, dictionary (i.e., symbol table), etc.

Hypertext ‘89 Proceedings 280 November 1989

The links are used to relate the different components. A link attribute, relation,
describes the kind of relationship between nodes: calls (between functions stored
in source code nodes), refers-to (from a function to a dictionary; it describes the C
variable referred to in the function and has an additional attribute with the name of
the C variable), in-library (from functions to libraries), implements (from functions to
specifications), follows-from (describing the linear order between nodes when printed
or compiled), etc.

DynamicDesign answers some queries on the structure of the hyperdocument of a
software engineering project:

l What does a function do? (follows comments, implements)

l Who (directly) calls this function? (follows calls)

l What is this variable used for? (follows comments)

l Who (directly) uses this variable? (follows refers-to(V))

The importance of these queries is clear. It is also clear that there are several other
relevant queries (e.g., who directly or indirectly uses this function?), and that not
all of them can be anticipated and “built into” the environment.

Adding GraphLog to DynamicDesign allows dynamic specification of queries that
were not anticipated by the system designers. The different values of the relation link
attribute can be used to define GraphLog virtual links calls, follows-from, in-library,
implements and refers-to(V), where V is a C variable name. The example below
illustrates one application of GraphLog in the DynamicDesign hypertext system. It
also introduces a new feature of the language, link inversion.

Example 6: Figure 11 shows the query graph that finds the functions Fl that
share a variable with some function F2 implementing (directly or indirectly) the io-
spec specifications, but not belonging to the syncio library nor calling any function
in it. The refers-to(V) links from nodes Fl and F2 to node D means that variable
V, defined in dictionary D, is referenced in both nodes. Note the “- calls” label on
the path from F2 to io-spec. We are looking for a path from function F2 to some
specification whose name is io-spec. The path may be a direct one, in which case
we do not use the “- calls” part, or it may be that F2 is at the end of a chain
of functions Gi, Gz, . . . , G,, such that G1 implements io-spec and each Gi calls
G i+l, and G, calls F2. The edges from Gi to Gi+r go in the opposite direction to
the path; this is the purpose of the inversion operator “-“. Similarly, the in-library
link is inverted in the path from F2 to syncio. Notice that the node labelled with
variable D is not strictly necessary; it could have been omitted by using a link from
node Fl to node F2 labelled “refers-to(V) - refers-to(V)“. •I

The HAM versioning mechanism is particularly useful for a CASE application. The
next example illustrates a query that uses a link next-version to locate a specific
piece of code.

Hypertext ‘89 Proceedings 281 November 1989

RF= /
(- calls)* implements name /

/

calls* - in-library name

Figure 11: Finding code in hypertext CASE.

Example 7: Suppose a programmer has to find the code for a particular function,
and she gives the following information:

“I am looking for the last version of a function that implements the
security-spec; the first versions were done by myself; then Dennis took
charge of it; I do not remember the authors that followed him; maybe
Dorothy or Chris were in charge before Jeff, who I am sure wrote the
current version.”

The graphical query of Figure 12 finds the functions satisfying the above description.
The first graph simply adds to the existing link between two successive versions a
new link indicating who is the author of the second version. The second graph
looks for the current version of functions Fl that implement, directly or indirectly,
the security-spec specification and are preceded by a chain of versions satisfying the
rather vague criteria the user has in mind. Note that, even though the system does
not support approximate search, the flexibility of regular expressions does provide
some of the power of approximate matching. In particular, the ocurrence of an
underscore in a regular expression involving closure means that we are looking for
an arbitrary sequence of values along a path. q

HAM Versioning

Versioning is an important feature in hypermedia systems [Hala88, Garg88]. The
specific details of versioning mechanisms differ from system to system. An advantage

Hypertext ‘89 Proceedings 282 November 1989

author

next-version-by(A)

(Usecurity-spec”I / ME

/

/ - name - implements calls*

x
author

-------- F2

next-version-by((ME)+ (“dennis”)S.(-)+((“dorothy”) 1 (“chris”))* (“jeff”)+ ‘)

Figure 12: Querying the versioning mechanism.

Hypertext ‘89 Proceedings 283 November 1989

of a query language like GraphLog, that has the capability to describe revision
sequences, is that it can specify quite clearly these details as well as implement
variations of the versioning policies originally provided by the hypertext system.

Example 8: In the HAM, a link may or may not keep linking the most recent
versions of the nodes it connects. This is a user’s choice, selected by setting to
YES or No a keep-up-to-date link attribute defined by the system. Keeping links up
to date is the default policy, while not doing so is useful to retain links between
previous (fixed) node versions.

