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1. Introduction

Integration of information from distributed, heterogeneous information sources is
an active area of research in the database community. The research efforts have
mainly concentrated on sources such as collections of web documents, relational
databases and text files. In the domain of spatial information systems, researchers
have studied integration architectures, issues and problems in semantic
interoperability and information integration concepts for spatial data [0,0, 0]. Some
recent approaches [14, 15, 19] have applied information integration methodology
from the database community to spatial information systems. In this paper, we
propose a mediation-based approach for integrating information from two types of
information sources, viz. spatial information systems such as GIS and searchable
databases of geo-referenced imagery. As in [14,19], our goal is to enable users to
issue a single query in order to search multiple information sources and, in return,
receive a combined result incorporating data from across  these sources. Similarly, we
would like to provide authenticated and authorized users the ability to update sources.
This paper describes the architecture of a mediation-based system and steps through
the query evaluation procedure in an such a system. We emphasize that the notion of
“integration” addressed in this paper does not rest on the development of spatial
algorithms that operate on images or vector data and achieve “physical integration”
(e.g., see [11]) through techniques like image conflation, as described in, say, [11].
Instead, we aim to attain “logical integration” by creating correspondences between
related spatial information similar to non-spatial mediation systems [10]. We
demonstrate how existing physical integration techniques can fit into our information
association methodology. However, the development of such methods is not the focus
of this paper.

1.1 Background

Various interoperability approaches and architectures have been discussed for
distributed geographic processing and spatial data integration. Reviews of GIS
interoperability and integration efforts are provided in [16, 19, 28, 29]. GIS
standardization efforts in a number of countries have resulted in the development of
standard specifications for data exchange, including SDTS (U.S.), FEIV (France),



ALK (Germany), and SAIF (Canada) [30]. These specifications must contend with de
facto commercial spatial data interchange standards, such as ESRI’s E00 files and
shapefiles, MapInfo’s MIF/MID, and AutoCAD’s dxf. Being relatively new, the
former standards have not significantly affected data in legacy spatial information
sources. At the same time, these new standards have not linked themselves with
emerging standards for Web-based data interchange such as SGML and XML.

GIS integration efforts for supporting spatial data interoperability can be broadly
categorized as follows:
• Cataloguing of geographic sources (or any sources/datasets), using locational

identifiers. The Alexandria Digital Library, which supports spatial range queries on
a variety of resources, is an example of this approach [ADL];

• Developing gateways between databases, by defining universal schemas and
persistent views over a variety of data sources .

• Data warehousing. Sometimes referred to as the “eager approach” to data
integration [14]. The OpenGIS Consortium efforts and related research resulted in
the development of GIS interoperability standards based on this model, and in a
series of national-level initiatives in the U.S. (via FGDC) and European countries.
With several prototypes and testbeds developed (such as the OpenMap testbed
[27]), research has focused on semantic and physical interoperability between
selected sources. However, experiments of mapping selected GIS data models –
Arc/Info, MGE and SPRING - to OpenGIS standard have demonstrated lack of
formal standard definition which results in ambiguity and competing alternatives
[26]. This approach is efficient for relatively small number of sources with known
structure.

• Mediator-based systems. Similar to the concept of federated database (also called
multidatabases).  These systems support homogeneous views (in a common data
model) over heterogeneous data sources. Multidatabases are generally based on the
client-server model with a middleware system (e.g. based on CORBA or COM)
connecting the client and server layers. Mediator systems are based on a 3-level
architecture, which include a "foundation" layer (databases with wrappers), a
mediation layer (which supports exchange of queries and results between wrapped
legacy data sources and applications), and an application/user interface layer [10].
The advantage of this architecture is its modularity and scalability. These systems
support combining query results from individual sources rather than combining the
data. In addition, the use of a semistructured data model at the mediator enables the
modeling of sources with no structure or implicit structure. Examples of such semi-
structured mediator-based systems include TSIMMIS [1,8], DISCO [23], and
Information Manifold [22]. An example of the use of this approach for geospatial
data is the Aquarelle project [INRIA] and the research described in [24] and [25].
Accessing geo-referenced SGML-structured information via the Web within the
framework of this system is being explored at the time of writing of this paper [31].

Hybrid approaches combining features of the above architectures have also been
proposed. For example, a GIS mediation/warehousing architecture described by [13]
is built on four layers: the application layer (handles end-user requests), the abstract
services layer (maintains a uniform view of overall system, i.e. a virtual database), the



concrete services layer (maintains views of precise operations for each system and
manages distribution of tasks between systems), and the system services layer
(invokes services to specialized systems).

1.2 Creating integrated views

An important issue in mediation is the specification of "logical equivalence"
relationships among data from different sources. Assume two information sources A
and B, as shown in Figure 1. Source A organizes its information elements in the form
of a tree while source B organizes its information in the form of a graph.

The information integration issue relates to defining a logical source, say C, from
A and B. Source C may never be physically materialized, but only generated “on-the-
fly”. Creating C requires the definition of rules on the original sources such that the
elements of C may be defined as a logical association between elements of A and B.
In this example, the rules may be:
1. Equate the element a3 in A with the element b1 in B
2. Do not include b5 or any of its descendants in B, in C
3. Make a child of a5 in A, whose value is greater than 7, also a child of b4 in B
4. Label elements a1 to a8 in A as c1 to c8 in C. Also, label elements b2 to b4 in B to

c9 to c11 in C

The resulting “integrated” information source is shown in Figure 2. Note that not
all elements of the original sources need appear in the integrated view of the
information (e.g. element b5). Information integration is achieved using a set of
"association rules".

