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ABSTRACT

Our project is studying the process by which groups of individuals work together to build
large, complex structures of ideas, and we are developing a distributed hypermedia system
to support that process. This description includes a brief overview of the system, but
emphasizes three components: a hypermedia data management system or graph server, a
set of browsers for working with graph objects, and a set of applications for working with
data contents of graph nodes. A number of research issues are raised and discussed in
context, including: composite objects; anchored links; scaling up for large applications;
partitioning the hypermedia graph consistency and completeness across subgraphs; and an
open, extensible architecture for applications.

INTRODUCTION

Our research focuses on the process of collaboration and on technology to support that
process. We are concerned with the intellectual collaboration that is required for software
development and other similar tasks in which groups of people work together to build
large, complex structures of ideas.

The work of such groups -- either directly or indirectly -- is concerned with producing
some form of artifact. For software development, that artifact consists of concept papers,
architecture, requirements, specifications, programs, diagrams, reference and user manuals,
as well as administrative documents; for other tasks, the artifact may contain these and/or
other kinds of information. Our project is studying how groups merge their ideas and
their efforts to build the artifact, and we are developing a computer system to support that
process.

Our work builds on hypertext in two ways. First, hypertext provides a conceptual model
for the artifact. It gives us a way to think about its organization and structure so that we
can identify individual documents or components and also define and use relations among
them. Second, hypertext technology is particularly well-suited for building systems with
which to develop and use the artifact.

We elected to build, rather than buy, a hypertext system for several reasons. Most
important, we have not been able to identify an existing system that meets all of the
needs of our project. Second, there area number of important and interesting problems in
hypertext research that can be addressed by the exWrience and prior work of our group. In
the remainder of this paper, we first explain in more detail the concept of the artifact, then
provide a brief overview of the system we are building; after that we discuss several
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issues raised by this work that are important if hypertext is to become a widely used
technology for large projects.

ARTIFACT

The essence of a software entity is a construct of interlocking concepts: data sets,
relationships among data items, algorithms, and invocations offunctions. This essence
is abstract in that such a conceptual construct is the same under many different
representations. It is nonetheless highly precise and richly &taJed.

I believe the hard part of building software to be the specification, design, and testing of
this conceptual construct, not the labor of representing it and testing the fidelity of the
representation. [Brooks, 1987]

According to Brooks, the fundamental problem in software development is building the
large “conceptual construct” that we call the artifact. What a software development team
does is produce the various types of information -- documents, diagrams, programs, etc. --
that constitute the system and its accompanying description. These materials are usually
thought of and handled as separate objects, each likely to be stored in a separate file. Yet,

they have strong semantic and symbolic relations: an idea included in a concept paper
becomes a requirement that is then specified and implemented before being tested,

maintained, and explained to users. A key problem is maintaining consistency across

these various representations of the concept -- e.g., as a system is built, programmers
alter the initial design but don’t update the design documents. Other problems include the
coherence, completeness, and correctness of these materials.

Hypermedia* does not automatically solve these problems but it does provide a
technology and a way of thinking that are helpful. The various materials that constitute a
software project can be viewed as a large graph structure. Individual documents can be
treated as trees whose nodes contain components such as chapters, sections, paragraphs,
diagrams, etc.; the source code for the system can be thought of as a second graph whose
nodes contain programming language statements. Different graph components that are
semantically related through cross references, function calls, inclusion, etc., can be
explicitly related, through links, in a hypertext data model. Figure 1 illustrates this
concept the four horizontal planes denote documentation, source code, object code, and
test data. The shaded nodes represent different manifestations of the same module, as it is
described, implemented, compiled into object code, and tested. The vertical plane, on the
right, shows a projection of this module across the four horizontal contexts.

Figure 2 shows a high-level view of a hypertext data model we built for a sample of
materials for IBMs Systems Network Architecture (SNA). Indicated are the basic types
of information and generic link relationships among them. These diagrams server both as
a visual representation of the information organization and as a user interface for access.
At the center of “The Big Picture” are four basic types of system information: data type
definitions; programs, referred to as FAPL code and Finite State Machines; prose
documentation; and interface descriptions (called protocol boundaries). The “Little
Picture” shows additional link relationships among these four central components,
omitted from the “Big Picture” for purposes of clarity. At the bottom of the “Big
Picture” are two forms of information that provide additional means of access to the core

* For the remainder of this discussion, we use the term hypermedia, instead of hypertext,
to indicate the inclusion of different types of information, or media, in the system,
including human and programming language text, 2-D graphics, recorded audio and video,
etc.
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materials: atableof contents and an index. Atthetop arethree types of diagrams; they
also provide access, but they provide substantive information in their own right, as well.
Decomposition diagrams, illustrated in Figure 7, below, consist of box diagrams and
arrows that show successively more detailed views of system components and the
messages that flow among them. Flow diagrams, shown in Figure 8, provide a different
view of the sequence, or “flow,” of messages exchanged among functions and modules.
Finally, a uses hierarchy shows the set of functions called by each individual function in
the system. Users of the prototype system move among these materials by following
links both within and between documents.

