

 67

Investigating Link Service Infrastructures

David C. De Roure
Department of Electronics and

Computer Science
University of Southampton,

Southampton, SO17 1BJ, UK
Tel: +44 23 8059 2418

E-mail: dder@ecs.soton.ac.uk

Nigel G. Walker
British Telecom Laboratories

Adastral Park,
Martlesham Heath

Ipswich IP5 3RE, UK
Tel: +44 1473 644853

E-mail: nigel.g.walker@bt.com

Leslie A. Carr
Department of Electronics and

Computer Science
University of Southampton,

Southampton, SO17 1BJ, UK
Tel: +44 23 8059 4479

E-mail: lac@ecs.soton.ac.uk

ABSTRACT
Variations on the Distributed Link Service have now been
deployed across a spectrum of hypermedia and multimedia
projects. Although some implementations have utilised
standard database technologies and hypermedia tools
behind the scenes, most of the network services have been
proprietary implementations. In this paper we discuss the
motivation and requirements for a large scale, dynamic
and open distributed link service using third party
components, and explore the use of off-the-shelf services
to provide the distributed infrastructure for link services.
In particular we investigate HTTP, LDAP and Whois++
as candidate technologies.

KEYWORDS: open hypermedia, link service, distributed
link service, directory services, query routing, LDAP,
Whois++.

INTRODUCTION
At its simplest, a hypermedia link server takes a source
anchor in a multimedia document and returns the possible
destination anchors, obtained by interrogating a link
database (henceforth a linkbase) for links containing that
anchor. The anchors might identify specific locations or
objects in particular multimedia documents; alternatively
they might have broader applicability, matching content
rather than position (so-called generic linking). The
linkbase query might also be refined by the user’s context,
perhaps based on their profile, current role, task and
location. Link services may be accessed before, during or
after document delivery, and they may provide an interface
for link creation and maintenance as well as retrieval.

Such link servers support configurable and extensible
hyperstructure which enhances navigation in information
applications. Content-based linking in particular provides

powerful authoring functionality, integrating information
retrieval with linking and supporting a more query-oriented
mode of interaction [13]. Content-based navigation of an
information space involving multimedia data involves
specialised feature extraction and matching techniques [15]
and these can be integrated within the link resolution
framework.

In our early systems, link resolution was achieved by
components in a standalone application, such as the filters
of the Microcosm system [14]. Subsequently, it has been
abstracted out as the duty of a link service that can be seen
as a ‘third party’ network service. The original Distributed
Link Service (DLS), presented in [4], supported multiple
link databases on one DLS server, providing useful
modularity in the hyperstructure. The extension to multiple
servers was discussed in [8]. DLS architecture has
evolved through a number of projects, notably the Open
Journals project [5]. Meanwhile, the Open Hypermedia
Protocol (OHP) is being developed to promote
interoperability between hypermedia systems [6].

Ongoing developments in networking infrastructure bring
new requirements to the link services, particularly with
respect to distribution of the link information. In
particular we need to provide link services to users with a
spectrum of connectivity beyond the intranets that have
characterised previous projects. This includes home users,
users connecting via service providers and through
firewalls, and mobile users with limited bandwidth and
intermittent connectivity. In fact these more restrictive
modes of connection often apply to the users who stand to
benefit most from an effective link service, providing a
customised information space to improve the effectiveness
of their interaction. Longer term projects extend these
requirements further with pervasive multimedia, including
for example wearable computers and everyday artefacts
capable of communication – in short, we are interested in
what we call the pervasive information fabric, by which
we mean the middleware for future information
applications in this pervasive computing setting.

The open hypermedia principle that ‘readers are authors’
emphasises the linkbase update requirement – we are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Hypertext 2000, San Antonio, TX.
Copyright 2000 ACM 1-58113-227-1/00/0005…$5.00.

 68

dealing not only with link resolution but with link
authoring and maintenance of link integrity [7]. This
implies a dynamic system with updates to the link
information due to changes in the hyperstructure and also
in document location and content. When the link
information is distributed, as it must be to provide
scalability in the contexts described above, maintenance of
that information becomes a distributed systems issue. For
example, if linkbase data is replicated for scalability, there
is a linkbase coherency problem to be addressed when that
data must be updated.

Another characteristic of new projects is that increasingly
we work with multiple linkbases and linkservices,
including ‘legacy linkbases’. An individual linkbase
typically contains the links applicable to a certain set of
documents. This ‘domain’ of the database is likely to be a
consequence of a combination of organisational,
administrative and technical issues. For example, the
following link databases have emerged across a variety of
projects:

• Links associated with a given user;

• Links associated with a subject area;

• Links associated with a given administrative domain;
e.g. department;

• Links supporting a specific task; e.g. teaching;

• Links associated with a given group of users; e.g.
shared bookmarks;

• Links maintained by a given publisher of information;

• Links required specialised search algorithms, such as
feature matching.