Fig. 1. Information sources A and B are tree- and graph-structured, respectively

Fig. 2. In the integrated source C, elements and relationships from sources A and B
have been integrated according to specific association rules
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1.3 Integrating geospatial information sources

Consider two information sources S1 and S2 where S1 is a GIS containing themes
such as soil map, parcel map, digital elevation map and transportation network map
of Southern California, and S2 is an image library containing geo-referenced satellite
images, aerial images and property photographs, and associated metadata such as
timestamps of images, of different regions in Southern California. Assume that the
image library is managed by a DBMS, which is able to provide a complete or a
cropped version of any image. The information source S3 is a view defined over
sources S1 and S2, using association rules to integrate data across sources. Suppose
that S1 is represented as a tree-structured source using an R-tree, for example, where a
node of the R-tree represents the extent of a theme, with additional metadata
describing the properties and content of the theme. For the source S2 , assume that the
images are associated with metadata including metadata related to image
classification, image segmentation, and annotations. The view exported by source S2

is a set of trees, where each image corresponds to a tree. Each node of this tree
represents a segment of the image, and if node n1 is a child of node n2 it implies that
the segment represented by n1 is contained within the segment represented by n2.

The structure of S3 is a graph, where the nodes of tree-structured views of S1 and

S2 are connected through a number of equivalence relations. These relations may be
established by rules that specify inter-object associations including, (1) containment
conditions, e.g., the extent of image object node n3 in S2 is covered by theme node n5

in S1, (2) spatial or temporal joins, (3) logical associations, e.g., both items refer to
the city of San Diego

2. Architecture of an XML-Based Spatial Mediator

As described before, mediator-based systems employ a 3-level architecture
consisting of the application (client) level, the mediator level, and the wrapper level.

Fig. 3. The structure of the integrated information source. Note the dashed
associations between the R-tree-structured representation of the GIS source and the set
of image sources.

R7 R8 R9 

R1 R2 R3 R4 R5 R6 

T1 T2 T3 
T4 

T5 T6 
T7 T8  

T9 T10 
T11  

T17 T18 
T19 T20 

T12 
T13  

T14 T15 
T16  

a1 

a2 a4 a5 

a6 

a11 a7 a10 
a8 

a3 

a9 

b1 

b2 b4 b5 

b6 

b11 b7 b10 
b8 

b3 

b9 



Wrappers serve as translators to convert data and query requests between the data
model of the underlying information source and the model supported by the mediator.
In our approach, we employ an XML-based data model at the mediator level. We
extend the mediator of the MIX (Mediation of Information using XML) project [MIX]
to support spatial sources as well. In the MIX system, the result of any query is an
XML document. For queries issued on GIS and image sources, the result document
may contain text, tables, figures, images, vector graphics and maps. Thus, the
mediator should be able to deal with all of these types of information using the XML
framework. In general, the MIX mediator receives a user query, fragments the query
according to the capabilities of the sources, and sends the fragments to the appropriate
sources. As the sources return their individual results to the mediator, the mediator
integrates these result fragments into a single combined result and sends that back to
the user.

2.1 The MIX framework

Following are the key aspects of the MIX system:
• Each source exports a model of  the information it contains in the form of an XML

DTD. Data is exported as XML documents which subscribe to the DTD. For both
GIS and image sources, the wrapper has to undertake the task of transforming the
underlying information into XML. We use XML DTDs as a structural description
(in effect, a schema) of the data exchanged by the components of the mediator
architecture. The wrappers produce documents that conform to the associated
DTD. As described in the next section, the GIS wrapper constructs the DTD by
using the “catalog” information in the GIS. The schema provided by a DTD is
more versatile than relational schemas, and at the same time provides more
structure than the plain semistructured model of existing approaches like
TSIMMIS [1,8].

• Each source is queried with an XML-based query language. The XMAS query
language [2] has been developed as part of the MIX project. It builds upon ideas
from languages such as XML-QL [11], Yat [4], MSL [8], and UnQL [3]. XMAS
allows object fusion (e.g., combining an image reference from one source and a
map reference from another source into a new composite object) and pattern
matching on the input XML data. Additionally, XMAS features powerful grouping
and order constructs for generating new integrated XML “objects” from existing
ones. The grouping operation can be used to arrange the same information in
different ways.

• The query evaluation and integration process may be viewed as generation of a
virtual XML document. As mentioned before, the output of a query in the MIX
framework is an XML document. While it may be possible to materialize this
document in one-shot, we provide the flexibility to produce this document in a
browsing or navigational mode. In this mode, the user issues an XMAS query, and
gets back only a “virtual” unmaterialized result. As the user navigates through the
result, the system progressively expands the unvisited parts of the document.



2.2 Extending the MIX framework for spatial data

Figure 4 shows the components of the MIX mediator system specialized for
handling spatial information. The XMAS query from the user application is issued to

the so-called “main mediator.”
The main mediator receives the query containing both the non-spatial and spatial

components. It applies a set of rules to identify the spatial part of the query, which it
routes to the spatial mediator. In our example, all the query clauses refer to map and
image information, thus the entire query is directed to the spatial mediator.

2.3 An example spatial query

As a running example in this paper, we will use the following query based on
sources S1 and S2 mentioned in the previous section.

