

Selecting a Feature Set to Summarize Texts in Brazilian Portuguese

Daniel Saraiva Leite Undergraduate Student

Lucia Helena Machado Rino, PhD Advisor

NILC - Núcleo Interinstitucional de Lingüística Computacional UFSCAR - Universidade Federal de São Carlos

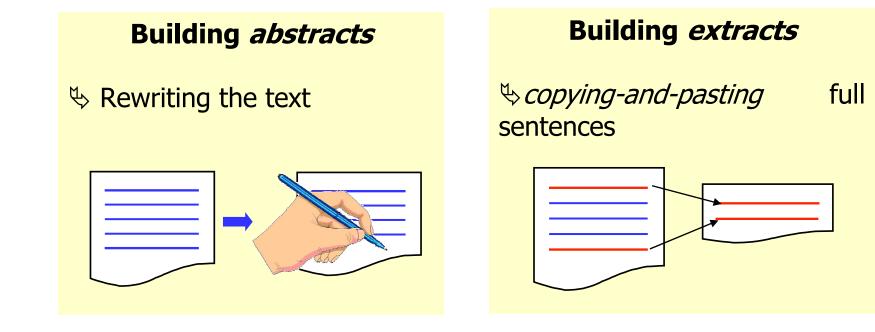
Overview

- Introduction: The Summarization Task
- Extractive AS based on Machine Learning
- Scenario: The SuPor System
 - Employed Methods
 - How methods are mapped into features
 - Feature selection problem
- Taking advantages of WEKA
 - Improving the Model
 - Machine Learning Techniques
- Assessments
- Final Remarks

The Summarization Task

- Taking one or more texts and producing a shorter one
- The summary should convey the main content information of the original text

Two Main Approaches for Automatic Summarization



Extractive Automatic Summarization

• How to choose sentences to include in the summary?

Based on the relevance of each sentence

 $\$ Take the top relevant ones

 $\$ Stop when desired length is achieved

Machine Learning for Extractive AS - Kupiec et al. (1995)

• Relevance ~ Likelihood of inclusion in the Extract

Solution Naïve-Bayes is suggested

⇔Shallow features of the text (E.g., location, frequency of the words, etc.) – as far back as (Luhn, 1958; Edmundson, 1969)

Binary representation

Using Naïve-Bayes

• Training phase

Source Texts (**ST**) and "Ideal" Extracts (**IE**)

 \clubsuit For each sentence **S** of a **ST**

 $\$ Process its features

 $\textcircled{} \mathsf{V} \mathsf{erify}$ if it also appears in the corresponding IE

If S \in IE \rightarrow Class is 'Yes'

If S $\not\in$ IE \rightarrow Class is 'No'

F ₁	\mathbf{F}_2	F ₃	F_4	F ₅	S E ?
no	yes	no	yes	no	no
no	no	no	yes	yes	yes
no	yes	yes	yes	no	no
no	yes	no	yes	no	yes

We get a dataset in which each instance is the representation of a sentence of the ST

Using Naïve-Bayes

• Sentence Classifying phase

 \textcircled Computing each sentence \rightarrow features (Fi's)

& Using Naïve-Bayes formula and the training dataset

♦ Calculating its probability for class S ∈ E = 'Yes'

$$P((s \in E) | F_1, F_2, ..., F_k) = \frac{\prod_{j=1}^k P(F_j | s \in E) P(s \in E)}{\prod_{j=1}^k P(F_j)}$$

 \clubsuit Is it a classification task?

Solution We are always interested in probabilities for just one class

Our scenario: SuPor (Módolo, 2003)

Main aspects

- Based on Kupiec's et al. (1995) model
- An AS environment

 $\textcircled{} \$ User can choose features he/she wants \rightarrow customization to a given AS system

Solution Many different AS methods

Novelties

• Besides shallow and basic features, SuPor embeds:

♦ Lexical Chains (Barzilay & Elhadad, 1999)

✤ Importance of Topics (Larocca Neto et al., 2000)

✤ Relationship Map (Salton et al., 1997)

