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1. Introduction

Similarity search in multimedia databases requires
an efficient support of nearest neighbor search on
a large set of high-dimensional points. A technique
applied for similarity search in multimedia databases
is to transform important properties of the multimedia
objects into points of a high-dimensional feature
space. The feature space is usually indexed using
a multidimensional index structure. Then, similarity
search corresponds to a range search which returns
all objects within a threshold level of similarity to
the query objects, and ak-nearest neighbor search
that returns thek most similar objects to the query
object.

Initially, traditional multidimensional data struc-
tures (e.g., R-tree [1], kd-tree [5]), which were de-
signed for indexing low-dimensional spatial data, were
used for indexing high-dimensional feature vectors.
However, recent research activities [10,9,8] reported
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the result that basically none of the querying and in-
dexing techniques which provide good results on low-
dimensional data also performs sufficiently well on
high-dimensional data. Many researchers have called
this problem the “curse of dimensionality” [3], and
many database-related projects have tried to tackle it.
As a result of these research efforts, a variety of new
index structures [11,9], cost models [10] and query
processing techniques [7] have been proposed. How-
ever, most of the high-dimensional index structures are
extensions of the R-tree or the kd-tree adapted to the
requirements of high-dimensional indexing. Thus, all
of these index structures are limited with respect to
data space partitioning and suffer from specific draw-
backs of the R-tree or the kd-tree.

To overcome these drawbacks, in our earlier work
we proposed the SPY-TEC [2], an efficient index
structure for similarity search in high-dimensional
spaces and proposed the algorithm for processing
range queries on the SPY-TEC. However, we could not
propose an algorithm for processing nearest neighbor
queries on the SPY-TEC.

In this paper, we introduce a new metric that can
be used to guide an ordered best-first traversal when
finding nearest neighbors on the SPY-TEC. Based on
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this new metric, we propose the incremental nearest
neighbor algorithm on the SPY-TEC.

2. Related work

Roussopoulos et al. [7] proposed an algorithm for a
nearest neighbor search in the R-tree. The key idea of
their work is to maintain a global list (ActiveBranch-
List) of the candidatek nearest neighbors as the R-
tree is traversed in a depth-first manner. The authors
of [7] introduced two important distance functions,
MINDIST and MINMAX DIST for ordering nodes that
will be visited. MINDIST is the minimum distance
from a query objectq to a node (or bounding rec-
tangle r) of the R-tree, while MINMAX DIST is the
distance fromq to the closest corner ofr that is “ad-
jacent” to the corner farthest fromq . With these dis-
tance functions, the authors proposed three strategies
for upward and downward pruning. In some sense, the
two orderings represent the optimistic (MINDIST) and
the pessimistic (MINMAX DIST) ordering choices be-
cause experiments reported in [7] showed that order-
ing theActiveBranchListusing MINDIST consistently
performed better than using MINMAX DIST.

Hjaltason and Samet [4] proposed the incremen-
tal nearest neighbor algorithm that employs what may
be termed best-first traversal. When findingk nearest
neighbors to the query object using the algorithm pro-
posed in [7],k is known prior to the invocation of the
algorithm. Thus, if the(k + 1)th neighbor is needed,
the k-nearest neighbor algorithm needs to be rein-
voked for(k + 1) neighbors from scratch. To resolve
this problem, the authors of [4] proposed the concept
of distance browsingwhich is to obtain the neighbors
incrementally (i.e., one by one) as they are needed.
They showed through various experiments that their
incremental algorithm significantly outperforms the
algorithm of [7] for distance browsing queries and
also usually outperforms it when applied to thek-
nearest neighbor problem for the R-tree. They also
showed that, of the three pruning strategies proposed
in [7], the one pruning strategy that does not use
MINMAX DIST is sufficient when used in a combina-
tion of upward and downward pruning in their algo-
rithm. This implies that MINMAX DIST is not neces-
sary for pruning in the incremental nearest neighbor
search.

To the best of our knowledge, the incremental ap-
proach is one of the most efficient algorithms for find-
ing the nearest neighbor ork nearest neighbors. How-
ever, this algorithm does not provide good results on
high-dimensional data either, as we will show in our
experimental evaluation. This is not a problem of the
algorithm itself, but a problem of the underlying in-
dex structure (R-tree), which does not support efficient
indexing or query processing structurally on a high-
dimensional data space.

