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Abstract 

We illustrate the usefulness of communicating 
finite state machines in modeling a number of physical 
layer protocols that include (i) an asynchronous start- 
stop protocol and (ii) a protocol for synchronous 
transmission with modems. Each protocol is modeled as 
a network of four finite state machines that 
communicate by exchanging messages over unbounded, 
FIFO channels. (Two machines are used to model the 
protocol itself, while the other two are used to model 
its interface to the upper data link protocol in the 
protocol hierarchy.) We outline a methodology to 
verify communication boundedness and progress for 
each protocol model. The methodology is based on 
three techniques that were proposed earlier to verify 
networks of communicating finite state machines; they 
are network decomposition, machine equivalence, and 
closed covers. 

1. Introduction 
The physical layer is the lowest layer in a 

protocol hierarchy [1,7,15]; its function is to transmit 
frames of data characters or bits across a physical line 
between two adjacent computers in a computer 
network /1,7,14]. Most of the available literature on 
physical layer protocols concentrate on defining their 
electrical specifications and pin descriptions, and ignore 
their procedural characteristics and interface 
behaviours. Although the procedural characteristics of 
these protocols may seem simple and straightforward at 
first, the task of modeling them formally and proving 
their correctness can become quite complicated. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

The objective of this paper is three-fold: 

i. Provide formal models based on 
communicating finite state machines to two 
important and widely used physical layer 
protocols: (a) an asynchronous start-stop 
protocol, and (b) a protocol for synchronous 
transmission with modems. We believe that 
by going through these formal models, one 
can appreciate the function of these 
protocols and their different ways of 
achieving this function. 

ii. Illustrate the usefulness of communicating 
finite state machines as a convenient formal 
model for defining communication 
protocols. (For more examples in using 
communicating finite state machines to 
model communication protocols we refer the 
reader to (2,3,4,5,6,16,17].) 

iii. Demonstrate the utility of recent 
verification methodologies [8,10,11,12,13] for 
networks of communicating finite state 
machines in establishing the correctness of 
*‘realV1 and nontrivial protocol models. 

Following the introduction, the paper is organized 
as follows. Networks of communicating finite state 
machines are briefly presented in Section 2. Then, in 
Section 3, we discuss how to model a physical layer 
protocol as a network of four communicating finite 
state machines: two machines model the protocol itself 
and the other two model the protocol’s interface with 
the data link protocol. In Section 4, we use this model 
to formally define two examples of physical layer 
protocols. A verification methodology for these protocol 
models is outlined in Section 5. Finally, concluding 
remarks are in Section 6. 
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2. Networks of Communicating Finite State 
Machines 

A network W is a tuple [M~,...,M~], where n>2, 

and for r=l,...,n, Mi is a finite state machine that 

communicates with other finite state machines in W by 
exchanging messages via one-directional, unbounded, 
FIFO channels. Next, we define communicating finite 
state machines. 

A communicating finite state machine Mi in a 

network W=[M,,...,M,] is a labeled directed graph 

with three types of edges, namely sending, receiving, 

and internal edges: 

l a sending edge in Mi is labeled with -g/Mj, 

l a receiving edge in Mi is labeled with 

+g/Mj, and 

l an internal edge in Mi is labeled with the 

empty sequence E, 

where g is a message from a finite set G of messages, 
and Mj is a machine, other than Mi, in W. One of the 

nodes in Mi is identified as its initial node, and each 

node in Mi is reachable by a directed path from the 

initial node. For convenience, we assume that M, is 
*‘nonterminating,” i.e., each node in Mi has at least one 

outgoing edge. 

A state s of a network [M1,...,M,] is an n X n 

matrix, where an entry si j in the i-th row and j-th 

column is defined as follow& 

i. If i=j, then si i is a node in machine Mi. 

ii. If ifj, then si j is a sequence of messages 

from the set G: in this case, si j is called the 

content of the channel from’Mi to Mj in 

state s. 