Some of these suggest a strict hierarchical arrangement,
perhaps reflecting organisational hierarchy or subject
taxonomy. However, in general the linkbases do not fall
naturally into a hierarchy. They are also heterogeneous in
the sense that they carry different kinds of information and
might even respond to different types of query, with
different search algorithms to deal with features of
multimedia content. These examples emphasise the
contrast between link services and network services such
as the Domain Name Service (DNS), where information is
partitioned across relatively homogeneous servers with
network architecture, information architecture and even
organisational architecture mirroring each other.

Directory services are network services that provide access
to information such as telephone numbers and email
addresses. They are designed to meet many of the
requirements above, and are configurable with domain-
specific schema. As a linkserver access technology they
lie on a spectrum between HTTP and OHP – HTTP is a
ubiquitous protocol for accessing servers and imposes no
constraint on the content, while OHP includes a data
access protocol which itself is highly customised to

linkbase access. Although HTTP has been used in existing
link services (including DLS [4] and Chimera [2]),
directory services appear to be a strong candidate for
distributed link service infrastructure and this is the
motivation for this study.

The Lightweight Directory Access Protocol (LDAP) [21]
is an open, standard protocol for accessing information
services, originally developed as a lightweight front end
to the (heavyweight) ISO standard X.500 directory
service. It has become an Internet standard and we have
chosen LDAP for one of our experiments due to its wide
availability. Whois++ [10][20] is a more experimental
system with features extending beyond LDAP, and has
led to the Common Indexing Protocol (CIP) which
achieved RFC status in 1999 [1].

This paper describes our investigation of HTTP, LDAP
and Whois++ as candidate technologies for distributed
linkbases. The next section discusses query processing in
a distributed context, and is followed by a description of
our framework for comparing link service components.
We then describe our experiences of using HTTP, LDAP
and Whois++ to provide the link service infrastructure.
After a discussion of replication issues, the paper
concludes with a qualitative comparison and discussion of
future work.

DISTRIBUTED LINKBASES AND QUERY ROUTING
Consider the situation in which the linkbase is distributed
across multiple servers. When resolving a query, a server
may, using its local knowledge, decide that the query
should be sent to a different server. In HTTP there are two
scenarios: it may propagate the query directly, as a Web
proxy propagates a request down the chain towards a Web
server, or it may send an HTTP redirect message back to
the client. In directory services, the former is called
delegation and the latter referral.

The delegation model is illustrated in figure 1. The
responsibility for resolving the request from A is delegated
by B to the server C, which may itself initiate further
requests.

Figure 1: Delegation.

In the referral scenario, a link service request from A to
link server B can result in A being referred by B to another
link server C. This is illustrated in figure 2. There is no
delegation; the responsibility remains with A, which
contacts B and then C directly. Hence A retains control
and B does not need the capability to call other servers and
process results.

 69

Figure 2: Referrals.

The referral scenario might not be advantageous if, for
example, C is local to B and not to A, and so in general we
conceive of hybrid approaches. A third scenario involves a
request propagated from B to C and the results returned
directly from C to A. This is feasible in an asynchronous
message passing model, with peer-to-peer communication
(as with email, for example), whereas we are focusing here
on client-server models as reflecting current practice in
directory services and the Web infrastructure.

Query Routing
In the examples above, a server relies on its local
knowledge, either to respond to a request, or to identify
other servers. The server can better perform this task if we
augment this knowledge with summary information about
other servers. Taking this a stage further, we can conceive
of servers whose sole purpose is to carry knowledge about
other servers and route requests accordingly. These then
are techniques for query routing, the process by which a
query converges on a set of servers that contain relevant
data, in our case relevant links. This technique is also
found in federated databases and metasearch engines [22];
the full process involves database selection, query
evaluation and result merging. Note that we generally
refer to requests rather than queries, in line with HTTP
terminology but also to avoid the implication that
transactions only involve information retrieval – we do not
preclude the routing of update requests too.

Typically a query routing architecture involves the base
servers (in our case link servers) at the leaves together
with index servers which return referrals (e.g. B in
figure 2). A referral directs the client at base servers that
might be able to resolve the query, or other index servers
which might carry relevant information to find an
appropriate base server. These components are usually
arranged in a mesh.

For server B to refer the client to server C, server B must
have forward knowledge of C. This is some form of
summary of the information carried by C or, in general, an
indication of the type of queries that can be processed by
C. For effective query routing, forward knowledge should
enable a server to return referrals that route the query to all
base servers capable of resolving the query. For efficiency
it is also desirable that it returns referrals to as few

‘unhelpful’ servers as possible, and that referrals point
directly to base servers rather than to index servers.