3. The SPY-TEC

In [9], Berchtold et al. proposed a special partition-
ing strategy, the Pyramid-Technique, which divides
the d-dimensional data space first into 2d pyramids,
and then cut the single pyramid into several slices.
They also proposed the algorithm for processing hy-
percubic range queries on the space partitioned by this
strategy. However, the shape of queries used in simi-
larity search is not a hypercube, but a hypersphere [3].
Thus, when processing hyperspherical queries with
the Pyramid-Technique, there is a drawback which ex-
ists in all index structures based on the bounding rec-
tangle [3,2].

The main idea of the SPY-TEC is based on the ob-
servation that spherical splits will be better than right-
angled splits of the Pyramid-Technique for similar-
ity search. This observation is due to the fact that the
shape of the queries used in similarity search is not a
hypercube, but a hypersphere.

The SPY-TEC partitions the data space in two steps:
In the first step, we split ad-dimensional data space
into 2d spherical pyramids having the center point
of the data space(0.5,0.5, . . . ,0.5) as their top and
a (d − 1)-dimensional spherical surface of the data
space as their bases. The second step is to divide each
of the 2d spherical pyramids into several spherical
slices with a single slice corresponding to one data
page of theB+-tree. We will call this spherical slice
the “bounding slice(BS)” because it is a data page
region. Fig. 1 shows the data space partitioning of
the SPY-TEC in a 2-dimensional example. First, the
2-dimensional data space has been divided into 4
spherical pyramids. All of these spherical pyramids
have the center point of the data space as their top
and one spherical surface of the data space as their
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Fig. 1. Partitioning strategy of the SPY-TEC.

bases. In the second step, each of these 4 spherical
pyramids is split again into several data pages which
are shaped like the annual ring of a tree. Although
the formal expression of this procedure was presented
in [2], we redefine it formally for better understanding
of our incremental nearest neighbor algorithm on the
SPY-TEC.

Definitions 1 and 2, which follow, correspond to the
first step and second step of our partitioning strategy.
That is, as depicted in Fig. 1, we can determine the
spherical pyramid to which a point belongs, according
to Definition 1. And, we can determine the location of
a point in its spherical pyramid by Definition 2.

Definition 1 (Spherical pyramid of a pointv). A d-di-
mensional pointv is defined to be located in spherical
pyramidspi .

i =
{

jmax if vjmax < 0.5,

(jmax+ d) if vjmax � 0.5,

jmax= (
j | (∀k, 0 � (j, k) < d, j �= k:

|0.5− vj | � |0.5− vk|
))

.

Definition 2 (Distance of a pointv). Given ad-di-
mensional pointv, the distancedv of the pointv is
defined as

dv =
√√√√d−1∑

i=0

(0.5− vi)2.

Finally, Definition 3, which follows, is to transform
a d-dimensional pointv into a 1-dimensional value
(i · 	√d� + dv) using Definitions 1 and 2.

Definition 3 (Spherical pyramid value of a pointv).
Given ad-dimensional pointv, let spi be the spherical
pyramid to whichv belongs according to Definition 1,
anddv be the distance ofv according to Definition 2.
Then, the spherical pyramid valuespvv of v is defined
as

spvv = (
i · 	√d � + dv

)
.

For example, consider a 2-dimensional point,v =
(0.4,0.8). According to Definition 1, the pointv
belongs tosp(1+2) becausejmax is 1 andv1 (= 0.8)

is greater than 0.5. And, according to Definition 2,
the distance fromv to the center is

√
0.1. Finally,

the spherical pyramid value (spvv) of the pointv is
3 · 	√2� + √

9 by Definition 3.
Using this partitioning strategy, the SPY-TEC can

transform ad-dimensional data point into a one-
dimensional value and then store ad-dimensional
point plus the corresponding one-dimensional key as
a record in the leaf nodes of aB+-tree which provides
fast insert, update, delete, and search operations. It is a
very simple task to build an index using the SPY-TEC.
Given ad-dimensional pointv, we first determine the
spherical pyramid valuespvv of the point and then
insert the point into aB+-tree usingspvv as a key.
Finally, we store the pointv andspvv in the according
data page of theB+-tree. Update and delete operations
can be done similarly.
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4. Incremental nearest neighbor algorithm on the
SPY-TEC