• Methods mapped into binary features

SuPor Features

Name		Condition for sentence S be labeled "Yes"			
F1	Lexical ChainsS must be recommended by at least one of the three heuristics of the method				
F2	Location S must appear in special positions of the text (beginning or ending)				
F3	Words Frequency	S sum of its words frequency must be higher than a threshold			
F4	Relationship map	S must be recommended by at least one of the three heuristics of the method			
F5	Importance of Topics	S must appear in an important topic and must be very similar to such topic			
F6	Proper Nouns	S must contain a number of proper nouns higher than a threshold			
F7	Sentence Length	S number of words must be higher than a threshold			

Actually \rightarrow 11 features (by varying preprocessing)

Feature Selection Problem

- How the user can select the right feature set?
 - Difficult task → He/she must be an expert in AS and still...
 he/she may not be able to properly accomplish it
 - Extracts quality depends a lot on the feature set (100% in some cases)

SuPor Drawbacks \rightarrow Motivation to our work

- Explore means to reduce such effort of customization
 - Automatic Feature Selection!
 - Combine SuPor with WEKA
 - \clubsuit Free machine learning tool
 - Very comprehensive
 - ♥ Classification, Rules, Clustering
 - ♥ Data visualization and preprocessing
 - Available at www.cs.waikato.ac.nz/ml/weka/

Taking Advantage of WEKA

Two Approaches

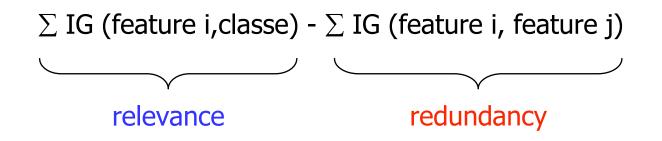
- 1) Automatic Feature Selection allows judging the relevance of features subset and choosing the best!
 - Methods based on Entropy measure (Shannon's Information Theory)
 - Employed as a filter before classification

2) Change Features Representation

- Hypothesis: improving representation → Feature Selection might be not necessary
- Provide more information to the machine learning algorithm
- Try other classifiers \rightarrow C4.5 (suggested by Módolo, 2003)

Approach 1: CFS (Correlation Feature Selection) – Hall, 2000

• Measure to evaluate importance of a subset of features



- Idea of low redundancy seems good for Naïve-Bayes (Independence Assumption)
- Measure employed together with a search heuristic \rightarrow In WEKA, by default, Hill-Climbing

Taking Advantage of WEKA

Approach 2: Improving Features Representation

Principles

- ♦ Non-binary features
- $\$ Explore numeric and multivalued features
- Sentence Length: number of words of the sentence
- Proper Nouns: number of proper nouns of the sentence
- Words Frequency: sum of the frequency of each word of the sentence

Approach 2: Improving Features Representation

• Location: according to 9 labels:

Label	Position of paragraph	Position of sentence within the paragraph		
II	Initial	Initial		
IM	Initial	Medial		
IF	Initial	Final		
MI	Medial	Initial		
MM	Medial	Medial		
MF	Medial	Final		
FI	Final	Initial		
FM	Final	Medial		
FF	Final	Final		

Approach 2: Improving Features Representation

- Importance of Topics: Harmonic mean between topic importance and sentence similarity to the topic
- Relationship Map and Lexical Chains: according to the heuristics that have recommended the sentence

Label	Meaning			
no	No heuristics recommend the sentence			
H1	Only first heuristic recommends the sentence			
H2	Only second heuristic recommends the sentence			
H3	Only third heuristic recommends the sentence			
H1+H2	Both first and second heuristics recommend the sentence			
H1+H3	Both first and third heuristics recommend the sentence			
H2+H3	Both second and third heuristics recommend the sentence			
H1+H2+H3 All heuristics recommend the sentence				

How to handle numeric features?

Naïve-Bayes Case

- Assume a Normal Distribution (Gaussian)
 - ♦ Not always true
- Discretize
 - Fayyad & Irani Method (1993): Discretization with low loss of information
- Estimate the probabilistic distribution (Kernel Density Estimation, John & Langley, 1995)
 - ♥ Results at least as good as assuming a normal distribution

C4.5 Case

• Only choice is discretization!