Forward knowledge could be preconfigured to 'manage'
the routing, but for a flexible, dynamic system some form
of server-to-server exchange of summary information is
required. Consider the example of server B referring a
client to server C – this is achieved by establishing a
polling relationship between B and C, with B obtaining a
summary object from C whenever C is updated.

Although X.500 has a concept of a referral, LDAP
(version 2) does not support this. Hence for our request
routing experiments we have employed Whois++ [10][20].
The distributed indexing model of Whois++ has evolved
into the more general Common Indexing Protocol
(CIP) [1], providing an orthogonal mechanism for
exchange of summary objects which are not necessarily
oriented around template based databases.

COMPARISON FRAMEWORK
The link services developed in various projects have been
tested and evaluated in several ways. Generally we have
favoured the use of exemplar applications as case studies.
By contrast, here we seek an application-independent
approach, a generic framework that can be used to support
comparison of alternative link service implementations.
Although in this paper we emphasise qualitiative
comparison, quantitative experiments should also be
possible.

Part of our methodology is to use the Web as our control
experiment: we abstract links from the Web, reinsert them
using the link service interactively, then compare the
performance of the resulting system with the original Web
interaction. This enables us to compare performance and
scalability: for example, we expect a reduction in
performance while wishing response time to be suitable
for interactive use, and the issues of scaling with respect to
linkbase size, numbers of clients and wider area access
need to be understood. The second part of our
methodology is to see that we achieve the benefits of the
enhanced navigation provided by the open hypermedia
approach, including generic linking.

Although we have chosen to derive the linkbase data from
the Web, in making this decision we are conscious that the
Web hyperstructure might not cover all linking practices
and we must continue to be informed by other hypermedia
systems. Hence we call upon additional sources of
linkbase data in order to bootstrap our experiments,
including the linkbases described in the introduction. We
also investigate response to updates by editing linkbases
manually or generating new linkbases.

To import sets of HTML documents into the framework,
we use a robot which walks a web site, saving link data in
a relational database and making local copies of the
documents with the anchors (HREFs) rewritten according
to the requirements of the experiment. The SQL database
facilitates the subsequent generation of multiple linkbases.

 70

The current implementation is based on libwww from
W3C and runs on FreeBSD and linux. It uses the mysql
database, with www-sql to facilitate interaction with the
database. This has proven to be a very versatile
combination of tools.

For the replication of Web functionality we use two
HTML rewrite scenarios. The first preserves the original
appearance of the Web links but forces link resolution via
a link service, with the queries specified as URIs
embedded in the HTML document. The second is a
mechanism for naming anchors, which can then be used in
a separate link database. The methods can be used in
combination. An example of each of these rewrite methods
is given below:

Rewrite method 1

HREFs are rewritten to invoke a service that is part of
the experiment, so that Web links still appear in a Web
browser. For example, in the file foo.html on server
www.deroure.org

here

is rewritten to

here

and a new base URI identifying the service is provided.

Rewrite method 2

HREFs are replaced by NAMEs, so that each source
anchor can be denoted by a URI. For each such rewrite,
a pair of URIs is generated, corresponding to the source
and destination anchors of the original link. For
example, in the file foo.html on server
www.deroure.org the anchor

here

is rewritten to

here

generating link number 1234 with source anchor

http://www.deroure.org/foo.html#S1234

and destination anchor

http://www.deroure.org/bar.html#thing

The experimental framework also features a Web proxy
which rewrites fragments of HTML as documents pass
through in order to insert links on-the-fly, without waiting
to parse the entire document.

Extension to content-based techniques
The framework described above enables the user to follow
a link from a location in a document only if there was an
original link from that location. As discussed in the
introduction, generic linking enables the user to determine
available links based on the content at the current location.
In the case of text, a simple content-based technique is to
use a word selected by the user as the basis for a query;
this could, for example, provide a context-sensitive

glossary facility. In the general multimedia context,
content-based techniques require feature extraction
followed by interrogation of a link database using
matching techniques specific to the feature – this is
discussed in the next subsection.

There is a crude but effective technique for linking from
individual words and it further illustrates the first rewrite
technique described above: every word can be rewritten as
an anchor with an HREF which initiates the appropriate
query. For example

deroure

is rewritten to

deroure

This is a somewhat extreme scenario that causes massive
HTML inflation (and very blue text!) but has proven
invaluable. For example, it was used successfully in a tool
to assist in creating linkbases to link speech recordings
with their text transcripts. In the authoring process, the
user listened to the audio and clicked on words so that the
server could record the time at which they occurred;
subsequently, clicking on the same words caused the audio
to jump to that point. This serves as a reminder that we
are interested in both link creation and retrieval.