The algorithm proposed in [4] picks the node with
the least distance in the set of all nodes that have yet to
be visited when deciding what node to traverse next on
the R-tree. This means that instead of using a stack or
a plain queue to keep track of the nodes to be visited,
it uses a priority queue where the distance from the
query point is used as a key. In our algorithm, we also
use a priority queue where the distance from the query
point to the nodes or objects is used as a key.

4.1. Metrics for nearest neighbor search

For the incremental nearest neighbor search on the
SPY-TEC, we need the minimum possible distance
from the query object to a node in the SPY-TEC.
Fig. 2 shows an example of the SPY-TEC in a two-
dimensional data space. For the sake of simplicity, we
assume that each bounding slice contains one object.
In Fig. 2, the query point falls within a bounding
slice BS4 in the spherical pyramidsp1. As with most
nearest neighbor algorithms, we must first visit the
page (BS4 in this example) containing the query point.
Then, we visit the next page with the second smallest
minimum distance from the query point. To do so, we
must calculate the minimum possible distance from
the query point to a spherical pyramid or a bounding
slice. We first describe the process of calculating the
minimum distance between the query point and a
spherical pyramid, and then discuss the process of

Fig. 2. An example of the SPY-TEC for a set of 10 points.

calculating the minimum distance between the query
point and a bounding slice.

Lemma 1, which follows, measures the minimum
distance MINDIST(q,spi ) from the query pointq to a
spherical pyramidspi . For the sake of simplicity, we
focus on the description of the case only for spherical
pyramidsspi wherei < d . However, this lemma can
be extended to all spherical pyramids in a straight-
forward manner [2].

Lemma 1 (Minimum distance from a query point
to a spherical pyramid).Given a query point(q =
[q0, q1, . . . , qd−1]), let spj (j < d) be the spherical
pyramid containing a query point, and spi be the
spherical pyramid that will be examined for the
minimum possible distance fromq . The minimum
distance fromq to spi , MINDIST(q,spi ), is defined as

MINDIST(q,spi ) =




0 if i = j,

dq if |i − j | = d,

|qj − qi |√
2

if i < d,

|qj + qi − 1|√
2

if i > d.

Proof. Due to lack of space, we only show each case
by using a 2-dimensional example of Fig. 3 instead of
the formal proof. First, the spherical pyramidsp0 con-
tains the query pointq . Therefore, MINDIST(q,sp0) =
0, which is less than or equal to the distance ofq from
any point insp0. And sp1 is adjacent toq . Thus, the
minimum distance ofq from sp1 is the length of the

Fig. 3. The minimum distance from the query point to a spherical
pyramid.
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Fig. 4. The minimum distance from the query point to a bounding slice.

straight line (α) betweenq and the closest side plane
of sp1. Therefore,

MINDIST(q,sp1) = |q0 − q1|/
√

2.

The rest of cases can be calculated analogously. For
the formal proof, you can refer to [6].✷

Calculating the minimum distance from the query
point to a bounding slice is more complex than the
case of the minimum distance from the query point
to a spherical pyramid. However, as depicted in Fig. 4
and Lemma 2, we can present it easily by classifying
into three cases.

Lemma 2 (Minimum distance from a query point to
a bounding slice).Given a query point(q), let spj
be the spherical pyramid containing a query point,
and BSl be the bounding slice that belongs to a
spherical pyramid spi . The minimum distance fromq
to a bounding slice BSl , MINDIST(q,BSl ), is defined
as

Case1: (i = j : the case of BSl belonging to the
spherical pyramid that containsq .)

MINDIST(q,BSl )

=




|dq − max(BSl )|
if dq > max(BSl ),

0 if min(BSl ) � dq � max(BSl),

|dq − min(BSl )|
if dq < min(BSl ).