This total construct of information is an example of what we mean by the artfact. We
emphasize that it is one information structure, not a collection of independent
components. Parts of it can be viewed separately, but changes to content and structure in
one place affect content and structure in other places. For example, when a function is
added to the code, changes should also be made to the decomposition diagrams, the flow
diagrams, the uses hierarchy, the prose documentation, as well as to the table of contents
and the index. We are developing automated tools to monitor these relationships and to
help developers maintain the integrity of the artifact. At present, these tasks must be
done manually; but the hypertext data model simplifies the task conceptually, and a
hypermedia support system can reduce the effort

SYSTEM OVERVIEW

We call our hypermedia-based system the Artifact-Based Collaboration system (ABC)* .
It has two goals: first, to provide a distributed environment in which a group of
individuals can work both synchronously and asynchronously over an extended period of
time to develop a large artifact such as the one described above; and, second, to provide a
testbed for addressing basic issues in hypertext research. ABC has six key components
(see Figure 3) that include a graph server, a set of graph browsers, a set of data application
programs, a shared window conferencing facility, and real-time video and audio. The sixth
component, a set of protocol tools for studying group behaviors and strategies, is not
illustrated in the figure.

The graph server is the (logically central) data management system in which all of the
data objects associated with a project are stored. Individual documents (or other
collections of data) are represented as separate graph structures in which nodes in one
subgraph may be linked to nodes in another subgraph. The working environment is
distributed across multiple workstations connected to one another and to the graph server
through a data communications network. One set of tools available on the workstations
is a set of graph browsers, built by our project, that support development and use of
different types of subgraphs -- e.g., trees, general directed graphs, lists, etc. A second
kind of tool is a set of conventional data applications used to work with data stored as the
contents of nodes within graph structures. We are taking an open-architecture approach so
that people may use familiar text editors, drawing packages, etc., as applications.

The shared windows facility permits any browser or application program to be shared by
two or more users in a conference. Users can, thus, set-up conferences, add and delete
members, pass control from one member to another, launch a browser or application,
etc.. A videolaudio system enables users to see and talk with one-another as they work
on the same drawing or document using the shared windows facility,. At present, video is
supported by a closed-circuit analog network, but we are also developing a real-time

* ABC is a contraction of a longer acronym -- ABCDE -- that refers to Artifact-Based
Collaboration in a Distributed Environmen~ we use the longer form when emphasizing
the system’s distributed or synchronous collaboration features.
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digital video system, currently based on DVI technology, that will allow voice
to be sent over the data network and integrated directly into workstations.
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Figure 3. Overview of Artifact-Based Collaboration (ABC) System.

A sixth component, included in the system but not illustrated in the figure, is a set of
protocol tools for recording users’ actions in machine-readable form, for analyzing them,
and for displaying collaborative strategies. These data will be analyzed to identify patterns
of behavior so that we can see who works with whom, on what portions of the artifact, at
what time during a project, etc.

Thus, ABC is a composite of separate subsystems that, together, provide a
comprehensive environment for both synchronous and asynchronous collaboration. It
shares function and characteristics with other hypermedia systems, but we believe it is
unique in its configuration of components. Other hypertext or hypermedia systems that
have been designed for software development include NLS Engelbart, et.al., 1973], PIE
[Goldstein & Bobrow, 1984], Neptune [Delisle & Schwartz, 1986], IPSEN [Lewerentz,
1988], and the USC Systems Factory Project [Garg & Scacchi, 1988]. gIbis [Conklin &
Begeman, 1987] has been used to capture the deeisions and rationals for software design
decisions, and Trellis ll%ruta & Stotts, 1990] provides powerful browsing semantics in
its Petri net model applicable to both hardware and software designs. Hypermedia
systems can be divided into those that view the graph as fundamental with content
contained within nodes and, alternatively, those that view content (e..g., text) as
fundamental with the graph of relationships superimposed over it. ABC is among the
first group. Other, general-purpose hypermedia systems of this type include NoteCards
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[Halasz, 19871, Storyspace [Bolter, & Joyce, 1987], and an earlier system from our group
-- WE [Smith, et.al., 1987].