Fortunately it is possible to achieve a more flexible
approach taking advantage of contemporary browser
facilities, so that the user can mark an arbitrary region of
text and this is then submitted automatically to an engine
which in turn queries the link service. This sort of
integration has been achieved successfully in other
projects (such as [12]) using Javascript, Java and DOM
(the W3C Document Object Model).

Extension to other media types
The techniques described above are specific to HTML
and related formats. In practice, a link service is used
with a wide variety of content types and it is therefore
necessary to address this in the experimental framework.
In general there are two kinds of information which may
form part of a query for available links: the location in a
multimedia document and the content at that location; this
is augmented by information about the context of the
query, including for example the name of the document,
the user, their role and location. These information
sources are depicted in figure 3.

Positions can take various forms; for example a byte
offset or range of bytes, a point or region in an image, a
time or duration in a stream [17]. Within a web browser
we can use the image map mechanism to generate
position information for images. We have previously
demonstrated a generic media player application for use
outside a browser: clicking the link button generates a
source URI based on the current document URI and the
current play time [3].

Basic hypermedia facilities can be expressed using
position information. However, once a fragment of

 71

multimedia content has been identified through the user
interface by whatever mechanism, it can be submitted to a
feature extractor to obtain a content representation
suitable for matching. It is possible that this
representation will be textual in which case it may be
possible to use a standard link service. Position
information is sometimes textual too, for example if
objects have identifiers; e.g. in VRML.

Figure 3: Information sources

However, in general the processing of position
information (such as an interval or region) or extracted
features (perhaps a colour histogram) requires special
processing according to content type. In addition, the
matching process may need to be parameterised, perhaps
to provide a threshold or to guide query expansion, and
the results may carry additional information about the
quality of the match.. This means the link service may
need to deal with arbitrary queries and route them to
specialised matching engines, and potentially support
aggregation of ranked results.

For our experiments we use the melodic contour engine
[3][11] as an example of a content-based technique. A
contour is an established abstraction of a sequence of
musical notes, indicating the direction of note transitions
but not absolute pitches or sizes of intervals. Contours
have the advantage that they are represented as text
strings (with a small alphabet) and are therefore easy to
work with as a feature. They can be readily derived from
MIDI files. The engine is fairly typical of other content-
specific engines in accepting search parameters and
returning ranked results. In fact the engine uses query
expansion rather than fuzzy matching, in order to provide
response times suitable for interactive use.

HTTP EXPERIMENT
The basic model of a DLS linkserver is that a source
anchor is provided as an HTTP GET request and the
linkserver responds with a set of destinations extracted
from its local link data [4]. Hence when the user clicks on
a Web link, an “available links” display is produced. In
fact, for links with one destination it is possible to use a
redirection to provide an ‘autofollow’ facility, maintaining
the illusion of following the original link. Queries can be
based on individual words or regions of text, and this
extends to the whole document – in fact DLS can function
in Web proxy mode, inserting links on-the-fly using its
local link data.

The first rewriting method tests the basic model. The user
notices no difference in the interface but the link service is
exercised in the process of link following. With the
linkserver local to the client on the network, we observe no
appreciable delay in link following except for linking to
destinations within the same document.

The proxy approach can apply much greater stress to the
link service. With a DLS linkserver itself in proxy mode,
every word in an HTML document is looked up locally in
the link data as it flows through the proxy, and the
destination links inserted. Despite the apparent
computational intensity of this approach, we observe that it
works very effectively, with no significant delay on web
pages of typical sizes. This is partly achieved by loading
the linkbase data into a runtime data structure for fast
access; however, live linkbase updates are then
complicated by the need to maintain consistency between
the runtime and persistent forms of the linkbase data.

However, in the comparison framework with the proxy
decoupled and interrogating the linkserver via HTTP for
every word (rather than through an internal API), the delay
is several seconds for average Web documents. This
clearly exceeds acceptable interactive response times.
Using the second rewrite method, the proxy can be used to
insert only the links that were present in the original
document; the slowing effect is still noticeable on pages
that would otherwise load instantly.

By using HTTP we gain advantage from the Web
infrastructure. We can configure the system to use
multiple linkservers via the mappings provided in the
HTTP server configuration; we can pull remote linkbase
data over to the local linkserver using HTTP and taking
advantage of the Web caching. By making linkserver
queries appear as requests for cacheable documents, we
can even cache the results of those queries, though this
does require any relevant user context to be explicitly
encoded in the URI.

