
MODELING PHYSICAL LAYER PROTOCOLS USING
COMMUNICATING FINITE STATE MACIIINES

Mohamed G. Gouda and Khe-Sing The

Department of Computer Sciences
The University of Texas at Austin

Austin, Texris 78712

Abstract

We illustrate the usefulness of communicating
finite state machines in modeling a number of physical
layer protocols that include (i) an asynchronous start-
stop protocol and (ii) a protocol for synchronous
transmission with modems. Each protocol is modeled as
a network of four finite state machines that
communicate by exchanging messages over unbounded,
FIFO channels. (Two machines are used to model the
protocol itself, while the other two are used to model
its interface to the upper data link protocol in the
protocol hierarchy.) We outline a methodology to
verify communication boundedness and progress for
each protocol model. The methodology is based on
three techniques that were proposed earlier to verify
networks of communicating finite state machines; they
are network decomposition, machine equivalence, and
closed covers.

1. Introduction
The physical layer is the lowest layer in a

protocol hierarchy [1,7,15]; its function is to transmit
frames of data characters or bits across a physical line
between two adjacent computers in a computer
network /1,7,14]. Most of the available literature on
physical layer protocols concentrate on defining their
electrical specifications and pin descriptions, and ignore
their procedural characteristics and interface
behaviours. Although the procedural characteristics of
these protocols may seem simple and straightforward at
first, the task of modeling them formally and proving
their correctness can become quite complicated.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

The objective of this paper is three-fold:

i. Provide formal models based on
communicating finite state machines to two
important and widely used physical layer
protocols: (a) an asynchronous start-stop
protocol, and (b) a protocol for synchronous
transmission with modems. We believe that
by going through these formal models, one
can appreciate the function of these
protocols and their different ways of
achieving this function.

ii. Illustrate the usefulness of communicating
finite state machines as a convenient formal
model for defining communication
protocols. (For more examples in using
communicating finite state machines to
model communication protocols we refer the
reader to (2,3,4,5,6,16,17].)

iii. Demonstrate the utility of recent
verification methodologies [8,10,11,12,13] for
networks of communicating finite state
machines in establishing the correctness of
*‘realV1 and nontrivial protocol models.

Following the introduction, the paper is organized
as follows. Networks of communicating finite state
machines are briefly presented in Section 2. Then, in
Section 3, we discuss how to model a physical layer
protocol as a network of four communicating finite
state machines: two machines model the protocol itself
and the other two model the protocol’s interface with
the data link protocol. In Section 4, we use this model
to formally define two examples of physical layer
protocols. A verification methodology for these protocol
models is outlined in Section 5. Finally, concluding
remarks are in Section 6.

54

0 1985 ACM O-8979 l- 164-4/85/0009/0054$00.75

2. Networks of Communicating Finite State
Machines

A network W is a tuple [M~,...,M~], where n>2,

and for r=l,...,n, Mi is a finite state machine that

communicates with other finite state machines in W by
exchanging messages via one-directional, unbounded,
FIFO channels. Next, we define communicating finite
state machines.

A communicating finite state machine Mi in a

network W=[M,,...,M,] is a labeled directed graph

with three types of edges, namely sending, receiving,

and internal edges:

l a sending edge in Mi is labeled with -g/Mj,

l a receiving edge in Mi is labeled with

+g/Mj, and

l an internal edge in Mi is labeled with the

empty sequence E,

where g is a message from a finite set G of messages,
and Mj is a machine, other than Mi, in W. One of the

nodes in Mi is identified as its initial node, and each

node in Mi is reachable by a directed path from the

initial node. For convenience, we assume that M, is
*‘nonterminating,” i.e., each node in Mi has at least one

outgoing edge.

A state s of a network [M1,...,M,] is an n X n

matrix, where an entry si j in the i-th row and j-th

column is defined as follow&

i. If i=j, then si i is a node in machine Mi.

ii. If ifj, then si j is a sequence of messages

from the set G: in this case, si j is called the

content of the channel from’Mi to Mj in

state s.

The initial state so of a network [M1,...,M,] is a

state of the network whose entries soi j are defined as

follows:

i. If i=j, then soi i is the initial node in Mi.

ii. If ifj, then soi j is the empty sequence E.

Let s and s’ be two states of a network

[M1,-.,M,]~ and let e be an edge from node v to node v’

in machine Mi. State s’ is said to follow s over e iff one

of the following three conditions is satisfied:

e is a sending edge labeled -g/Mj, and each

entry in s is identical to its corresponding
entry in s’ except (possibly) for si i and s’~ i,

and for si j and sli j whose values are defined

as follows’:
t

si i=v, s’~ i=v’, and sli j=si j.g, where “.” is

the usual ‘string concatenation operator.