In the discussion that follows, we will focus on the portions of the system most directly
related to hypermedkx the browsers, applications, and the graph server. We will relate
specific features of ABC to general hypermedia research issues, particularly those that
relate to scale and to large, multiuser applications. Since the server is described in more
detail in a companion paper [Shackelford, et.al, 1991], our discussion of that component
will be brief.

GRAPH SERVER

The graph server is the central data management system in which the artifact is built and
maintained. When we began work on the server, we had hoped to buy a storage platform
on which to implement our data model, but we could not find a system that met our
needs. We still hope to find a suitable commercial platform in the future in the
meantime we have proceeded on our own.

Both the data model and the architecture of a hypermedia data management system are
active topics of research, and the problems they raise are deep and complex. Two key
issues are scalability and an open architecture policy for application programs. With
respect to scale, most hypermedia systems have been single-user systems running on
individual microcomputers or workstations supporting structures containing a few hundred
to a few thousand nodes. A multiuser system that can support industrial software
development will require at least two orders of magnitude greater capacity, for small
projects, and considerably more for defense, aerospace, and other large systems efforts. In
addressing this issue, we have made two key assumptions to be scalable, the archkaure
must permit distribution across multiple hardware platforms; to be distributable, the data
model must be partitionable into objects that tend to be accessed separately and that have
relatively few links and/or dependencies with other objects. With respect to an open
architecture, most hypermedia systems have included integral data storage components.
To support an extensible set of application programs as well as multiple users, the graph

server must function as a utility on the network that can be accessed by clients through a
well-defined data model and set of communications protocols. We are addressing both
issues in our work on the server.

The server supports a multi-level data model. Primitive objects include nodes and links,

with attributes on both nodes and links. Links as well as nodes may have associated
contents, which may be “raw” data that are meaningful to a particular application and, in
the current implementation, are stored as a file under the control of the server.

Subgraphs play a dual role in the data model. From one perspective, they forma second
layer since they consist of sets of nodes and links. However, they are handled by the
server as primary objects, comparable to nodes and links The most important function of
this dual property is with respect to contents. Subgraphs, as well as files, may serve as
the contents for a node. The implications of this are subtle, but far-reaching. Most
important, this design provides a natural way to partition the overall graph structure. For
example, the end user may construct a tree down to three or four levels, perhaps
representing the overall organization structure of a project or a document. An object of
this scale can be displayed on the workstation and understood by the user. The user can
then construct a separate tree that is the contents of a leaf node, perhaps representing
further elaboration of the projector document. Details can be hidden or revealed, and the
two graph objects can be handled and stored separately by the server. Thus, this data
model addresses the issue of partitioning as well as the issue of composite objects.

The third level of the data model is a typing scheme for subgraphs. The server currently
supports five graph types: general directed graphs, connected graphs, acyclic connected
graphs, trees, and lists. As transactions are processed, no link or node operation is
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permitted that would violate the integrity of the structure types for the affected subgraphs.
This aspect of the model is a necessary f~st step in addressing issues concerned with the
integrity, consistency, and completeness of the artifact.
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Figure 4. Architecture of Distributed Graph Server.

To maintain integrity of subgraph type while allowing flexibility in defining
relationships/links, we differentiate between two types of links and two, more basic types
of subgraphs. Referring, once again, to level 1 of the data model: the server differentiates
between structural links and hyperlinks. Constraints on structural links determine the
type of the subgraph; -- e.g., no node in a tree subgraph may have more than one
incoming link. Hyperlinks, however, may join any two nodes in the same subgraph or
in different subgraphs. The set of hyperlinks coming into or going out from nodes in a

given subgraph determine a hypergraph associated with that subgraph. This hypergraph
can then be stored separately but maintained and retrieved easily when the associated
subgraph is accessed. Thus, the first level of the data model actually consists of nodes,
structural links, hyperlinks, subgraphs, and hypergraphs, all with associated contenls and
attributes.

The architecture for the server is shown in Figure 4. We will not comment further on it
except to note, first, that primitive objects in the data model -- such as nodes, links, and
subgraphs -- are layered in their definitions and, second, that the architecture is designed to
allow flexible, dynamic petitioning across multiple hardware platforms.
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Thus, the server functions as a support system for hypermedia environments. Our work
in developing it is addressing five basic issues in hypermedia research: an open,
extensible architecture with respect to application programs; scale and partitioning;
composite nodes and data objects; information hiding and user comprehension; integrity
and related issues of consistency and completeness for the artifact as a whole.