LDAP EXPERIMENT
While HTTP provides a mechanism for querying
linkbases and the Web infrastructure provides a means of
replicating link data to improve retrieval performance,
there is no automatic support for use of multiple link
servers and aggregation of query results from multiple

 72

sources. However, we do wish to work with multiple
servers, both to support diverse link data and to provide
servers which are local to clients for efficient access.
These requirements appear to be closely matched to
directory services. Instead of querying the service with a
name to retrieve an email address, we wish to query it
with a source anchor to retrieve a destination. LDAP, with
its configurable schema and support for integrating
multiple servers, is a strong candidate for such a system.
It also has the attraction of widespread support, including
provision for LDAP access built into Web clients.

Our system consists of LDAP servers extended with
templates for link objects. The simplest experimental link
object is defined as follows:

item cis "Link ID" cn
item url "Source anchor" source
item url "Dest anchor" destination

i.e. a link ID string and URIs representing the source and
destination anchors. The implementation uses the Open
LDAP source (version 1.2) based on the LDAP
implementation from University of Michigan. The
system was configured with experimental link schema,
and employed the 'slurpd' mechanism for replicating
dynamically updated directory data. It was tested from
Netscape Communicator 4.08 and 4.5, which have
support for LDAP including a user interface that can be
customised for new attributes, and an HTTP to LDAP
gateway (web500gw) distributed with the Open LDAP
release.

The experiment in reconstructing Web link structure via
the link service provided confirmation of the viability of
using LDAP in this role. Latency issues are much as with
HTTP, with individual queries to locally networked link
services not causing noticeable delay, but repeated access
(as with the proxy) causing delays that are significant in
terms of interactive response times. With two servers we
successfully demonstrated cloning one LDAP server and
also configuring one server to delegate to another.

LDAP has support for expressing complex queries and for
filtering results, and we believe these to be useful for
constraining the search space using information about the
context of the query. We also found the LDAP system to
be effective for generic linking from text documents, as it
has some simple matching algorithms built in. For
example, substring matching enables multiple links to be
identified from a single query word and context. A
'sounds like' mechanism also proved useful and we
anticipate that this will be useful in applications involving
text transcription of the spoken word.

Content-based searches are possible by introducing other
attributes but, with standard LDAP servers, the service is
most effective if these map naturally to simple text

attributes. For example, the contour engine uses 14 letter
strings on an alphabet of three symbols (U, D, R) which
can easily be handled and searched for within LDAP. On
the other hand, we have developed highly specialised
algorithms for pitch contour matching that, for example,
account for common errors.

Note there is a distinction between restrictions of the
LDAP protocol itself and the limited functionality of an
LDAP server implementation. The protocol is quite
general and can handle searches based on tokens or text, so
content-based searching could be incorporated within an
extensible LDAP server. Alternatively, a content-based
retrieval engine could be given an LDAP interface.

WHOIS++ EXPERIMENT
LDAP (version 2) does not support referrals. Whois++
[10][20], although still a more experimental system than
LDAP, does have this support. Hence Whois++
implements query routing, and a form of 'forward
knowledge' is needed to support this, with servers polling
each other for summary information.

Whois++ adopts a template model with attribute-value
pairs. Two template formats for links have been evaluated.
The first is based on the database schema used in [9], with
host, path and document as separate attributes (and a status
attribute for repair and the housekeeping of ‘garbage
collection’). The second is based on the summary object
interchange format (SOIF), introduced in the Harvest
project, with source and destination URIs and available
metadata; this format effectively treats links as one would
individual documents.

In the prototype interface, following a link resulted in a
display of ‘available links’ as usual in DLS (via the
browser but in a separate window), but now including
‘available link servers’ corresponding directly to the
referral responses to the query; i.e. a series of SERVER-
TO-ASK responses. The user can then submit the query to
any of these servers. This interface, shown in figure 4,
makes the query routing explicit and is probably most
appropriate for system maintainers and link database
authors; we expect many applications to use an agent
rather than a human in this loop.

Our original query routing infrastructure was the Digger
software from Bunyip Information Systems, which
supports Whois++ and a version of CIP. This was ported
to PHP3.0 (an HTML-embedded scripting language) and
used both as a link database and as an index server,
separately and in combination. An existing link service
(early DLS, with a flat file linkbase) was then integrated
by adding a script to generate a summary from the link
data, and the link service protocol extended with a new
method to obtain the summary; a new summary was
automatically generated on linkbase update. We have
subsquently experimented with two further Whois++
implementations, in Java and PERL.

 73

Figure 4: The Available links interface.

In terms of recreating the Web linking, Whois++
performed much as LDAP. However, the advantage of the
referral model is that the routing decisions are made closer
to the client and we believe this will be significant in some
applications.