U. e is a receiving edge labeled’ +g/Mj, and

each entry in s is identical to its
corresponding entry in s’ except (possibly)
for si i and sii i, and for sj i and .slj i whose

values are defined as follows:
si i=v, sli i=v’, and sj i=g.s’. . .

9 J,’

iii. e is an internal edge labeled E, and each
entry in s is identical to its corresponding
entry in s’ except (possibly) for si i and sli i

whose values are defined as follow&
1

si i=v and sli i=v’.

Let s and s’ be two states of a network W. State
s’ is said to follow s iff there exists an edge e in one of
the machines in W such that s’ follows s over e.

Let s and s’ be two states of a network W. s’ is
reachable from s iff either s=s’ or there exist a

sequence s”,sl,...,sr of states of W such that s”=s,

s’=s’, and for i=O,...,r-1, si+l follows si. A state of a
network is reachable iff it is reachable from the initial
state of the network.

The communication of a network W=[M1,...,Mn]

is said to be bounded by K iff for every reachable state
s of W, and for every i=l,..., n and every j=l,..., n, if
i#j then]si jl<_K, where Ix] is the number of messages

in sequence ‘x. The communication is bounded iff it is
bounded by some positive integer K.

A state s of a network W is called an unspecified
reception state for machine Mi in W iff si i is a
receiving node in machine Mi, and for every outgoing

edge e of node si i, if e is labeled with +g/Mj, then sj i
. .

is a nonempty sequence of the form g’.x, where gfg’.
The communication of W is said to be free from
unspecified receptions iff no reachable state of W is an
unspecified reception state (for some machine in W).

Let s be a state of a network W, and let Mi be a

machine in W, and {M,,...,Mb} be a set of machines in

W. Mi is said to be blocked by {Ma,...,M,,} at state s iff

the following condition holds for each outgoing edge e

55

of node si i in machine Mi. Edge e is labeled with some
+g/Mj s&h that

(i) Mj is in the set {M,,...,M,}, and

(ii) either sj i=E (the empty sequence) or
sj,i=g’.x, ‘where g’#g.

A set D of machines in W is called a deadlock set
at state s iff each machine in D is blocked by a subset
of D at s. A state s of a network W is called a
deadlock state iff there exists a set of machines in W
that constitutes a deadlock set at state s. The
communication of W is said to be free from
communication deadlocks iff no reachable state of W is
a deadlock state.

The communication of a network W is
guaranteed to progress indefinitely iff the
communication of W is free from unspecified receptions
and communication deadlocks. The communications of
the two protocol models presented in this paper can be
shown to progress indefinitely; an outline of the
verification methodology is given in Section 5.

3. Modeling Physical Layer Protocols
The physical layer is the lowest layer in a

protocol hierarchy; it serves as a communication
medium to the data link layer (1,7,15]. As shown in
Figure 1, the data frames sent by the data link layer at
one site are first delivered to the physical layer at that
site, then transmitted as a stream of characters over
the communication line between sites, and finally
assembled into frames before delivery to the data link
layer at the other site. This arrangement can be
modeled as a network of four communicating finite
state machines [P,M,N,Q], where M and N model the
physical layer protocol, and P and Q model the
interface of the data link layer to the physical layer
(see Figure 2).

Interface
to

data link
layCr

--a--

Pbpicd
layer

frame tram frame frame

t I ----_---_.

-.__ ---- - -c --L -De--’
f

,A
----“__ c - 6 ------*

__I-

. stream of
SITE 1 character3 SITE ?

over communi-
cation line

Figure 1: Physical layer.

P Q

Figure 2: Modeling a physical layer protocol
as a network of four machines.

In Section 5, we model various physical layer
protocols as networks [P,M,N,Q] that differ in the way
the communication between M and N is governed, but
provide a uniform interface through P and Q. This
means that the interface machines P and Q are the
same for all the protocol models discussed in Section 5,
but M and N change from one protocol model to
another. The interface machines P and Q are defined in
this section, and the different versions of machines M
and N are discussed in Section 5.

The chosen interface between the data link layer
and the physical layer satisfies the following
requirements:

i.

ii.

. . .
111.

iv.

Basic full duplex operation: The interface
allows the data link layer at each site to
send frames to the other site, and to receive
frames from the other site, possibly at the
same time.

Simple operation: For the data link layer at
one site to send a frame, it simply sends the
frame to the physical layer at its site. For it
to receive a frame, it simply sends a “next,”
message to the physical layer at its site,
then waits for the frame.