Query: Using (a) the Total Assessed Value (TAV) (i.e. land price +
improvement estimate) of the parcel maps of the regions in San Diego specified as
Carmel Valley in the 1998 Police Service Regions of San Diego, and (b) aerial
imagery of the regions and photographs of house properties in those regions,
produce the following table:

Us er  
A pplic ati on  

M ain  
M edi ator  

othe r  
M ediator  

S patial  
M edi ator  

W ra pp er  W ra pp er  W ra pp er  

GIS  Im ag e  
Data bas e  

other 

Fig. 4. All the links shown in this figure communicate through XML for data and
XMAS for queries. The inter-wrapper links communicate by exchanging binary
information if needed



Table 1. Output of example query

Year TAV > $500K $300K<
TAV
<$500K

$200K<
TAV
<$300K

$100K<
TAV
<$200K

TAV
<$100K

1975 Join TAV
map of
qualified
parcels
with aerial
photo of
the same
regions

Property
pictures of
five most
expensive
properties
in the same
regions

1980
1985
1990
1995

Processing this query requires:
• finding the region corresponding to “Carmel Valley” from the Police Service

Regions of 1998
• for each specified year, classifying this region into the five land price ranges as

shown, and generating one map per range
• for each map in a given range, overlaying it on top of the appropriate aerial

image of Carmel Valley
• for each sub-region, identifying house properties in the region, ranking them by

price, and choosing the top five photos
• arranging the information in the requested tabular form, as shown

The query produces a table of 25 maps and 25 sets of house photographs. We
chose this particular query in order to show that the query output need not always
be a single map. In this case, it is a table of 25 maps. The query demonstrates the
need for the mediator to decompose a single query into multiple simpler queries to
be executed by the GIS. The query also requires physical integration (the images
from the image source need to be fetched and overlaid onto the TAV map) and
logical integration, exercised through the join conditions on the aerial images and
maps and on the property picture addresses and the qualifying regions in the GIS.

Grouping of the results according to time and value range is achieved using the
powerful grouping construct available in the XMAS query language [2]. In the
example XMAS query shown in the next subsection, we illustrate how reserved
namespaces (i.e., a set of tag names) can be used to tailor XMAS to process data in
different domains, e.g. the spatial domain. This query also illustrates the power of
the virtual XML document concept. In this example, the query result contains 50
properties in Carmel Valley. The user may be interested in further examining the

Same conditions as in Column 1

Same conditions as for Year 1975



textual metadata of only, say, the first 20 of these and, further, may retrieve the
images of only three properties. The virtual document concept will avoid
unnecessary computation of the entire result set.

2.3.1 An Example XMAS Query
The XMAS version of the example query is shown below. Rather than explaining
each step of the query, we point to a few key elements:

1. The notation mix:<tagname> refers to tags in a reserved namespace, which the
mediator is aware of.  Thus, the mediator recognizes the type of data and has
specific ways of handling that data type. For example, mix:region would not be
expected to have, say, a length attribute.

2. The query is directed to the mediator without specifying the location of any
source. The reserved namespace tag mix:source (line 10), is used to indicate
which definition of “Carmel Valley” should be employed.

3. The function category(price,totalValueCategory) (line 43), is a function that
examines the total assessed value of a parcel in the parcel map and assigns the
parcel to the correct bracket.

4. The output table is defined by grouping the results first by year (using the
notation {$y} on line 37) and then by total assessed value ({$c} on line 36)
within the year.

5. Wherever the same variable (e.g., $r) is used multiple times, it has to bind to the
same constant. Thus, the aerial image, corresponding to $r on line 23, and the
map object, corresponding to $r on line 10, must be of the same region, and the
address of the property (line 32) must belong to the parcels satisfying the
category condition.

6. The spatial predicate within(region1,region2) (line 46) is used without any
software dependent syntax. We assume here that the user can enquire from the
mediator what the supported functions are and how they can be invoked. For
example, if one of sources underneath the mediator may support another
function centroid_within(region1, region2), the mediator will export the
function and the user has to know which is suited for a query.

7. The predicate display_order(mapData1, mapData2) (line 49) is procedural and
specifies that mapData1(corresponding to a theme) should be overlaid on
mapData2. In case multiple mapData were involved, the mapData elements
would be presented as a nested list in the form—display_order(mapData1,
(mapData2,mapData3)).

1. answer = construct $A
2. where
3. $A:<table>
4. <row>
5. <year>$y</>
6. <totalValueCategory>$c
7. <totalValue>$tv</>
8. <mapColumn>
9. <mix:map>
10. <mix:region mix:source=$s1>$r
11. <mix:regionName>$n</>



12. </>
13. <mix:mapData>$md1
14. <mix:dataName>$d1</>
15. <mix:dataValue>$tv</>
16. <mix:region>$r2</>
17. <mix:date>$y</>
18. </>
19. <mix:mapData>$md2
20.  <mix:datatype>$dt
21. <mix:resolution>$res</>
22.  </>
23.  <mix:region>$r</>
24.  <mix:date>$y</>
26. </mix:map>
27. </mapColumn>
28. <pictureColumn orderby=$p orderType=asc
topN=5>
29. <mix:image>
30. <mix:dataName>$d3</>
31. <price>$p</>
32. <address>$a</>
33. <mix:date>$y</>
34. </>
35. </>
36. </totalValueCategory> {$c}
37. </year>{$y}
38. </row>
39. </table>
40. in http://some.mediator.url
41. and
42. belongsTo($y, (1975,1980,1985,1990,1995)) and
43. category($tv,$c) and  ($s1 =
44. “San_Diego.Police_Service_Region”) and ($n =
45.  “Carmel Valley”) and ($md1= “Parcel Map”) and   
46.  ($d1= “total assessed value”) and within($r2,$r)
47.  and ($md2 = “imagery”) and ($dt= “aerial”) and
48.  ($res <= 16m) and ($d3 = “property photo”) and
49.  mapsTo($a,$r2) and display_order($md1,$md2)