Forward knowledge for a link service
Effective routing relies on good forward knowledge, and
the issue of forward knowledge for a link service is a
research issue in itself. The summary object (also called a
centroid) comprises:

• A list of the templates in the server;

• The attributes in the templates;

• A list of unique tokens for each attribute.

With the summary containing all the unique anchors in a
linkbase, exact string matching requires queries with
complete anchors; a more sophisticated matching
algorithm might determine referrals based on partial
matches. When we break each anchor into hostname,
pathname and document name attributes, the summary
information comprises three lists of unique tokens; i.e.
hosts, paths and document names. Referrals then expand
the search space to include base servers with anchors
containing matching components. The trade-off is that
referrals to inappropriate servers become likely (so-called
negative referrals).

Query (request) routing is attractive for integrating diverse
link services, and since some of this diversity comes from
working with multimedia content we must extend the
notion of forward knowledge to include different media
types. For pitch contours we split the contour data into two
engines, each with a summary comprising several
thousand contours. This is a highly inefficient form of
forward knowledge: we would prefer to be able to describe
the partitioning by a pattern or simple predicate, and the
example suggests that not all media types are suited to
extraction of forward knowledge. This exercise also
uncovered another aspect that is relevant here: the engine

deals with approximate matching by query expansion (a
'fuzzy query') and we identified the need to decouple the
query expander from the lookup code so that the generated
queries can be routed independently.

The reader is also referred to [18] for a useful discussion
of content-routing. A generalisation of Whois++ to the
Common Indexing Protocol (CIP) has now achieved RFC
status [1]. CIP is not limited to directory services and
arbitrary summary objects are possible. These extensions
are attractive in our particular application, particularly for
multimedia content.

REPLICATION ISSUES
One of the attractions of using a directory service within a
link service is the potential to address our requirement of
providing distributed information with good availability
and of maintaining coherency when the information is
updated. For example, a service such as DNS is designed
for availability and performance but infrequent update,
whereas some of our applications involve frequent
dynamic update.

To investigate both scalability and the interplay between
the query routing architecture (e.g. index server locations)
and the network architecture, we are conducting
simulations. This permits the experiment to be scaled to
much larger numbers of servers. For example, we
consider a scenario with linkbases on home PCs
interconnected by low bandwidth links to a higher speed
backbone.

The simulator was built in Lisp, which deals comfortably
with attribute-value pairs and symbolic representation of
forward knowledge. A request consists of a set of
attribute-value pairs, and the index server compares the set
of attributes (e.g. user, document, anchor) with each
linkbase summary in turn. The common attributes, if any,
are each checked for the value in the query being a
member of the set of possible values associated with that
attribute in the linkbase; if the value exists for all common
attributes then a referral is generated. The simulation
enables us to explore optimisation of the search strategy,
incorporating an explicit representation of the network
with associated wide area transmission costs.

As a simple example, figure 5 shows the results of an
experiment exploring a heuristic for optimising link
resolution. Forward knowledge tables are automatically
replicated in the direction of hosts which send numerous
requests, moving one hop whenever the number of
requests exceeds a threshold.

This particular simulation involves 20 link servers,
interconnected by a fixed network, subjected to up to 200
initial random queries. The X axis shows the number of
requests submitted by clients to the service and the Y axis
show the plot of the total distance covered by all messages
to resolve that number of requests (the ‘total query
mileage’), in arbitrary units. Points indicated by squares
were recorded without automatic table replication;

 74

triangles show the results with automatic replication
enabled. Multiple runs result in different results due to the
random test data, and with this heuristic the wide variation
in the results with replication shows over-sensitivity to the
initial sequence of queries.

Figure 5: Query transport costs with and without table
replication.

The simulator has enabled us to investigate hybrid models
which include delegation and referrals. For example, one
server can hide multiple servers behind it and respond as a
single virtual server, including provision of aggregated
summary information, dealing with updates and
concealing specific location information.

RESULTS
Table 1 presents a summary of our initial findings
regarding the suitability of HTTP, LDAP and Whois++ to
provide a link service.

We found the LDAP model to be well suited to link server
access. One of the key reasons for building hypertext using
a DLS is that there is value in having groups of links
together, so they can be easily searched according to
various criteria. Directories are more suited to offering
such search facilities than a HTTP server storing links: the
0HTTP route requires development of many additional
tools. Whois++ extends the directory service with

referrals, which we have found to be an effective model in
link services. However, Whois++ is not yet widely
supported.

Consistently, intense link resolution (as required by the
proxy) is sufficiently slow that it has a negative effect on
the interactivity of the system. This is largely due to
network latency and to an extent can be overcome by
formulating multiple requests in one transaction. The
established solution is to take the resolution out of the
interaction loop by displaying links asynchronously.
Another idea is to look to directory services as providers
of linkbases rather than individual links. In other words,
the query causes the directory service to generate a custom
linkbase, and this is accessed locally by the resolver (via
an API rather than as a network service).