Ftiendly operation: Before the data link
layer at one site can send one frame to the
other site, it must also be ready to receive
one frame from the other site.

No error detection: The interface does not
guarantee that all sent frames will be
delivered correctly. It is the function of the
data link layer, not the physical layer, to
detect frame corruption and loss [1,14,15].

Based on these requirements, the communicating
finite state machine P can be defined as shown in
Figure 3. (Machine Q is identical to P except that it
communicates with N instead of M.) Machine P
exchanges the following messages with machine M.

56

a nframetr denotes a data frame,

l @‘r~ext~~ denotes a request from P to M to
send the next data frame, and

l “noframe” denotes a reply of “no frame is
available” from M to P.

Initial node

Figure 3: Machine P.

Starting from node 1, P can only send a request
**next*’ to M. It then either waits to receive the
requested frame from M and returns to node 1, or
sends a data frame to M. As discussed later, M is
expected to forward this data frame to N. If in the
mean time M receives a frame from .N, it sends it to P
as a reply to its request; otherwise it sends a “noframe”
reply to P. In either case P returns to its initial node.

4. Examples of Physical Layer Protocols
In this section, we discuss formal models of two

physical layer protocols: an asynchronous start-stop
protocol, and a protocol for synchronous transmission
with modems. For convenience, we adopt the following
two abbreviations in drawing the communicating
machines in this section:

1. An edge label of the form -g/Mi (+g/Mi)
can be written as -g (+g), when Mi can be
implicitly understood from g. For example,
the edge labei -frame/P in machine M will
be written as -frame, because M sends
“frame” only to P.

2. Two or more edges from node v to node v’
can be drawn as one edge from v to v’ with
multiple labels.

4.1. An Asynchronous Start-Stop Protocol
This protocol is used to transmit frames of data

characters over a single full duplex communication line
[14]. A data frame consists of an integral number of
contiguous data characters, where a character has a
fixed length of bits. The bits are transmitted serially,
hence, there should be an agreement between the
sender and receiver on the duration of a bit over the
communication line, so the state of the line can be
properly sampled.

The protocol provides a mechanism to delineate
frames and characters. A data character consists of a
START bit (usually a “0” bit), fixed number of data
bits, and a STOP bit (usually a “11’ bit). When there
are no data characters to transmit over the line, idle
characters are transmitted instead. An idle character
consists of all idle bits (usually “1 I’ bits). Two
successive data frames should be separated by at least
one idle character. The receiver can detect the
beginning of a frame by sensing the START bit of the
first data character in the frame, and the end of a
frame by the idle character following the last data
character.

Formal modeling: Figure 4 shows machine
M. (Machine N is identical.) M and N exchange the
following messages:

l “idle” denotes an idle character,

l “start” denotes the START bit of a data
character,

s “data” denotes the sequence of data bits in
a data character, and

l “stop” denotes the STOP bit of a data
character.

The initial node, node 1, of M is the “not ready”
node, since at this node M has pot yet received a
I1 next ‘I from P, and so it cannot accept any data
characters from N. If at node 1 M receives a “next”
message from P, it proceeds to node 2 and becomes
ready to communicate with N. On the other hand, if at
node 1 M receives a data character from N, it proceeds
to node 20, the “error” node, and discards the
incoming data characters as indicated by the dashed
receiving edges. M proceeds from node 20 to node 2
when it receives the first “idle” message from N after a
“next” message from P.

Node 2 is the “ready” node, where M keeps
sending and receiving “idle” messages until it receives
a frame from P (then goes to node 3), or a data
character from N (then goes to node 4).

57

Nodes 3 and 16 are “data sending” nodes, where
M sends data characters to N, and receives idle
characters from N. If at node 3 M finishes sending the
characters of the current frame, it recognizes that it
has received no data characters from N, so it sends a
“noframe” message to P and returns to the initial
node. On the other hand, if at node 3 M receives a
data character from N, it proceeds to node 8.

Node 4 is the “data receiving” node, where M
receives data characters from N, and sends idle
characters to N. If at node 4 M receives an “idle”
indicating the end of the received frame, it immediately
delivers this frame to P. On the other hand, if at node
4 M receives a data frame from P, it proceeds to node
8.

-idle1 -11.)+frame

Node 8 is the “data sending and receiving” node,
where M and N exchange data characters. From this
node M can proceed to node 4 (16) whenever it sends
(receives) an “idle” message. Notice that when M
receives an “idle” message indicating the end of the
current received frame at node 15, it sends the received
frame to P.