The initial state so of a network [M1,...,M,] is a 

state of the network whose entries soi j are defined as 

follows: 

i. If i=j, then soi i is the initial node in Mi. 

ii. If ifj, then soi j is the empty sequence E. 

Let s and s’ be two states of a network 

[M1,-.,M,]~ and let e be an edge from node v to node v’ 

in machine Mi. State s’ is said to follow s over e iff one 

of the following three conditions is satisfied: 

e is a sending edge labeled -g/Mj, and each 

entry in s is identical to its corresponding 
entry in s’ except (possibly) for si i and s’~ i, 

and for si j and sli j whose values are defined 

as follows’: 
t 

si i=v, s’~ i=v’, and sli j=si j.g, where “.” is 

the usual ‘string concatenation operator. 

U. e is a receiving edge labeled’ +g/Mj, and 

each entry in s is identical to its 
corresponding entry in s’ except (possibly) 
for si i and sii i, and for sj i and .slj i whose 

values are defined as follows: 
si i=v, sli i=v’, and sj i=g.s’. . . 

9 J,’ 

iii. e is an internal edge labeled E, and each 
entry in s is identical to its corresponding 
entry in s’ except (possibly) for si i and sli i 

whose values are defined as follow& 
1 

si i=v and sli i=v’. 

Let s and s’ be two states of a network W. State 
s’ is said to follow s iff there exists an edge e in one of 
the machines in W such that s’ follows s over e. 

Let s and s’ be two states of a network W. s’ is 
reachable from s iff either s=s’ or there exist a 

sequence s”,sl,...,sr of states of W such that s”=s, 

s’=s’, and for i=O,...,r-1, si+l follows si. A state of a 
network is reachable iff it is reachable from the initial 
state of the network. 

The communication of a network W=[M1,...,Mn] 

is said to be bounded by K iff for every reachable state 
s of W, and for every i=l,..., n and every j=l,..., n, if 
i#j then ]si jl<_K, where Ix] is the number of messages 

in sequence ‘x. The communication is bounded iff it is 
bounded by some positive integer K. 

A state s of a network W is called an unspecified 
reception state for machine Mi in W iff si i is a 
receiving node in machine Mi, and for every outgoing 

edge e of node si i, if e is labeled with +g/Mj, then sj i 
. . 

is a nonempty sequence of the form g’.x, where gfg’. 
The communication of W is said to be free from 
unspecified receptions iff no reachable state of W is an 
unspecified reception state (for some machine in W). 

Let s be a state of a network W, and let Mi be a 

machine in W, and {M,,...,Mb} be a set of machines in 

W. Mi is said to be blocked by {Ma,...,M,,} at state s iff 

the following condition holds for each outgoing edge e 
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of node si i in machine Mi. Edge e is labeled with some 
+g/Mj s&h that 

(i) Mj is in the set {M,,...,M,}, and 

(ii) either sj i=E (the empty sequence) or 
sj,i=g’.x, ‘where g’#g. 

A set D of machines in W is called a deadlock set 
at state s iff each machine in D is blocked by a subset 
of D at s. A state s of a network W is called a 
deadlock state iff there exists a set of machines in W 
that constitutes a deadlock set at state s. The 
communication of W is said to be free from 
communication deadlocks iff no reachable state of W is 
a deadlock state. 

The communication of a network W is 
guaranteed to progress indefinitely iff the 
communication of W is free from unspecified receptions 
and communication deadlocks. The communications of 
the two protocol models presented in this paper can be 
shown to progress indefinitely; an outline of the 
verification methodology is given in Section 5. 

3. Modeling Physical Layer Protocols 
The physical layer is the lowest layer in a 

protocol hierarchy; it serves as a communication 
medium to the data link layer (1,7,15]. As shown in 
Figure 1, the data frames sent by the data link layer at 
one site are first delivered to the physical layer at that 
site, then transmitted as a stream of characters over 
the communication line between sites, and finally 
assembled into frames before delivery to the data link 
layer at the other site. This arrangement can be 
modeled as a network of four communicating finite 
state machines [P,M,N,Q], where M and N model the 
physical layer protocol, and P and Q model the 
interface of the data link layer to the physical layer 
(see Figure 2). 
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Figure 1: Physical layer. 