Figure 13 describes the “keep up to date” policy for link versions in the HAM. To
simplify the graphical query, current-version is defined simultaneously for links and
nodes in the first query graph. The second query graph defines the from relation
between a link and its start-point node to be kept up to date with the last node
(and link) version if the keep-up-to-date attribute is set to YES. The third query
graph contemplates the situation where no “keeping up to date” is desired. •I

Dynamic Medical Handbook

In the Dynamic Medical Handbook [Fris88b, Fris88a] a content-based query is given
as a set of keywords and the sectioning structure of the hyperdocument is used to
help find the best starting points (i.e., either a chapter, section, subsection, and
so on) for the interested reader. This search mechanism constitutes an interesting
and non-trivial example of the combination of content-based and structural search.
The algorithm first assigns an intrinsic weight for each card and keyword that
is directly proportional to the number of keyword occurrences in the card and
inversely proportional to the total number of occurrences of a keyword in the whole
hyperdocument. Then a total weight is recursively propagated from the leaves to
the root of the sectioning structure. The contributions of subsections to sections
decrease exponentially with their distance in the sectioning hierarchy.

Example 9: The selection of the best starting points for the content-based query
(i.e., those nodes with highest total-weight) can be expressed in GraphLog as shown
in Figure 14.

We assume that a weight is associated with each node by the link weight and that
the relation section-of describes a tree. Note the notation [C] following the section-
of* expression. This means that variable C will store the length (number of edges)
of each path that matches the regular expression. With this in mind, the query can
be interpreted as follows. For each document component N2, for each section or
sub-section Nl of N2 that is at distance C from N2 in the document tree and has
weight W, add W/(2c) to the total weight of N2. q

Note that, as our queries become more ambitious, their representation in GraphLog
becomes more complex. We do not envision an end user composing queries like the
ones in Figures 13 or 14; rather, GraphLog couId be used as a tool to allow a system

Hypertext ‘89 Proceedings 284 November 1989

\ r(

next-version

*WI,

next-version*

next-version*

keepup-to-date
from

originally-from

Figure 13: Keep up to date link version policy.

Hypertext ‘89 Proceedings 285 November 1989

Figure 14: Selecting the optimal starting points in content-based search.

designer to provide a useful repertoire of “canned” queries, in much the same way
that database query languages are used in large information systems.

HyperCard

We conclude this section by considering the application of GraphLog to the ex-
tremely simple model of Apple HyperCard. Stacks are composed of cards, and
cards are related by links whose only property is the icon associated with the “but-
ton” at the start-point of the link. An interesting version of GraphLog can be
adapted to this model that, although limited, will be a convenient improvement
to the information retrieval capabilities of HyperCard. Instead of using symbolic
labels on the edges, we can label them with the iconic button corresponding to
the link. Regular expressions can be used as before. In addition, nodes in query
graphs denoting stacks can be represented by the corresponding icons rather than
by simple circles or rectangles.

This simple “GraphLog on HyperCard”query language has potential for two impor-
tant extensions. The first is combining HyperCard content search with the structure
search represented by a query graph; i.e., strings that must be present in the text
fields of cards can be associated with the corresponding nodes in the query graph.
The second extension is to allow, in addition to the specification of strings that must
be present in cards, the invocation of an arbitrary HyperTalk script2 in association
with a node in a query graph that will allow the specification of more complex
conditions that must be satisfied by the corresponding cards.

THyperTalk is a sp ecial purpose programming language that provides extensibility
to the HyperCard system.

Hypertext ‘89 Proceedings 286 November 1989

PROTOTYPE IMPLEMENTATION

This section describes an ongoing implementation of GraphLog. The prototype is
actually based on the earlier language Gf and is being extended to handle full
GraphLog. We refer to this system as the G+ Prototype.

The original effort consisted in the specialization of a Smalltalk-80TM [Gold83,
Gold841 graph editor product (NodeGraph- [Adam87]) for editing query graphs
and displaying database graphs. The resulting editor supports graph “cutting and
pasting”, as well as text editing of node and edge labels, node and edge repositioning
and reshaping, storage and retrieval of graphs as text files, etc.

Once the Graph Editor was available, the Query Evaluation component was devel-
oped to support GS edge queries. These are simple queries containing two nodes
with one (possible dashed) edge connecting them, labelled with an arbitrary regular
expression. The algorithms used to search the database for answers are discussed
in [Mend89].

In Figure 15 the small G + GraphEditor window at the top of the screen contains
an edge query, The large G + Graph Editor window shows the flights hypertext
database mentioned in the section that introduced GraphLog.

Figure 15: Invoking the evaluation of a GS edge query.

Figure 16 shows a scre.en dump displaying one of the answers of the query in Fig-

Hypertext ‘89 Proceedings 287 November 1989

ure 15 by highlighting one path described by the query on the database graph.

Figure 16: Displaying the answers of a G+ edge query.

Rather than viewing the answers superimposed on the database graph, the user
may choose to view them in a separate window called a graph collection browser.
Figure 17 shows one such window. The left pane contains a list of paths that were
found to satisfy the query, represented by their end points, and one such path is
being displayed in the right pane.

Finally, the user may select to collect all the answers together into one new graph.
This graph in turn may be queried, providing a mechanism for iterative filtering of
irrelevant information until a manageable subgraph is obtained. Figure 18 shows
an answer graph in which only American Airlines flights have been retained.