BROWSERS AND APPLICATIONS

The user’s view of the ABC system is provided by a set of browsers and applications. We
differentiate between them in two respects. First, browsers are programs used to view and
manipulate graph structures, while applications are generally programs, such as editors
and drawing programs, used to view and manipulate “raw” data. Second, our project is
developing the set of browsers, but applications programs are generally developed by
others. In this section, wc describe these tools from the user’s perspective and discuss
several research issues they raise.
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Figure 5. Browser Tree, Network, and List Modes.
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Browsers

Browsers are constrained by the graph types supported by the server. To date we have
developed browsers for general graphs (which we call networks), trees, and lists. These
are illustrated in Figures 5. Each browser maintains the integrity of its associated data
type; thus, each supports only operations consistent with that type. For example, the
tree browser supports operations expressed in terms of parents, children, etc., rather than
in terms of nodes and links, as is the case for the network browser. Users cannot construct
structural links in a tree browser that would violate the integrity of a tree. The user can,
however, construct hyperlinks that freely link nodes within the tree or link nodes in the
tree with nodes in another subgraph. Thus, like the graph server, browsers make a
fundamental distinction between structural links that determine the type of a subgraph and
hyperlinks that lie within and between subgraphs but do not affect subgraph ty~-. -
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To see how these browsers can used together, consider Figures 5 and 6. In the tree
included in Figure 5, a hypothetical project organization is shown that divides the artifact
into documents, groups, and people; one type of document is design. In figure 6, design
is further specified -- as a separate subgraph that is the contents of the node shown in
Figure 5 --to include concept papers, requirements, etc. In the upper right of Figure 6, a
user has begun to plan and write an actual concept document, by creating a third
subgraph. This user has indicated that at this stage of the writing process, he/she is
treating ideas separately from plan. For brainstorming and exploratory thinking, the user
has opened a network browser (lower left) to produce the subgraph that is the contents of
ideas; for organizing, a tree browser is opened next to it. Below that tree browser is a
text editor application where the user has begun writing a section of text that is the

Hypertext ’91 Proceedings 187 December 1991



content for one of the nodes in tree for the document. Thus, in this example, four
subgraphs are included as contents for a succession of nodes each subgraph represents one
or two levels of further detail for a concept represented by a node in a higher-level
subgraph.

We have not yet built browsers for connected and acyclic graphs. When we do, they will
be modified versions of the network browser since they differ not in terms of user
operations but in terms of context sensitive constraints on operations relative to the type
of graph object being constructed.

We are currently developing a specialized combination of tree and network browsers for
building decomposition diagrams. Decomposition diagrams are box and line drawings
that show successively finer levels of detail for a system architecture in a series of
drawings in which a simple object in one diagram can be expanded in another to show its
in&emal siructure. Fimme 7 snows sucil a squence.
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What is unusual about our approach is that we are treating these diagrams as graph
structures -- consisting of nodes and links -- rather than as drawings -- consisting of
boxes and lines. The distinction carries several implications. Since each “diagram” is a
well-defined graph structure, a syntax and semantics can be defined for them, either in
terms of or in the spirit of graph grammars [Nagl, 1986]. Thus, we have the basic tools
with which to consider whether or not the architecture of a system, as represented by its
decomposition structure, is well-formed with respect to a specified set of rules. Second,
algorithms can be developed for comparing decomposition structures to structures inherent
in the system code and/or the hypertext graph structure of the artifact. This could lead to
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algorithms for monitoring and maintaining consistency between the de facto architecture
of a system as it exists in the code and its structure as described in design documents and
diagrams. This would be difficult, if not impossible, were the architecture represented as
conventional line drawings. Finally, for existing systems, we should be able to infer
decomposition relationships from internal cues within the code -- such as procedure calls,
inclusion relationships, etc. -- and generate decomposition graphs automatically. This
capability would be useful for continued long-term maintenance of existing systems.

A fifth browser, which is now being designed, will support message flow diagrams, as
shown in Figure 8. These diagrams, frequently used by communications architects, show
the sequence, or “flow,” of messages between system modules. Flow diagrams will also
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Figure 8. Browser Message Flow Diagram Mode.

be treated as a form of decomposition diagram; thus, a module that appears in one
diagram as a node that sends and receives messages can be expanded in another diagram to
show the detailed flow of messages internal to that module. Again, this editor will be
developed as a specialized form of network browser, in which nodes correspond with
functions or modules and links indicate message paths among them. As with
decomposition diagrams, interesting possibilities are raised by treating flow diagrams as
graph objects rather than as drawings: for animated displays, consistency checks between
documented and implemented forms, inferring diagrams fmm existing code, etc.