CURRENT WORK
In our experiments we have not fully addressed a number
of aspects including the management model (who owns
what information and what security model do we need?)
and the user interface (can the referrals be dealt with by a
personal assistant agent?) These will be explored through
case studies, which should also provide more evidence
about the design of forward knowledge and on the balance
between delegation and referral.

We are currently investigating a more general approach to
accommodate the useful ideas in query routing. In
multiagent systems, agents are autonomous and must
announce their availability and capabilities to other agents;
in fact there are formal models for agents carrying
information about other agents, which suggest a basis for
query routing. Furthermore, there is a well established
technique of ‘wrapping’ legacy systems to integrate them
with agent systems. Hence our approach is to take an
agent framework and construct agents to perform the link
resolution tasks [16].

 Advantages Disadvantages

HTTP

Near-universal support
Automatic replication through caching of link data
Integrates multiple servers through HTTP redirects
Possibility of caching query results

Difficult to process queries on multiple
servers and aggregate results

LDAP

Wide support
Integrates multiple servers
Retrieves multiple entries
Servers have support for replication

No referrals, distributed information tree must
be managed
Default matching algorithms suitable for
generic linking in text but not other media

Whois++
Best support of query routing
Extended to multimedia content summaries through
Common Indexing Protocol

Not widely supported

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

Normal Optimised

Table 1. Qualitative comparison of link services

 75

In the second section we mentioned the client-server model
vs. asynchronous message passing. Mapping these ideas to
internet protocols, we note that client-server is advantageous
when connections can persist (i.e. the results travel back
along the same TCP/IP connections used by the query) but
the asynchronous model is advantageous when faced with
intermittent connectivity or very long transactions. Since
we are partly motivated by the need to support information
applications in pervasive computing systems, intermittent
connectivity is a key issue. Hence we are also considering
asynchronous message passing models.

Future work based on these experiments will include
provision of a distributed link service for mobile users, and
application to temporal media. We will also address the
metadata issues in the hyperstructure; initial work with
RDF is in progress. We are also investigating use of the
Handle system [19] as another candidate infrastructure. The
LDAP model, Whois++ and CIP are all still evolving, and
we will continue to track their development.

The experimental work has given an interesting insight into
the problem: in separating the hyperstructure and then
working with it as distributed information, we create a
distributed information management problem which
resembles our original problem working with distributed
documents! In particular, following forward knowledge is
like following a link; forward knowledge maintenance
resembles link maintenance. This suggests a question: can
we use the infrastructure that we have created in order to
manage the structure at a higher level; e.g. use links
between index servers? The display in figure 4 is a good
example of this – instead of available links we have
available link servers. This reflective approach is also a
subject of future work.

SUMMARY
We have demonstrated that directory services can be used
within link service infrastructures. A simple service such as
LDAP provides a basic functionality which, for example, is
well matched to text based media, as in our experiment of
reproducing Web linking after extracting linkbases, and to
simple generic linking. We believe that in some
circumstances LDAP may be better suited to linkbase
generation than individual link resolution. LDAP also has
basic replication facilities that assist in the larger scale
distributed context. It is a good candidate for some link
services, particularly as it enjoys wide support.

The query routing model of Whois++ (and CIP) appears
particularly well suited, and the forward knowledge model is
useful in integrating our diverse resources. The challenge is
an appropriate definition of forward knowledge for the
problem at hand, and how to extend this to multimedia
content. We believe that a great attraction of the referral
architecture is that processing of referrals is the
responsibility of a system component which is separate from
the link servers, providing a useful separation of concerns –
it means decisions can be made closer to the user.

ACKNOWLEDGMENTS
This work was conducted jointly between the University of
Southampton and BT Laboratories, and is partially
supported by EPSRC awards LinkMe and HyStream. The
'query by humming' engine and linking media player were
developed by Steven Blackburn. The agent framework was
developed by Luc Moreau and colleagues in the Multimedia
Research Group. Particular thanks are due to Danius
Michaelides, Samhaa El-Beltagy and Nick Gibbins, and also
to Mark Thompson who is conducting the current research
using asynchronous message passing with support from
IBM under the University Partnership Programme. The
authors are grateful to the reviewers for their useful
feedback.

REFERENCES
1. J. Allen and M. Mealling, “The Architecture of the

Common Indexing Protocol (CIP)”, RFC 2651, Internet
Engineering Task Force, August 1999.

2. K. M. Anderson, “Integrating Open Hypermedia
Systems with the World Wide Web”, in Proceedings of
the 8th ACM Conference on Hypertext, Southampton,
UK, April 1997. pp. 157-156.