3. Wrapping spatial information sources

In general, queries received by wrappers can be classified as direct, logically
equivalent, or indirect queries [1]. A direct query is a request that can be satisfied
by a primitive operation provided by the underlying information source. Indirect
queries are those that are not supported by the underlying information source, thus
the wrapper itself must have the computational capability to produce the required
results. For example, a source may not be able to compute the correlation
coefficient of a sequence of number pairs, thus the wrapper would have to perform
that computation. Finally, logically equivalent queries are those that cannot be
directly processed by the source, however, it is possible to rewrite the input query



into one or more other queries to the underlying source which, in effect, can
answer the original query. For example, the query, “For each census tract in San
Diego that has over 30% minority population, find the zip code boundaries that
intersect with it,” may require multiple requests to a GIS source to identify the
census tracts and then intersect with the zip code regions. However, it is possible to
write the GIS script to generate the necessary result, thus, this is an example of a
logically equivalent query. The task of the wrapper is further complicated for such
queries since it may have to compose a program from smaller modules to produce
the result. In this paper, we focus primarily on direct and logically equivalent
queries, and provide only a simple example of indirect queries.

A key feature that distinguishes GIS sources from many other sources studied in
the mediation literature is that most GIS sources are stand-alone, interactive
systems. At best, interoperability is supported only within the same family of
software products and not across federated, heterogeneous GIS sources. A GIS
serves the roles of a database system (for spatial data), a computation source (e.g.,
for network flow optimization), and a presentation source (e.g., surface generation
and mosaic creation), and is not usually equipped with a generic query language
for declarative access. A GIS wrapper overcomes this problem by maintaining an
internal model, including schema as well as instance information of a given source,
and simulating the necessary ad hoc interface. The wrapper functions by first
transforming the query/result into this internal model.

3.1 The internal schema of the GIS wrapper

Most GIS sources recognize various map layers (e.g. coverage and themes) and
a large body of common operations such as overlay and spatial intersections. These
ubiquitous objects and functions can be considered as a simple typed algebra (as
has been done more than once since 1983 D. Tomlin’s Map Algebra []). For a
specific GIS source the wrapper has to know how the types and functions in its
algebra maps to the types and functions in the source.  The wrapper assumes that
there are at least 2 kinds of functions:  boolean returning functions and object
returning functions. An example of the latter is, say, the function within(region1,
region2) written in ArcView Avenue script, where region1 is a theme object and
region2 is region object, and the function is called
#FTAB_RELTYPE_ISCOMPLETELYWITHIN, and needs to be invoked as:    

  region1.SelectByTheme( region2, #FTAB_RELTYPE_ISCOMPLETELYWITHIN, 0,
#VTAB_SELTYPE_NEW).

Using the MapBasic syntax of MapInfo, the same function would be written as:
SELECT * FROM Region1 WHERE OBJ ENTIRELYWITHIN Region2.OBJ

The results returned are mapped back to internal types and hence are easily
translated into XML. All additional types and operations supported by a GIS
system will have to be layered on top of the simple algebra.

The GIS wrapper models every GIS source as having a collectionObject at the
top level followed by themeObject and a dataObject, at the next level below. A



collectionObject represents a group of co-registered themeObjects. A themeObject
has the subtypes:
• themeMap: a binary blob that represents a map produced by the underlying GIS

as the result of an operation. Each themeMap object has an identifier, a
resolution and an extent. It may contain additional metadata, such as the time
when the theme was created. A themeObject can be instantiated as a map.

• table: a representation of attribute information associated with a GIS theme in
the form of a possibly nested table. Each table object has an identifier and a list
of column names. A nested table is represented by treating a column name as a
named list instead of a singleton name.

• themeProperties: a set of properties that describe an aggrgegate of the data
contained in the theme. For example, for each type of dataObject in a theme, it
will contain information like the number of information items in the theme, the
spatial granularity of a cell, indexes implemented if any, existing topology if
any, and so forth.
A dataObject represents the type of information associated with any theme.

Each data object maintains its spatial extent, and has a reference to the table in the
themeObject related to it. It may additionally have information on the valid time of
the underlying data and accuracy of the data items. For many common GIS
applications, the set of dataObject subtypes includes:
• regionObject: representing a 2D polygonal object in a theme
• curveObject: representing open or closed polylines in a theme
• networkObject: representing a graph possibly consisting of intersecting

polylines
• pointObject: representing a feature that is represented in a theme as a point

object
• matrixObject: representing a feature where every element in an array is

associated with a value

The purpose of defining object types, like those described above, is to facilitate
the translation of an XMAS query into syntactically well-formed queries in the
language of the underlying GIS, and to convert the results returned from the GIS
into a well-formed XML structure. These object types can be specialized, using
inheritance, when developing wrappers for specific GIS systems. For example, the
wrapper of a specific GIS, may have chosen to define an object, say,
networkObject, as a transportation. For every built-in or user-extended type a list
of function signatures is also defined. For example, for curveObject, the spatial
intersection is defined as: intersect(curveObject, regionObject) and so on. The
function signatures are needed so that the parameters specified therein can be made
visible to the mediator1 and be used to formulate valid XMAS queries. This also
enables the wrapper system to be extensible so that if a specific GIS system
permits some special function (e.g., water drainage computation for a digital
elevation model) or object type, it can be simply exported to the mediator.

                                                          
1 This actually happens during a registration procedure, but such operational details are omitted

in this paper



3.2.1Catalog Extraction
The catalog is the schema information of the GIS source, which the wrapper

exports to the spatial mediator as an XML DTD. It also maintains an internal
version of the catalog to translate XMAS queries into GIS queries. In this paper,
we use ArcView from ESRI as an illustrative example to discuss catalog services
and query translation.