P Q 

Figure 2: Modeling a physical layer protocol 
as a network of four machines. 

In Section 5, we model various physical layer 
protocols as networks [P,M,N,Q] that differ in the way 
the communication between M and N is governed, but 
provide a uniform interface through P and Q. This 
means that the interface machines P and Q are the 
same for all the protocol models discussed in Section 5, 
but M and N change from one protocol model to 
another. The interface machines P and Q are defined in 
this section, and the different versions of machines M 
and N are discussed in Section 5. 

The chosen interface between the data link layer 
and the physical layer satisfies the following 
requirements: 

i. 

ii. 

. . . 
111. 

iv. 

Basic full duplex operation: The interface 
allows the data link layer at each site to 
send frames to the other site, and to receive 
frames from the other site, possibly at the 
same time. 

Simple operation: For the data link layer at 
one site to send a frame, it simply sends the 
frame to the physical layer at its site. For it 
to receive a frame, it simply sends a “next,” 
message to the physical layer at its site, 
then waits for the frame. 

Ftiendly operation: Before the data link 
layer at one site can send one frame to the 
other site, it must also be ready to receive 
one frame from the other site. 

No error detection: The interface does not 
guarantee that all sent frames will be 
delivered correctly. It is the function of the 
data link layer, not the physical layer, to 
detect frame corruption and loss [1,14,15]. 

Based on these requirements, the communicating 
finite state machine P can be defined as shown in 
Figure 3. (Machine Q is identical to P except that it 
communicates with N instead of M.) Machine P 
exchanges the following messages with machine M. 
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a nframetr denotes a data frame, 

l @‘r~ext~~ denotes a request from P to M to 
send the next data frame, and 

l “noframe” denotes a reply of “no frame is 
available” from M to P. 

Initial node 

Figure 3: Machine P. 

Starting from node 1, P can only send a request 
**next*’ to M. It then either waits to receive the 
requested frame from M and returns to node 1, or 
sends a data frame to M. As discussed later, M is 
expected to forward this data frame to N. If in the 
mean time M receives a frame from .N, it sends it to P 
as a reply to its request; otherwise it sends a “noframe” 
reply to P. In either case P returns to its initial node. 

4. Examples of Physical Layer Protocols 
In this section, we discuss formal models of two 

physical layer protocols: an asynchronous start-stop 
protocol, and a protocol for synchronous transmission 
with modems. For convenience, we adopt the following 
two abbreviations in drawing the communicating 
machines in this section: 

1. An edge label of the form -g/Mi (+g/Mi) 
can be written as -g (+g), when Mi can be 
implicitly understood from g. For example, 
the edge labei -frame/P in machine M will 
be written as -frame, because M sends 
“frame” only to P. 

2. Two or more edges from node v to node v’ 
can be drawn as one edge from v to v’ with 
multiple labels. 

4.1. An Asynchronous Start-Stop Protocol 
This protocol is used to transmit frames of data 

characters over a single full duplex communication line 
[14]. A data frame consists of an integral number of 
contiguous data characters, where a character has a 
fixed length of bits. The bits are transmitted serially, 
hence, there should be an agreement between the 
sender and receiver on the duration of a bit over the 
communication line, so the state of the line can be 
properly sampled. 

The protocol provides a mechanism to delineate 
frames and characters. A data character consists of a 
START bit (usually a “0” bit), fixed number of data 
bits, and a STOP bit (usually a “11’ bit). When there 
are no data characters to transmit over the line, idle 
characters are transmitted instead. An idle character 
consists of all idle bits (usually “1 I’ bits). Two 
successive data frames should be separated by at least 
one idle character. The receiver can detect the 
beginning of a frame by sensing the START bit of the 
first data character in the frame, and the end of a 
frame by the idle character following the last data 
character. 