The current state of the prototype consists of the ongoing implementation of a
query interface for the GraphLog query language on top of the Neptune hypertext
system front-end to the Hypertext Abstract Machine (HAM) [Deli86]. The HAM
is a general-purpose, transaction-based, multi-user server for a hypertext storage
system. The HAM model is general enough to implement any current hypertext
system [Camp87].

Figure 19 is a diagram of the G + Prototype architecture. The G+ Query Interface
and the G+ Query Evaluation constitute the implementation of the Gf Prototype.
So far, the evaluation is being prototyped as a Smalltalk- program running as a
client of the HAM within the Neptune environment. A more mature implementation

Hypertext ‘89 Proceedings 288 November 1989

Figure 17: Displaying the answers in a browser.

I w I

Figure 18: Displaying the answers in a single graph.

Hypertext ‘89 Proceedings 289 November 1989

will have the evaluation components down-loaded to the NAM server.

I

I G+ Query Interface I

Neptune

Smalltalk-

,
‘\ \

‘\\
‘\ ,-------------------------~

’ I
” G+ Query Evaluation 1

OS. O.S. / file system
I I I I

Communications Software

Figure 19: G+ Prototype architecture.

CONCLUSIONS

We have described a powerful structural query language for hypertext. The language
can express a large variety of queries that arise naturally in several different hyper-
text systems. It has a sound theoretical basis taken from the theory of database
query languages and logic programming, but is visually oriented and avoids explicit
use of logic formulae or recursion.

The next step in the development of GraphLog should be to integrate structure-
based search with content-based search. Since regular expressions are already an
essential part of the language, it is natural to do this by allowing each node in a query
graph to be qualified by searching its contents for substrings matching a regular
expression. This can be combined with value-based queries on node attributes for
a completely general query language.

ACKNOWLEDGMENTS

The authors are grateful to Fred Lochovsky for his helpful comments and to Chris-
tine Knight and Frank Eigler for their contributions to the prototype.

Hypertext ‘89 Proceedings 290 November 1989

REFERENCES

[Adam871 Sam S. Adams. NodeGraph- Version 1.0. Knowledge Systems Corpo-

[Ah0791

[Bege88]

[Bige88]

[Bige87]

[Camp871

[Cons89]

[Deli861

[Fris88a]

[Fris88b]

[Garg88]

[Gold841

[Gold831

[Hala88]

[Hala87]

ration, 1987.

A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In
Proc. 6th ACM Symp. on Principles of Programming Languages, pages
110-120, 1979.

Michael L. Begeman and Jeff Conklin. The right tool for the job. BYTE,
pages 255-266, October 1988.

James Bigelow. Hypertext and CASE. IEEE Transactions on Software
Engineering, pages 23-27, 1988.

James Bigelow and Victor Riley. Manipulating source code in Dynam-
icDesign. In Hypertext’87 Workshop, pages 397-408, 1987.

Brad Campbell and Joseph M. Goodman. HAM: A general-purpose hy-
pertext abstract machine. In Hypertext’87 Workshop, pages 21-31, 1987.

Mariano P. Consens. Graphlog: “real life” recursive queries using graphs.
Master’s thesis, Department of Computer Science, University of Toronto,
1989.

N. Delisle and M. Schwartz. Neptune: A hypertext system for CAD
applications. In Carlo Zaniolo, editor, Proceedings of ACM-SIGMOD
1986 International Conference on Management of Data, pages 132-142,
1986.

Mark Frisse. From text to hypertext. BYTE, pages 247-253, October
1988.

Mark Frisse. Searching for information in a hypertext medical handbook.
Communications of the ACM, 31(7):880-886, 1988.

Pankaj K. Garg. Abstraction mechanisms in hypertext. Communications
of the ACM, 31(7):862-879, 1988.

Adele Goldberg. S malltalk-80: The Interactive Environment. Addison-
Wesley, 1984.

Adele Goldberg and David Robson. Smalltalk-80: The Language and iis
Implementation. Addison-Wesley, 1983.

Frank G. Halasz. Reflections on NoteCards: Seven issues for the
next generation of hypermedia systems. Communications of the ACM,
31(7):836-852, 1988.

F.G. Halasz, T. P. Moran, and H.R. Triggs. NoteCards in a nutshell. In
ACM Conference of Human Factors in Computer Systems, pages 45-52,
1987.

Hypertext ‘89 Proceedings 231 November 1989

[Klug82] Anthony Klug. Equivalence of relational algebra and relational calcu-
lus query languages having aggregate functions. Journal of the ACM,
29(3):699-717, 1982.

[Mend89] A.O. Mendelzon and P.T. Wood. Finding regular simple paths in graph
databases. In Proc. 15th International Conference on Very Large Data
Bases, 1989.

[Ullm88] J.D. Ull man. Principles of Database and Knowledge-Base Systems, vol-
ume 1. Computer Science Press, Potomac, Md., 1988.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-339-6/89/001 l/O292 $1.50

Hypertext ‘89 Proceedings 292 November 1989