An example XML DTD for the GIS catalog is given below:

<!ELEMENT arcview_project (views|tables|scripts)* >
<!ELEMENT views (view)* >
<!ELEMENT view (projection|units|themes)* >
 <!ATTLIST view name CDATA #IMPLIED>
<!ELEMENT projection (#PCDATA)* >
<!ELEMENT units (#PCDATA)* >
<!ELEMENT themes (theme)* >
<!ELEMENT theme (assoc_table|threshold|extents)* >
 <!ATTLIST theme name CDATA #IMPLIED>
<!ELEMENT assoc_table (#PCDATA)* >
<!ELEMENT threshold EMPTY >
 <!ATTLIST threshold val CDATA #IMPLIED>
<!ELEMENT extents (bottom|left|top|right)* >
<!ELEMENT bottom (#PCDATA)* >
<!ELEMENT left (#PCDATA)* >
<!ELEMENT top (#PCDATA)* >
<!ELEMENT right (#PCDATA)* >
<!ELEMENT tables (table)* >
<!ELEMENT table (col)* >
<!ATTLIST table name CDATA #IMPLIED>
<!ELEMENT col EMPTY >
 <!ATTLIST col alias CDATA #IMPLIED>
 <!ATTLIST col type CDATA #IMPLIED>
 <!ATTLIST col width CDATA #IMPLIED>
 <!ATTLIST col decimal CDATA #IMPLIED>
<!ELEMENT scripts (script)* >
<!ELEMENT script EMPTY >
  <!ATTLIST script name CDATA #IMPLIED>

In a given GIS instance, we distinguish between a base theme set B and view
theme set V  as follows. A theme b is a base theme if it has only one of the
subtypes of dataObject (e.g., if it only contains regionObjects) or if the wrapper
engineer designates it to be a base theme. A theme v is a view theme if it has been
created based upon a set of base themes {b i}, such that the information in v is

strictly a subset of the information in i{b i}. The intuition behind making this
distinction is that it is more optimal if query can be answered from a view theme
rather than a base theme, since a view theme is equivalent to materialization, and
reuses precomputed expensive spatial predicates on the same base data set. In order
to recognize a theme as a view theme we employ the following. Assume that the



projects in the system comprise universe of themes2. We traverse the project
structure of ArcView and identify all themes referenced by it. For themes that have
creation scripts, we identify the names of other themes, and arrange them to form a
dependency graph of themes which is maintained by the wrapper. All themes with
no incoming edges in the graph are placed in B and the others are placed in V.  If a
theme does not have a creation script it is placed in B.  Hence in the worst case,
every theme is treated as basic. In addition to this labeling, the wrapper engineer
has the ability to specify for each view theme how the view was derived. The
derivation needs to state which attributes (spatial or otherwise) were used to derive
the view and what restriction condition was applied on the respective attributes.
While it is difficult to extract this derivation information automatically, such a
specification can enhance the efficiency of query processing. To see why this is so,
consider a user query that looks for the ethnic distribution of all census tracts that
overlap “Carmel Valley”.  Let us suppose the wrapper has identified two themes
whose tables have the attributes “census tract number” and population. If it is
known a priori that one of those two themes has already been restricted (subset)
based on another attribute (e.g., median income greater than $25,000), then this
information can be used to discard that theme, because the theme will not produce
a complete answer (since it does not have the records corresponding to the
population having median income  less than $25,000). In the absence of such view
information, the wrapper has to use other heuristics, such as selecting the theme
with a higher record count. We will revisit this issue in a later section.

For each theme object we create a catalog record having the XML DTD
structure shown before. Note how the internal schema of the wrapper has been
used in constructing and that the themes are labeled as base and view. This basic
structure can be augmented by any additional information that can be extracted by
traversing the project structure. For example, for ArcView, if a satellite image
stored as a layer will have the additional attributes such as “bandstatistics”. Instead
of simply exporting a set of theme DTDs to the mediator, we organize them into a
container document by first creating an R-tree corresponding the spatial extents of
the themes and then generating the XML document from the R-tree, as shown in
Figure 3. Note that an internal node of the R-tree only induces a nesting in the
XML document, without producing material data. The reason for having the R-tree
representation at the spatial mediator is to gain efficiency during query processing.
It is very likely that in order to choose the candidate sources for a query the
mediator will need to ask, “which are the themes that provide some information in
the user specified rectangle of interest?” Having the R-tree index within the
mediator saves the trouble of going back to the information sources.

In addition to the containment relation and the derivation dependency graph, the
wrapper may maintain other indices to connect the themes. One important thread is
to place all themes in a temporal order, based on the valid time (i.e., the time when
the data items were valid) of the theme. In case of themes valid over an interval of

                                                          
2 It is very easy to include themes not referenced by any project in the universe.



time the temporal order may be implemented through a data structure like the
interval tree.

3.2 Wrapping an image Library

Image sources may have both metadata-based retrieval and content-based
retrieval capabilities [21]. The objective in wrapping image libraries is to provide
access via a uniform interface to complete or partial digital images, as well as
image features and other associated metadata.

3.2.1 The internal model for image sources
In general, image wrappers recognize the following object types associated with

images:
• image: an image is associated with a set of standard metadata, e.g. its

dimensions, format and pixel depth (bits per pixel). Images may be multiband,
and could be retrieved one band at a time or up to three bands together. Standard
image operations include cropping, rotation, and changing brightness and
contrast. A spatial image is a specialization of image that must additionally have
a georeference and resolution.

• image mask: a mask is a pixel chain within a bounding box, with specified
coordinates. The purpose of a mask is to represent a segment produced by an
image processing operation. The purpose of treating an image mask as a distinct
data type is to separate the segment and its properties from the image. This
allows an image to be associated with multiple segments produced by different
operations that can be transferred across different components of the integrated
system such as from the image library to a GIS wrapper.