Formal modeling: Figure 4 shows machine 
M. (Machine N is identical.) M and N exchange the 
following messages: 

l “idle” denotes an idle character, 

l “start” denotes the START bit of a data 
character, 

s “data” denotes the sequence of data bits in 
a data character, and 

l “stop” denotes the STOP bit of a data 
character. 

The initial node, node 1, of M is the “not ready” 
node, since at this node M has pot yet received a 
I1 next ‘I from P, and so it cannot accept any data 
characters from N. If at node 1 M receives a “next” 
message from P, it proceeds to node 2 and becomes 
ready to communicate with N. On the other hand, if at 
node 1 M receives a data character from N, it proceeds 
to node 20, the “error” node, and discards the 
incoming data characters as indicated by the dashed 
receiving edges. M proceeds from node 20 to node 2 
when it receives the first “idle” message from N after a 
“next” message from P. 

Node 2 is the “ready” node, where M keeps 
sending and receiving “idle” messages until it receives 
a frame from P (then goes to node 3), or a data 
character from N (then goes to node 4). 
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Nodes 3 and 16 are “data sending” nodes, where 
M sends data characters to N, and receives idle 
characters from N. If at node 3 M finishes sending the 
characters of the current frame, it recognizes that it 
has received no data characters from N, so it sends a 
“noframe” message to P and returns to the initial 
node. On the other hand, if at node 3 M receives a 
data character from N, it proceeds to node 8. 

Node 4 is the “data receiving” node, where M 
receives data characters from N, and sends idle 
characters to N. If at node 4 M receives an “idle” 
indicating the end of the received frame, it immediately 
delivers this frame to P. On the other hand, if at node 
4 M receives a data frame from P, it proceeds to node 
8. 

-idle1 -11. )+frame 

Node 8 is the “data sending and receiving” node, 
where M and N exchange data characters. From this 
node M can proceed to node 4 (16) whenever it sends 
(receives) an “idle” message. Notice that when M 
receives an “idle” message indicating the end of the 
current received frame at node 15, it sends the received 
frame to P. 

4.2. A Protocol for Synchronous Transmission 
with Modems 
This protocol is used to transmit frames of data 

characters over a full duplex communication line with a 
pair of modems, one at each end [14]. The data bits 
are modulated in carrier signals, and full duplex 
communication can be achieved by selecting a different 
carrier frequency for each direction. The clocking 
signal is encoded in the modulating process and 
decoded from the sidebands of the carrier signal. 

--I rame 

tidlel 
I 

+idle 

T Aframe +framel I 

idle +start 

Figure 4: Machine M of the asynchronous start-stop protocol. 
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The existence of a clocking signal in this protocol 
necessitates a special synchronizing character (denoted 
by “sync”) to be sent whenever either site has no data 
characters to send. A data frame consists of integral 
number of contiguous data characters and can be 
preceeded or followed by “sync” characters. 

Unlike the previous protocol, here a connection 
should be established between the two sites before 
either site can send a data frame. A connection is 
indicated by the presence of carriers in both directions. 
During the interval from establishing to clearing a 
connection, at most one frame can be sent in each 
direction. After clearing a connection, new connections 
can be established to send more frames. 

To establish a new connection, a site keeps on 
sending connect requests until it receives the incoming 
carrier, it then propagates its own carrier and the 
connection is established. Either site can request to 
clear the connection simply by ceasing to propagate its 
carrier, and the connection will be cleared after the 
incoming carrier has been turned off. 

Formal modeling: The communicating finite 
state M (or N, which looks identical to M) of this 
protocol model is shown in Figure 5. The interpretation 
of messages exchanged between M and N are as follows: 

l “corm” denotes a connect request. 

l “car” is a message that represents the 
existence of carrier signals. (PV-car8’ should 
be interpreted as starting to propagate the 
carrier, and “+car” should be interpreted 
as sensing an incoming carrier.) 