As the last two browsers illustrate, basic graph browsers can be reused to develop
specialized tools. At present, we are reusing browser components in an ad hoc way;
however, we will explore, as a research issue, developing a set of enriched browsers
specifically designed for reuse. When general functions for comparing and manipulating
attribute values and for specifying and maintaining the appearance of the graph are
included, these browsers could become a form of high-level, composable programming
“language.” We can envision using them to develop applications that have very different
purposes and appearances at the user interface level but are actually composed or modified
graph browsers underneath.

Applications

Applications are programs such as text editors, drawing programs, and spreadsheets that
work with the contents of nodes in the form of “raw data” as opposed to subgraphs.
These programs are generally not written by our project. Thus, the goal for ABC is to
provide an open architectural framework in which users may import familiar tools to
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work with blocks of data stored within an encompassing graph structure, which they view
and access through one of our browsers.

Since we area research project in an academic setting, our systems are necessarily more
constrained in their implementations than systems built by commercial developers.
Consequently, the set of applications that can be included within our “open” architecture
is currently limited to SmallTalk and Unix applications that function within the X-
Windows environment and can be initiated with a command that includes a file name as a
parameter. Nevertheless, this is a sufficiently large group that it should not
inconvenience users of our system and should provide a test of our approach to issues for
open hypermedia archihxhmes.

So long as an application meets the criteria stated above, it can potentially be used on the
data contents of nodes without modification. However, if the user wishes to define links
to and from positions within the data -- such as a particular word within a paragraph of
text -- then the application must be modified. The problem is constructing and
maintaining navigational links that are anchored in data representations maintained by
arbitrary applications. It is an unpleasan~ but widely recognized, problem since it means
that to support anchored links, developers of hypermedia systems, at least for the
foreseeable future, must modify the source code of existing application programs if they
wish to make them available to users. The long-term solution is to establish standards
and encourage application and system developers to include within their programs a
standard interface and set of support functions for anchors.

Our approach to the problem is to develop a general framework, or “wrapper,” for
applications within X-Windows. With respect to users, the wrapper provides a consistent
mechanism by which users may select a segment of data and then link that segment to
some other node or to some other selected data segment within the same node or a
different node. With respect to the application, the wrapper expects the application to
provide a mechanism by which data selected by the user can be marked and its position
noted within the application’s data model. With respect to ABC, the wrapper
communicates with browsers and the server, as needed, to establish and complete links.
The application is responsible for maintaining a table of selected positions so long as it
is running; when the application is closed, the wrapper assumes responsibility for
storing this table, along with associated link identifiers, in the server. When the
application is initiated once again on the contents of that same node, the wrapper restores
the table of positions stored in the server.

This approach accomplishes two things. First, it supports a general anchoring scheme
that requires minimal customizing of the application source code. Second, it views
anchor extensions of links as a property of nodes, rather than as a property of the links,
themselves. This approach recognizes that anchors are meaningful only within the
semantics of a particular application run on the contents of a node. Consequently, at a
given level of abstraction, anchors can be ignored with respect to the graph objec~ for
example, in the graph modes shown above, anchor extensions into the contents of nodes
are not shown since they become meaningful only when the contents of a node are
displayed. We believe this to be a more consistent model than one in which anchors are
viewed as a basic property of links. It is also more efficient, since not every access of a
link that has an anchor extension will require anchor information,. Thus, our approach is
“in the spirit” of the Dexter model [Halasz & Schwartz, 1990], but it does not follow that
model precisely.

CONCLUSION

In discussing the Artifact-Based Collaboration system, we have tried to show the relations
among user function, system architecture, and hypermedia research issues. With respect
to the server, we are addressing five basic issues: an open, extensible architecture for
application programs; scale and partitioning; composite nodes and data objects;
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information hiding and user comprehension; and the integrity, consistency, and
completeness of the artifact as a whole. Our work with graph browsers is addressing
issues concerned with the integrity of typed subgraphs, comprehension of large structures,
composite objects, and reuse of high-level components. Our work with applications is
concerned with an extensible hypermedia framework that can accommodate an open set of
user progmms and with general support for anchored links.
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