3. S. Blackburn and D. DeRoure, “A tool for content
based navigation of music”, in Proceedings of ACM
Multimedia 1998, Bristol, UK, Sep. 1998, pp. 361-368.

4. L. Carr, D. DeRoure, W. Hall, and G. Hill, “The
Distributed Link Service: A tool for Publishers, Authors
and Readers”, The Web Journal 1(1) (Proceedings of
the Fourth International World Wide Web Conference,
Boston, USA, Dec. 1995), O'Reilly and Associates, pp.
647-656.

5. L. Carr, W. Hall and S. Hitchcock, “Link Services or
Link Agents?”, in Proceedings of the Ninth ACM
Conference on Hypertext and Hypermedia, Pittsburgh,
Pennsylvania, USA, Jun. 1998, pp113-122.

6. H. C. Davis, D. E. Millard, and S. Reich, “OHP -
communicating between hypermedia aware
applications”, in Proceedings of the Workshop
'Towards a New Generation of HTTP', held in
conjunction with the 7th International WWW
Conference (J. Whitehead, ed.), Irvine, CA, USA,
University of California, Irvine Department of
Information and Computer Science, Apr. 1998.

7. H. C. Davis “Referential Integrity of Links in Open
Hypermedia Systems”, in Proceedings of the 9th ACM
Conference on Hypertext and Hypermedia, Pittsburgh,
USA, June 1998. pp. 207-216.

8. D. DeRoure, L. Carr, W. Hall, and G. Hill, “A
distributed hypermedia link service”, in Third
International Workshop on Services in Distributed and
Networked Environments, IEEE, Macau, June 1996,
pp. 156-161.

 76

9. D. DeRoure, W. Hall, S. Reich, A. Pikrakis, G. Hill,
and M. Stairmand, “An open framework for
collaborative distributed information management”, in
Seventh International World Wide Web Conference
(WWW7), Computer Networks and ISDN Systems,
vol. 30, Brisbane, Australia, Apr. 1998, pp. 624-625.

10. P. Deutsch, R. Schoultz, P. Faltstrom and C. Weider,
“Architecture of the WHOIS++ service”, RFC 1835,
Internet Engineering Task Force, August 1995.

11. A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith,
“Query by humming - musical information retrieval in
an audio database”, in Proceedings of ACM Multimedia
95, San Francisco, California, Nov. 1995.

12. K. Gronbaek, N. O. Bouvin and L. Sloth, “Designing
Dexter-based hypermedia services for the World Wide
Web”, in Proceedings of the 8th ACM Conference on
Hypertext, Southampton, UK, April 1997. pp. 146-
156.

13. W. Hall, “Ending the tyranny of the button”, IEEE

Multimedia, vol. 1, Spring 1994, pp. 60-68.

14. G. J. Hill, R. J. Wilkins and W. Hall, “Open and
reconfigurable hypermedia systems: A filter-based
model”, Hypermedia, vol. 5, no. 2, 1993, pp. 103-118.

15. P. H. Lewis, H. C. Davis, S. R. Griffiths, W. Hall, and
R. J. Wilkins, “Media-based navigation with generic
links”, in Proceedings of the 7th ACM Conference on
Hypertext, New York, Mar. 1996, pp. 215-223.

16. Moreau et al, “SoFAR with DIM Agents: An Agent
Framework for Distributed Information Management”,
Fifth International Conference on The Practical
Application of Intelligent Agents and Multi-Agents,
Manchester, UK (to appear).

17. S. Newcomb, N. Kipp and V. Newcomb, “The HyTime

hypermedia/time-based document structuring
language”, Communications of the ACM, 34(11),
November 1991, pp 67-83.

18. M.A. Sheldon, A. Duda, R. Weiss and D.K. Gifford,
“Discover: a resource discovery system based on
content routing”, in Third International World Wide
Web Conference, Computer Networks and ISDN
Systems, vol.27, no.6, 1995, pp 953-72.

19. S. X Sun, L. Lannom, “Handle System Overview”,
Internet Draft draft-sun-handle-system-03 (work in
progress), July 1999.

20. C. Weider, J. Fullton and S. Spero, “Architecture of the
Whois++ Index Service”, RFC 1913, Internet
Engineering Task Force, Feb 1996.

21. W. Yeong, T. Howes and S. Kille, “Lightweight
Directory Access Protocol”, RFC 1777, Internet
Engineering Task Force, March 1995.

22. J. Xu, Y.Y. Cao, E.P.Lim and W.K. Ng “Database
Selection Techniques for Routing Bibliographic
Queries”. In Proceedings of the 3rd ACM International
Conference on Digital Libraries (DL’98), Pittsburgh,
June 1998.