0 “nocar” is a message that represents the 
lack of carrier signals. 

l “data” denotes a data character. 

l “sync” denotes a “sync” character. 

-noframe 

Q- 19 
I ^^-- +f-frame 

-n 

+sync 

Sframe 
/ 

IA 

fnocar +conn +data 

-car 

Figure 5: Machine M of the synchronous transmission protocol. 
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At node 1, the initial node, M has not yet 
received a “next” from P, and so it will reject any 
“corm” request from N. If M receives a “next” at node 
1, it proceeds to node 2 where it becomes ready to 
accept a connect request and later starts receiving data 
characters at node 6, or to accept a frame from P and 
then tries to establish a connection (node 3). 

Nodes 12 and 1’7 are “data sending” nodes, where 
M sends data characters to N, and receives ssync” 
characters from N. If M finishes sending the current 
frame while it is at node 12, it recognizes that it has 
received no data characters from N, so it sends a 
“noframe” message to P and prepares to clear the 
connection. 

Node 6 is the “data receiving” node, where M 
receives data characters from N, and sends “sync” 
characters to N. M will come to this node if P does not 
have a frame to send, or if M has finished sending the 
frame from P to N but still has to receive data 
characters from N. 

Node 15 is the “data sending and receiving” 
node, where M and N exchange data characters. M 
proceeds to node 15 when both M and N tries to 
establish a connection around the same time (node 13), 
or when M receives a data character from N at node 
12, or when it receives a data frame from P at node 16. 

When M receives a “sync” from N indicating the 
end of the current frame, it delivers the frame to P at 
either node 7 or 16. 

M decides to clear the connection at node 8 by 
turning its carrier off, then ignores anything coming 
from N (as represented by the dashed self loop at node 
9) until another connection is established. A frame that 
comes from P after M decides to clear the connection 
will also be lost, as represented by the dashed self loop 
at node 1. When both M and N have stopped 
propagating their carriers, then they are back at the 
initial nodes and the connection is cleared. 

6. Verification of Physical Layer Protocol 
Models 

As mentioned in Section 3, we model each 
physical layer protocol as a network [P,M,N,Q]. 
Proving indefinite communication progress of these 
networks is hard because (i) the two machines M and N 
are usually complex, and (ii) their communication is 
usually unbounded. To carry such proofs, we use three 
techniques: network decomposition, machine 
equivalence, and closed covers. These techniques are 
summarized next, but interested readers can find more 
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details and examples about these techniques in [S], [lo], 
and [ll]. 

6.1. Network Decomposition 
To prove that the communication of network 

[P,M,N,Q] in Figure 2 will progress indefinitely, we 
follow the next procedure. 

1. Decompose the network into three 
networks, with two communicating 
machines each, \P,M’], [M”,N”], and [N’,Q], 
where 

M’ (N’) is identical to M (N) except that 
each sending edge to N (M) and 
each receiving edge from N (M) 
is replaced by an internal edge, 
and 

Ml’ (N”) is identical to M (N) except that 
each sending edge to P (Q) and 
each receiving edge from P (Q) 
is replaced by an internal edge. 

2. Prove that network (P,M’] satisfies the 
following two conditions: 

a. 

b. 

The communication of the network 
will progress indefinitely, or 
equivalently every reachable state of 
the network is neither an unspecified 
reception state nor a deadlock state. 

For every reachable state s where 
machine M’ is at a node v with an 
outgoing receiving edge, there exist 
two states s’ and s” such that (i) s’ is 
reachable from s over some edges in P, 
and (ii) s” follows s’ over an outgoing 
receiving edge of node v. 

3. Prove that network [N’,Q] satisfies the same 
two conditions a and b in 2. (Replace M’ 
by N’ in condition b.) 

4. Prove that the communication of network 
[M”,N”] will progress indefinitely. 

5. Proving 2, 3, and 4 guarantees that the 
communication of network [P,M,N,Q] will 
progress indefinitely. (The correctness of 
this assertion follows from the discussion in 

Pal-1 

Notice that the function of network 
decomposition in this procedure is to reduce the 
problem of proving some property for a four-machine 
network into proving some related properties for three 



two-machine networks; it is a divide and conquer 
technique. 