• image feature: an image feature is a representation of an image property such
as texture in a photograph or concrete region in a satellite image, that is
computed by some analysis operation. Each instance of a feature is associated
with an image mask that localizes the area over which it was computed. For
convenience, a feature instance is associated with additional metadata such as
the name of the feature and the parameter values used to compute it. We expect
that image libraries will provide similarity functions based on features (e.g., it
can request all images having some segment with texture similar to a given
texture [20]).

• scene graph: scene graph, a term used in the VRML and MPEG-4 literature,
represents a tree-like decomposition of a real or virtual scene, using a well-
defined system of node types. We do not use all the features of a scene graph
like the image transformation specifications. In our usage, a leaf node in the
scene graph stands for a “unit region” in the image whose property can be
described by a set of simple image features. We also keep the provision that the
region defining a leaf node can be described by a shape property (e.g., “a
circular area”), where the property belongs to an allowed type in VRML and
MPEG-4 scene graphs. An internal node is constructed using the containment
relation, as shown in Figure 2.



4. Evaluation of spatial queries

The task of the spatial mediator is to parse the spatial subquery, of a given
query, and generate the associated evaluation plan. The spatial mediator is required
to, (1) fragment the subquery between information sources and determine the order
of execution of each fragment, (2) use the schema and capability information
exported by each source to rewrite subquery fragments such that each source is
able to evaluate the rewritten fragments, and (3) send each rewritten fragment to
the corresponding source, collect the results from each source and return the
combined result to the application mediator.

4.1 Query planning at the mediator

In this section, we sketch the typical sequence of steps executed by the spatial
mediator. The exact sequence and details of each step will vary depending on the
actual query. In the following, we refer back to the query example discussed in
Section 2.3.1.

1. Determine Map Request: The tag mix:map, in line 9 of the XMAS query,
specifies that the output of the query should be a map. The spatial mediator then
expects to know which geographical area needs to be mapped, and which variables
should be used to produce the map.

2. Identify Map Region: The next tag mix:region, on line 10, specifies the region to
be mapped and informs that this region can be found in the source theme called,
“Police Service Region” within the provenance of  “San Diego”.  In this example,
we assume that the information mapping the region to the theme is also available in
the GIS itself. The mediator searches the DTD exported by the GIS wrapper and
determines that the “San Diego City” theme has an associated table called “Police
Service Region”, and that the table has a polygon as a field.

3. Produce Wrapper Query Condition for Map Region: Line 11 identifies the
regionName variable, $n, and line 44 specifies that its value must be “Carmel
Valley”. The mediator also knows that the tag regionName maps to the field name
srvRgn in the “Police Service Region” table of the source GIS. Thus, it places the
query condition srvRgn= “Carmel Valley” in the query fragment to be sent to the
GIS wrapper.

4. Identify Map Attribute 1, total assessed value: The tag, mix:mapData on line 13,
specifies the element to be mapped. As before, this data element is identified with a
query condition on the “total assessed value” field of the table in the “Parcel Map”
theme. But in this case, several “Parcel Map” themes are found, each associated
with a different year. The mediator picks the years corresponding to the query by
inspecting the DTD for the Parcel Map themes. We will show in the next section
how the year gets associated with the theme in the DTD provided by the wrapper.
Since 5 years (thus, 5 themes) are requested, the mediator produces 5 (almost
identical) copies of all query conditions gathered so far, and treats them as
independent subqueries to be sent to the GIS wrapper.

5. Produce Wrapper Query Condition for Map Attribute, total assessed value:
The total assessed value attribute must satisfy the function



category(price,totalValueCategory) and the results must be grouped into columns
based on category value. Since there are 5 possible categories that each parcel map
can belong to, a map needs to be produced for each. Thus, the mediator issues 5
“related” queries to the wrapper for each independent subquery mentioned above.

6. Identify Map Attribute 2, imagery: The next tag, mix:mapData on line 19,
specifies the next element to be mapped. This element is an aerial map in the image
library and must satisfy query conditions on the year, the resolution and the
georeference to identify images for the query. The mediator has the DTD exported
by the image wrapper. Whether the query can be safely answered is unspecified at
this point since the region specifying the georeference is not computed yet. Thus,
the mediator forms a partial query for the image wrapper.

7. Formulate Query Fragments for Wrapper: The mix:map tag on line 9 has a
corresponding end tag on line 26. The mediator produces one independent and
several dependent query fragments for the subquery represented by the mix:map
element.

8. Determine Image Request: Similar to the map request, the mediator verifies that
the necessary tables and field names exist in the DTD specified by the image
library. It uses a rule to determine that the predicate mapsTo(address, parcel
region) on line 48 is to be performed in two steps: first, obtain the address block
from the Parcel Map table in the GIS source, second, formulate a range query on
the street number in the image library.

9. Determine Query Execution Plan: The query is executed in the following order:
1. Determine the extent of the Carmel Valley region.
2. Use the extent to find corresponding aerial images of the region in the image

library.
3. Validate that there exist images of the region at the specified resolution. If

there are images at multiple resolutions, use a rule to choose the finest
resolution image covering the entire map region.

4. Initiate transfer of the image from the image library to the GIS3.
5. Execute the map retrieval query (which produces 25 sets of results), and

determine the parcels. Also, fetch the address block of the parcel, since that
will be required in a later part of the query.