Case2: (|i − j | = d : the case of BSl belonging to
the spherical pyramid on the opposite side ofq .)

Let α be the distance from the closest side plane of
a spherical pyramid adjacent toq and θ (� π/4) be
the angle of a right-angled triangle which consists of
two sides,α anddq (sinθ = α/dq ),

MINDIST(q,BSl )

=
√

dq
2 + min(BSl )

2 − 2dq min(BSl )cos

(
θ + π

2

)
.

Case3: (otherwise: the case of BSl belonging to a
spherical pyramid adjacent toq .)

Letδ be the length of the base line in a right-angled
triangle which consists of two sides,α anddq ,

MINDIST(q,BSl )

=




√
|δ − max(BSl )|2 + α2

if δ > max(BSl ),

α if min(BSl ) � δ � max(BSl ),√
|δ − min(BSl)|2 + α2

if δ < min(BSl ),

where

min(BSl) = {
dv | (∀v′, v, v′ ∈ BSl: dv � dv′)

}
,

max(BSl ) = {
dv | (∀v′, v, v′ ∈ BSl : dv � dv′)

}
.

Proof. Due to lack of space, we only show Case 1
by using a 2-dimensional example of Fig. 4(a) instead
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of the formal proof. In Fig. 4(a),BS4 contains the
query pointq . Therefore, MINDIST(q,BS4) is 0. And
MINDIST(q,BS3) is the difference betweendq anddv ,
where the pointv is in BS3 and is farthest from the
center of the space. Therefore,

MINDIST(q,BS3) = ∣∣dq − max(BS3)
∣∣.

Finally, MINDIST(q,BS5) is the difference between
dq anddv , where the pointv is in BS5 and is closest to
the center. Therefore,

MINDIST(q,BS5) = ∣∣dq − min(BS5)
∣∣.

For the formal proof, you can refer to [6].✷
4.2. Algorithm description

Algorithm 1 shows the algorithm for processing the
nearest neighbor query. In lines 1–4, the distances
of each spherical pyramid from the query point are
calculated by using Lemma 1, and then information
about each spherical pyramid and its distance are
inserted into the priority queue. Since the distance
is used as a key in the priority queue, the spherical
pyramid closest to the query point is at the head of the
queue. Thewhile-loop of lines 6–21 is the main loop

1: for i = 0 to 2d − 1 do
2: dist= MINDIST(q,spi ); /* Using Lemma 1 */
3: ENQUEUE(queue,spi , dist);
4: end for
5:
6: while not ISEMPTY(queue)do
7: Element= DEQUEUE(queue);
8: if Element is a spherical pyramidthen
9: for each bounding slice in a spherical pyramiddo

10: dist= MINDIST(q,BSl ); /* Using Lemma 2 */
11: ENQUEUE(queue,BSl , dist);
12: end for
13: else if Element is a bounding slicethen
14: for each object in a bounding slicedo
15: dist= DIST_QUERY_TO_OBJ(q,object);
16: ENQUEUE(queue,object, dist);
17: end for
18: else /* Element is an object */
19: report element as the next nearest object
20: end if
21: end while

Algorithm 1. Processing the incremental nearest neighbor query.

for the algorithm. In line 7, the first element in the head
of the queue is dequeued and, according to the type of
the element, appropriate operations will be performed.
If the type of the element dequeued is a spherical
pyramid, as depicted in lines 8–12, the distances of
each bounding slice in the spherical pyramid from the
query point are calculated, and then information of
each bounding slice and its distance are inserted into
the queue by using Lemma 2. If the type is a bounding
slice, as depicted in lines 13–17, the distances of each
object in the bounding slice from the query point are
calculated, and then inserted into the queue. Finally, if
the type is an object, it is reported as the next nearest
neighbor object. The first reported object is naturally
the nearest neighbor to the query point. If we control
the number of reported nearest neighbors in thewhile-
loop of Algorithm 1, we can easily process thek-
nearest neighbor query.