The proof needed in Step 2 of the above 
procedure is straightforward. This is because the 
communication of network [P,M’] is bounded; hence all 
reachable states of the network can be generated and 
examined to verify that conditions a and b are 
satisfied. Similarly, the proof needed in Step 3 is 
straightforward, since the communication of (N’,Q] is 
also bounded. 

Unfortunately, the proof needed in Step 4 is not 
straightforward since the communication of [M”,N”] is 
usually unbounded. Therefore, to prove indefinite 
progress for the communication of network [M”,N”), 
we resort to the technique of closed covers [S]. But 
before we use this technique, it is convenient to remove 
the internal edges from M” and N”; this requires a 
third technique known as machine equivalence. 

5.2. Machine Equivalence 
Let W be a network of communicating finite state 

machines, and let M be a machine that have some 
internal edges in W. Assume that each internal edge in 
M is in some directed cycle. Then, the equivalence- 
preserving transformations defined in [ll] can be 
applied to transform M into an “equivalent” machine 
EM that has no internal edges. The equivalence is such 
that the communication of network W is guaranteed to 
progress indefinitely iff the.communication of network 
EW is guaranteed to progress indefinitely, where EW is 
the same as W except that M is replaced by EM. 

This result can be used to remove the internal 
edges from the two machines in [M”,N”]. In particular, 
these equivalence-preserving transformations can be 
applied to the two machines M” and NV’ yielding the 
equivalent machines EM” and EN”, respectively, such 
that (i) EM” and EN” have no internal edges, and (ii) 
the communication of [M”,N”] is guaranteed to 
progress indefinitely iff the communication of 
[EM”,EN”] is guaranteed to progress indefinitely. It 
remains now to discuss how to prove that the 
communication of [EM”,EN”] will progress indefinitely. 
For that purpose, we need the technique of closed 
covers. 

5.3. Closed Covers 
As discussed in [S], to prove that the 

communication of a network will progress indefinitely, 
it is sufficient to exhibit a closed cover of the network. 
A closed cover C of network [EM”,EN”] is a finite set 
of state schemas 

kl f:l 1:::: 1: ;i :I’ 
such that the following three conditions are satisfied. 

i. Each state schema 

in C is such that 
(a) vi is a node in EM”, 
(b) wi is a node in EN”, and 
(c) Xi and Yi are two (possibly infinite) sets 
of message sequences. 
Each state schema can be viewed as a set of 
network states. A state 

is in some state schema 

in C iff the message sequences xi and yi are 
in the sets Xi and Yi, respectively. 

ii. The initial state of [EM”,EN”] is in some 
state schema in C. 

iii. For every state s that is in some state 
schema in C, there exist two states s’ and 5” 
such that 
(a) s” is in a state schema in C, and 
(b) either (s’ follows s over an edge in EM” 
and s” follows s’ over an edge in EN”) or (s’ 
follows s over an edge in EN” and s” 
follows s’ over an edge in EM”). 

For more details on how to apply these three 
techniques (network decomposition, machine 
equivalence, and closed covers) to the verification of the 
protocol models discussed in 
reader to [O] and [IS]. 

this paper, we refer the 

6. Concluding Remarks 
We have presented a 

physical layer protocols and 
formal model to define 
a methodology to verify 

the correctness of the resulting protocol models. We 
have applied this methodology to model and verify an 
asynchronous start-stop protocol and a synchronous 
transmission protocol with modems. In [O], we use the 
same formal model and its accompanying verification 
methodology to model and verify other physical layer 
protocols that include the EL4 RS-449 Standard and 
the CCITT X.21 Recommendation. 
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We hope that this experience can inspire others to 
utilize these or other formal techniques in modeling 
communica.tion protocols instead of resorting to 
informal descriptions that are ambiguous and usually 
invite errors or imprecision. 
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