ufer:-

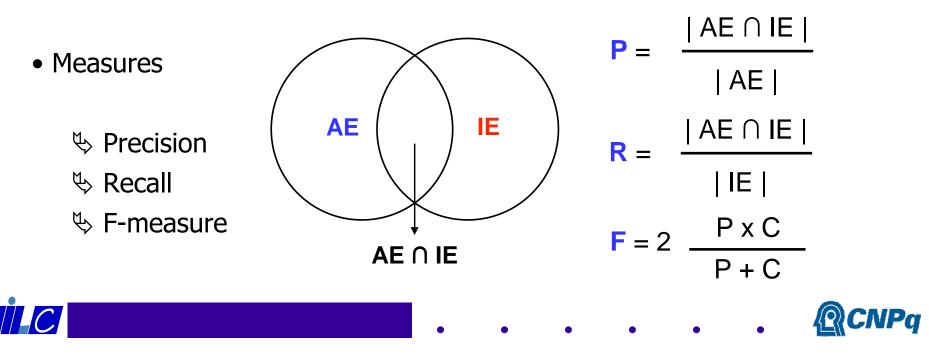
Assessment

Characteristics

- Corpus TeMário (Rino & Pardo, 2003) 100 news texts
- Same methodology of a former experiment (Rino et al., SBIA'04)
 Compression Rate = 30% (extract length / source text length)

♦ 10-fold cross validation

Compare automatic extracts (AE) with their corresponding ideal extracts (IE)



Results

Model	Classifier	Numeric Handling	Feature Selection	Recall (%)	Precision (%)	F-measure (%)
M1	Naïve-Bayes	KDE	No	43,9	47,4	45,6
M2			CFS	42,8	46,6	44,6
M3		Discretization	No	42,2	45,8	43,8
M4			CFS	42,0	45,9	43,9
M5	C4.5	Discretization	No	37,7	40,6	39,1
M6			CFS	40,2	43,8	41,9

Best model = M1 \rightarrow SuPor-2 !

• •

•

Assessment

Comparing with former results (Rino et al., SBIA'04)

System	Precision (%)	Recall (%)	F-measure (%)	% above Random
SuPor-2	47,4	43,9	45,6	47
SuPor	44.9	40.8	42.8	38
ClassSumm	45.6	39.7	42.4	37
From-Top (B)	42.9	32.6	37.0	19
TF-ISF-Summ	39.6	34.3	36.8	19
GistSumm	49.9	25.6	33.8	9
NeuralSumm	36.0	29.5	32.4	5
Random order (B)	34.0	28.5	31.0	0

B = Baseline

CNPq

Some issues

UFEI

• Why did Naïve-Bayes outperform C4.5?

♦ Related to the way C4.5 calculates probabilities

♦ NB performs well for ranking (Zhang & Su, 2004)

• Why didn't CFS bring better results overall?

Seatures got more informative → Feature Selection not needed anymore

Final Remarks

Overall results

- SuPor-2 \rightarrow significant improvements over SuPor
- Expert user may not be necessary anymore → Using all features yields good results

Future work

- Explore new features
- New classifiers → especially probabilistic ones (e.g., Bayesian Networks)
- •Improve even more features informativeness

Thank you!

Questions?

daniel_leite@dc.ufscar.br

•

Barzilay, R.; Elhadad, M. (1997). *Using Lexical Chains for Text Summarization*. In the Proc. of the Intelligent Scalable Text Summarization Workshop, Madri, Spain. Also In I. Mani and M.T. Maybury (eds.), Advances in Automatic Text Summarization. MIT Press, pp. 111-121, 1999.

Fayyad, Usama ; Irani, Keki. (1993). *Multi-interval discretization of continuous-valued attributes for classification learning*. In Proceedings of IJCAI'93.

Hall, M. (2000). *Correlation-based feature selection of discrete and numeric class machine learning.* In Proceedings of the International Conference on Machine Learning, pp. 359-366, San Francisco, CA. Morgan Kaufmann Publishers.

Hearst, M. (1997). TextTiling: Segmenting Text into Multi-Paragraph Subtopic Passages, Computational Linguistics , 23 (1), pp. 33-64

John, G. ; Langley, P. (1995). *Estimating continuous distributions in Bayesian classifiers.* Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338-345)

Kupiec, Julian ; Pedersen, Jan ; Chen, Francine (1995). *A trainable document summarizer*. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, pp 68-73.

Larocca Neto, J.; Santos, A. D.; Kaestner, C. A. A.; Freitas, A. A. (2000). Generating Text Summaries through the Relative Importance of Topics. In M. C. Monard and J. S. Sichman (Eds.), *Iberamia-Sbia 2000*, pp. 300-309. Springer-Verlag, Berlin, Heidelberg.