6. Formulate the image query including the sorting.

4.2 Examples of a rewritten query fragment

As mentioned before, a query fragment is a portion of the spatial query that is
rewritten to match source capabilities. Each fragment is sent to an individual wrapper.
This rewritten fragment contains the table and field names, structures, and functions
supported by the source. We illustrate this in the following paragraphs.
• Determine the boundary of the region Carmel Valley
ans1 = construct $R
where
<ArcView_Projects>

<theme name = $n1>
                                                          
3 Assuming for now that the image and the GIS layer can be aligned.



</theme>
<tables>
<table name=$n2>
<col name=$n3>$v1</>
<col name=$n4>$v2

$R: <extents>
<top>$t</>
<bottom>$b</>
<left>$l</>
<right>$r</>

</extents>
</col>

</table>
</tables>

</ArcView_Projects>
in http://wrap.gis.url
and ($n1= “sdcity.shp”) and ($n2 = “Attributes of
sdcity.shp”) and ($n3 = “Police Service Region”) and
($v1 = “Carmel Valley”) and ($n4= “Shape”) and
getExtentTop($v2,$t) and getExtentBottom($v2,$b) and
getExtentRight($v2,$l) and getExtentLeft($v2,$r).

After the rewriting, the tags in a fragment match those in the source, which also
makes it easier to convert to the native language of the source. The output of the
query, $R, is the extents (bounding rectangle) of the desired region.

• Produce a map overlaying the Parcel Map and Aerial image
Assume that we have obtained the georeferenced aerial image from the image

library, which is aligned with the other GIS layers. Assume that this image is stored in
the GIS as the file "carmelimage". We show one of the five independent queries that
are sent to the wrapper. Here, the year of the parcel map is fixed.

ans1 = construct $M
where
$M: <mix:map>
<ArcView_Projects>

<theme name = $n1>$t1
<extents>

<top>$t</>
<bottom>$b</>
<left>$l</>
<right>$r</>

</extents>
</theme>
<theme name = $n2 >$t2</>
<theme name =$n3 >$t3</>
<tables>

<table name=$n4>
<col name=$n5>$v1</>
<col name=$n6>$v2</>

</table>
</tables>



</ArcView_Projects>
</mix:map>
in http://wrap.gis.url
and ($n1= “sdcity.shp”) and ($t = 3.62482e+006) and ($b
= 3.6225e+006) and ($l = 481477) and ($r = 481477) and
($n2 = “sdparcels95.shp”) and ($n3 = “carmelimage”) and
($n4 = “Attributes of  sdparcels95.shp”) and ($n5 =
“total  assessed value”) and ($v1 > 500000) and ($n6=
“address block”) and display_order($t3,($t2,$t1)).

Here the extents from the first theme are used to limit the map produced to the area
extracted from the previous query. Also, the response to the query is a map, which is
returned by reference as a URL where the image will be available.

4.3 Spatial Equivalence at the Spatial Mediator

Several mismatches may occur when combining the image and GIS sources. The
spatial mediator incorporates rules to handle such mismatches and establish spatial
equivalence between corresponding entities. It is not our intent to create an exhaustive
set of rules for all equivalence conditions that may need to be included for any
arbitrary combination of spatial sources. We believe the mediator needs to be
extensible and the designer of a specific system will have the responsibility of
including new rules. Once a rule is defined and registered, the mediator will have an
engine to check the preconditions of the rule and execute the rule. In this section we
briefly discuss the architectural extension to accommodate such rules, the structure of
an equivalence rule and how it impacts the query evaluation plan.

We keep the feature alignment problem out of the scope of this paper. In Figure 6
we show two processes that cooperate with the mediator and wrapper to execute
spatial and numeric data conversion. The Spatial Data Converter converts spatial data
from one projection system to another. It is controlled by the mediator, but transfers

Figure 6. A revised architecture of the system to account for impedance mismatch between
information sources
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information between the wrappers. The Numeric Data Converter converts between the
wrappers and the mediator.

Suppose the GIS layer of the “Police Service Region” and “Parcel Map” layers are
in UTM projection, while the image data of the San Diego region is from the USGS
7.5′ quad and is unprojected in geographic coordinates (we call this projection =
“geographic” here). This will produce the following changes in the query evaluation
steps outlined in Step 9 of Section 4.

Determine Query Execution Plan: The query planner formulates and executes in
the following order:

1. First determine the extents of boundary of the region Carmel Valley from the GIS.
2. Check <projection> and <units> tags of the returned result and determine the

projection used by the GIS source.
3. Look up rules to find that what image tag or attribute the tag  <projection> of GIS

source maps to. At this step the mediator discovers that the <projection> tag in the
GIS source corresponds to the “projection” attribute of the <mix:image> tag.

4. Look up at the schema of the image sources and finds the values of the attribute
“projection”. At this point the mediator finds that all georeferenced images have
the “projection” attribute set to “geographic”.

5. Convert coordinates if necessary. For our example, it fires a rule of the form:
6. projection(georaphic, coordX, coordY) :- projection(UTM, coordX1, coordX2),

UTM2geo(coordX1, coordX2, coordX, coordY).
7. The predicate geo2UTM invokes the Numeric Data Converter to execute the

requisite conversion. As a side effect the mediator uses an image transfer rule and
determines that “geo2UTMImage” is the conversion routine for the spatial data.

8. Use the new extents to find the aerial image of the region in the image library.
9. Validate the query that images of the region exist at the requisite resolution.
10. If there are images at multiple resolutions for the region, it uses a rule to chose the

finest resolution image covering the entire map region.
11. Initiate transfer of the image from the image library to the GIS.  At this point is

already known that the image must be transformed before sending it to the GIS
system using the “geo2UTMImage”  routine. The spatial data converter is the
invoked and the converted image is routed to the GIS wrapper. This process was
chosen to illustrate the use of the Spatial data converter. In reality, we need to
select a cost optimal solution for the conversion.