4.3. Example

As an example, suppose that we want to find the
first nearest neighbor to the query pointq in the
SPY-TEC given in Fig. 2. Below, we show the steps
of the algorithm and the contents of the priority
queue. Table 1 shows these distances (SP means
spherical pyramid andBS means bounding slice).
When depicting the contents of the priority queue, the
spherical pyramids and bounding slices are listed with
their distances from the query pointq , in order of

Table 1
Distances of spherical pyramids and bounding slices from the query
point q in the SPY-TEC of Fig. 2

SP Dist. BS Dist. OBJ Dist.

SP0 21 BS0 21 a 23

SP1 0 BS1 25 b 27

SP2 4 BS2 29 c 45

SP3 33 BS3 14 d 16

BS4 0 e 19

BS5 2 f 12

BS6 8 g 35

BS7 4 h 6

BS8 33 i 39

BS9 42 j 47
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Fig. 5. Performance behavior on real data.

increasing distance. The objects are denoted in bold
letters (e.g.,a). The algorithm starts by enqueueing
SP0–SP3, after which it executes the following steps:
1. Enqueue SP0–SP3. Queue: {[SP1,0], [SP2,4],

[SP0,21], [SP3,33]}.
2. DequeueSP1, enqueueBS3, BS4, BS5. Queue:

{[BS4,0], [BS5,2], [SP2,4], [BS3,14], [SP0,21],
[SP3,33]}.

3. DequeueBS4, enqueuee. Queue:{[BS5,2], [SP2,

4], [BS3,14], [e,19], [SP0,21], [SP3,33]}.
4. DequeueBS5, enqueuef. Queue:{[SP2,4], [f,12],

[BS3,14], [e,19], [SP0,21], [SP3,33]}.
5. DequeueSP2, enqueueBS6, BS7. Queue:{[BS7,4],

[BS6,8], [f,12], [BS3,14], [e,19], [SP0,21], [SP3,
33]}.

6. DequeueBS7, enqueueh. Queue:{[h,6], [BS6,8],
[f,12], [BS3,14], [e,19], [SP0,21], [SP3,33]}.

7. Dequeueh, reporth as the first nearest neighbor.
These operations are repeated until the user finds as
many nearest neighbors as desired.

5. Experimental evaluation

We performed various experiments to show the
practical impact of the incremental nearest neighbor
algorithm on the SPY-TEC and compared it to the R*-
tree and the X-tree, as well as the sequential scan.

For clear comparison, we implemented the incre-
mental nearest neighbor algorithm on the R*-tree and
the X-tree using the algorithm proposed in [4]. All ex-
periments were performed on a SUN SPARC 20 work-
station with 128 MByte main memory and 10 GByte
secondary storage. The block size used for our exper-

iments was 4 KBytes. Due to lack of space, we show
only the experiment using real data sets, although we
performed various experiments using synthetic data
sets and real data sets. The real data consists of Fourier
points [11] in 12-dimensional space. We performed
10-nearest neighbor queries with 100 query points that
were selected from the real data itself, and varied the
database size from 20,000 to 100,000.

Fig. 5 shows the result of the experiment using real
data sets. In this experiment, the SPY-TEC, along with
the R*-tree or the X-tree significantly outperform the
sequential scan regardless of the database size. From
this result, we found that the real data consists of
well-formed clusters which are meaningful workloads
for high-dimensional nearest neighbor queries. The
speed-up of the SPY-TEC in the total search time
ranges between 2.42 and 3.71 over the X-tree, between
2.85 and 3.78 over the R*-tree, and between 3.90
and 5.04 over the sequential scan. The performance
behavior of the number of block accesses and of
CPU time are analogous to that of the total search
time. The index structures SPY-TEC, X-tree, and R*-
tree significantly outperform the sequential scan in all
cases, and the SPY-TEC also clearly yields a better
performance than do the X-tree and the R*-tree.

6. Conclusions

In this paper, we proposed the incremental nearest
neighbor algorithm on the SPY-TEC. We also intro-
duced a new metric (MINDIST) that can be used to
guide an ordered best-first traversal when finding near-
est neighbors on the SPY-TEC.
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In our future work, we plan to study the parallel
version of the nearest neighbor algorithm on the SPY-
TEC using an efficient declustering technique that
distributes the data onto the disks so that the data
which has to be read when executing a query are
distributed as equally as possible among the disks.
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