Leite, D. S.; Rino, L. H. M. (2006a). *A migração do SuPor para o ambiente WEKA: potencial e abordagens.* Série de Relatórios do NILC. NILC-TR-06-03. São Carlos-SP, Janeiro, 35p.

Leite, D. S.; Rino, L.H.M. (2006b). *SuPor: extensões e acoplamento a um ambiente para mineração de dados*. Série de Relatórios do NILC. NILC-TR-06-07. São Carlos – SP, Agosto, 22 p.

Módolo, M. (2003). *SuPor: an Environment for Exploration of Extractive Methods for Automatic Text Summarization for Portuguese* [in Portuguese]. MSc. Dissertation. Departamento de Computação, UFSCar.

Pardo, T.A.S. e Rino, L.H.M. (2004). *Descrição do GEI - Gerador de Extratos Ideais para o Português do Brasil*. Série de Relatórios do NILC. NILC-TR-04-07. São Carlos-SP, Agosto, 10p.

Pardo, T.A.S.; Rino, L.H.M. (2003). *TeMário: Um Corpus para a Sumarização Automática de Textos*. NILC Tech. Report. NILC-TR-03-09. São Carlos, Outubro, 12p.

Quinlan, J.R. (1993). C4.5 Programs for machine learning. San Mateo, Morgan-Kaufman, 1993.

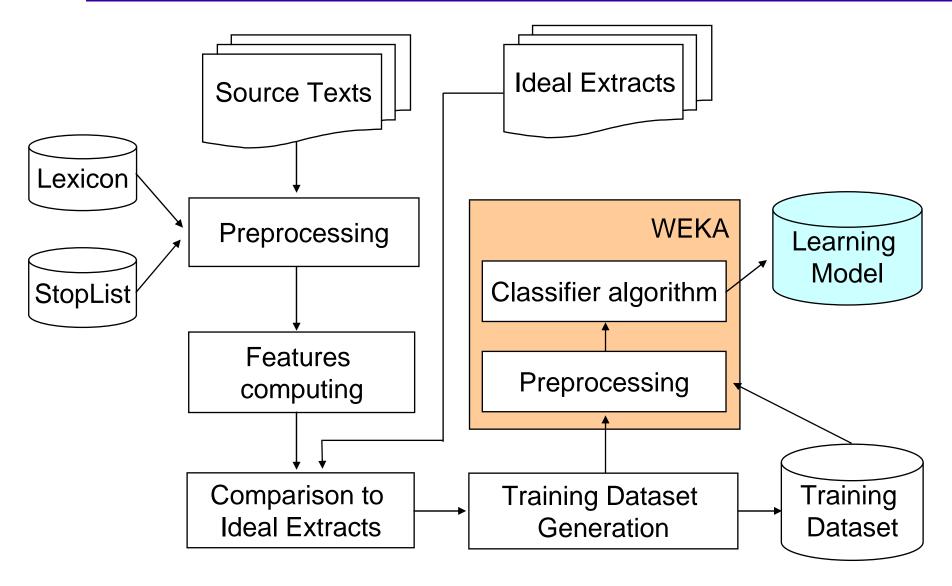
Rino, L.H.M.; Pardo, T.A.S.; Silla Jr., C.N.; Kaestner, C.A.; Pombo, M. (2004). *A Comparison of Automatic Summarization Systems for Brazilian Portuguese Texts*. In the Proceedings of the XVII Brazilian Symposium on Artificial Intelligence - SBIA2004. São Luís, Maranhão, Brazil.

Witten, Ian H.; Frank, Eibe (2005). *Data Mining: Practical machine learning tools and techniques*, 2^a Ed., Morgan Kaufmann, San Francisco.

Zhang, H. ; Su, J. (2004). *Naive Bayesian classifiers for ranking*. Proceedings of the 15th European Conference on Machine Learning (ECML2004), Springer.

Salton, G.; Singhal, A.; Mitra, M.; Buckley, C. (1997). Automatic Text Structuring and Summarization. *Information Processing & Management*, 33(2), pp. 193-207.

SuPor-2 Architecture: Training Phase



SuPor-2 Architecture: Sentence Selection Phase