12. Execute the map retrieval query (which really produces 25 sets of results), and
determine the parcels. Since the address block of the parcel will be required in a
later part of the query, it is also fetched.

13. Formulate the image query including the sorting and “top 5” instructions.

Although the example here treats a simple case of equivalence management at the
spatial mediator, we believe the same architecture will allow us to perform more
involved reconciliation between different information sources.



Table 3. Portion of the sample result for the example query (TAV is total assessed
value).
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19
75

19
80

4.3.1 Execution of an XMAS query fragment on a GIS
As discussed earlier,  portions of the query execution plan which get passed down

to the spatial wrapper need to be converted into a query language native to the
underlying GIS system.  This subsection builds on the running example and sketches
a possible solution for a  GIS system like ArcView.  The underlying principle is that
primitive GIS spatial operations can be invoked and composed into larger programs.

A logically equivalent Avenue script is generated whereby primitive spatial
operations can be composed to form more complex programs.  Let us illustrate this
process with the formulation of two consecutive spatial queries:  (1) restrict the parcel
map to the Carmel Valley neighborhood,  (2) using this more focused parcel map,
locate all homes whose total assessed value is greater than $500,000.

Essentially here we are querying the underlying GIS system to extract the parcel
data that will be overlaid onto an aerial photography.  This corresponds to partially
filling in one of the cells of the result document for the example query.

• Query (1) can be accomplished by invoking a primitive request called
QueryThemeByTheme, which takes as input parameters (ThemeObject,
SearchTheme, spatialRelationship).  In our example query the ThemeObject would
be the parcel map, the SearchTheme would be a boundary theme for Carmel



Valley, and the spatialRelationship would constrain the selection using the
"Within" operator.

• Query (2) can be accomplished by invoking a simple primitive request called
QueryThemeByExpression, which takes as input parameters (ThemeObject,
QueryExpression).  The query expression would be "[total assessed value] >
500000", assuming an attribute field named "total assessed value" in the
ThemeObject’s associated attribute table.

• The overall GIS query would combine (1) and (2) in the following manner:

av.Run(“SetEnvironment”,
{parcelTheme=”Parcel Map”, selectionTheme=”Carmel Valley Police Service Region”,
relation=”Within”, expression=“[total assessed value] > 500000”)

av.Run(“QueryThemeByTheme”, {parcelTheme, selectionTheme, relation } )
av.Run(“QueryThemeByExpression”, { parcelTheme, expression } )

Av.Run is the standard Avenue call to run an Avenue script with arguments from
within an Avenue script.  The “SetEnvironment” Avenue script takes as arguments
a list of attribute/value pairs where the attribute is the name of a variable that will
be initialized to the associated value.

• Let us detail the first of these two primitive requests in Avenue.
QueryThemeByTheme would be written as:

Region1 = self.Get(0)
Region2 = self.Get(1)
Relationship = self.Get(2)
Rel = av.Run( “Lookup”, Relationship )
Distance = self.Get(3)

If ( Distance = null ) then
Distance = 0

End

Region1.SelectByTheme( Region2, Rel, Distance, #VTAB_SELTYPE_NEW )

Region1 = av.Run( “SaveSelection” )

The “SaveSelection” Avenue script transforms a selection bitmap into a Theme
object.

5. Discussion

This paper presented an architecture and a logical schema for Web-based spatial
information mediation using XML. We have traced a sample query integrating
imagery and GIS sources, through its evaluation at the spatial mediator and
dispatching to XML-wrapped geodata sources, where query fragments are translated



to the language of the source and executed.  We believe that, while a first step in the
development of scalable and extensible spatial data mediation systems, this exercise
helped us elucidate areas of complications which create the context for future
research. These proposed research areas include:

• Development of rules and a cost model for selecting spatial data sources in the
spatial mediator. Metadata for each source will describe the source’s capabilities,
such as size of data, data quality, indexing, available format and projection
conversion and alignment routines, the monetary price of retrieving particular data,
etc. This information will allow the mediator to estimate which sources need to be
queried, in what order, where the retrieved data fragments need to be assembled
(i.e. which source should be designated as a “collector” source), etc.

• Development of a general cost model for parsing, evaluating, and distributing
queries, and for assembling the results.

• Incorporation of physical integration (alignment) management capabilities in the
architecture of the mediator system, and in query planning at the mediator. An
“intelligent” alignment mediator will maintain a semantic graph of “alignable
layers”. This graph will demonstrate, for example, that linework from a soil map
and a vegetation map, a vegetation map and a land use map, a coastline map and a
political boundaries map should closely align. By contrast, any alignment between
a vegetation boundaries and a road network, for example, will have lower
alignment priorities, if any. Development of such a semantic graph requires
research into persistent landscape features that “show through’ multiple geographic
layers, and may form the strongest links in the graph.

• Incorporation of data quality issues in the context of information mediation, in
particular, inferring the desired accuracy level of geodata sources based on the
target query accuracy. The inferred expected accuracy of sources will be used by
the spatial mediator in query planning, and become a component of the query cost
model.

• Balancing the automated and manual procedures in the process of human
interaction with the spatial mediator system. This will be important when we need
to put a human in the loop for performing computations in mediated GIS systems.

• Supporting geographic analysis “workflow” as a sequence of spatial queries to the
mediator system. This will require preserving intermediate query results, in XML
form, at some URLs, so that they can be used as a source for subsequent queries.

• Scalability analysis of  the mediation of multiple GIS and imagery sources.
• Supporting alternative mechanisms to associate names with geographic objects.

This will address the problem that in general, there may be a many-to-many
mapping between the names and geographic objects
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