4.2. A Protocol for Synchronous Transmission
with Modems
This protocol is used to transmit frames of data

characters over a full duplex communication line with a
pair of modems, one at each end [14]. The data bits
are modulated in carrier signals, and full duplex
communication can be achieved by selecting a different
carrier frequency for each direction. The clocking
signal is encoded in the modulating process and
decoded from the sidebands of the carrier signal.

--I rame

tidlel
I

+idle

T Aframe +framel I

idle +start

Figure 4: Machine M of the asynchronous start-stop protocol.

58

The existence of a clocking signal in this protocol
necessitates a special synchronizing character (denoted
by “sync”) to be sent whenever either site has no data
characters to send. A data frame consists of integral
number of contiguous data characters and can be
preceeded or followed by “sync” characters.

Unlike the previous protocol, here a connection
should be established between the two sites before
either site can send a data frame. A connection is
indicated by the presence of carriers in both directions.
During the interval from establishing to clearing a
connection, at most one frame can be sent in each
direction. After clearing a connection, new connections
can be established to send more frames.

To establish a new connection, a site keeps on
sending connect requests until it receives the incoming
carrier, it then propagates its own carrier and the
connection is established. Either site can request to
clear the connection simply by ceasing to propagate its
carrier, and the connection will be cleared after the
incoming carrier has been turned off.

Formal modeling: The communicating finite
state M (or N, which looks identical to M) of this
protocol model is shown in Figure 5. The interpretation
of messages exchanged between M and N are as follows:

l “corm” denotes a connect request.

l “car” is a message that represents the
existence of carrier signals. (PV-car8’ should
be interpreted as starting to propagate the
carrier, and “+car” should be interpreted
as sensing an incoming carrier.)

0 “nocar” is a message that represents the
lack of carrier signals.

l “data” denotes a data character.

l “sync” denotes a “sync” character.

-noframe

Q- 19
I ^^-- +f-frame

-n

+sync

Sframe
/

IA

fnocar +conn +data

-car

Figure 5: Machine M of the synchronous transmission protocol.

59

At node 1, the initial node, M has not yet
received a “next” from P, and so it will reject any
“corm” request from N. If M receives a “next” at node
1, it proceeds to node 2 where it becomes ready to
accept a connect request and later starts receiving data
characters at node 6, or to accept a frame from P and
then tries to establish a connection (node 3).

Nodes 12 and 1’7 are “data sending” nodes, where
M sends data characters to N, and receives ssync”
characters from N. If M finishes sending the current
frame while it is at node 12, it recognizes that it has
received no data characters from N, so it sends a
“noframe” message to P and prepares to clear the
connection.

Node 6 is the “data receiving” node, where M
receives data characters from N, and sends “sync”
characters to N. M will come to this node if P does not
have a frame to send, or if M has finished sending the
frame from P to N but still has to receive data
characters from N.

Node 15 is the “data sending and receiving”
node, where M and N exchange data characters. M
proceeds to node 15 when both M and N tries to
establish a connection around the same time (node 13),
or when M receives a data character from N at node
12, or when it receives a data frame from P at node 16.

When M receives a “sync” from N indicating the
end of the current frame, it delivers the frame to P at
either node 7 or 16.

M decides to clear the connection at node 8 by
turning its carrier off, then ignores anything coming
from N (as represented by the dashed self loop at node
9) until another connection is established. A frame that
comes from P after M decides to clear the connection
will also be lost, as represented by the dashed self loop
at node 1. When both M and N have stopped
propagating their carriers, then they are back at the
initial nodes and the connection is cleared.

6. Verification of Physical Layer Protocol
Models

As mentioned in Section 3, we model each
physical layer protocol as a network [P,M,N,Q].
Proving indefinite communication progress of these
networks is hard because (i) the two machines M and N
are usually complex, and (ii) their communication is
usually unbounded. To carry such proofs, we use three
techniques: network decomposition, machine
equivalence, and closed covers. These techniques are
summarized next, but interested readers can find more

60

details and examples about these techniques in [S], [lo],
and [ll].

6.1. Network Decomposition
To prove that the communication of network

[P,M,N,Q] in Figure 2 will progress indefinitely, we
follow the next procedure.

1. Decompose the network into three
networks, with two communicating
machines each, \P,M’], [M”,N”], and [N’,Q],
where

M’ (N’) is identical to M (N) except that
each sending edge to N (M) and
each receiving edge from N (M)
is replaced by an internal edge,
and

Ml’ (N”) is identical to M (N) except that
each sending edge to P (Q) and
each receiving edge from P (Q)
is replaced by an internal edge.

2. Prove that network (P,M’] satisfies the
following two conditions:

a.

b.

The communication of the network
will progress indefinitely, or
equivalently every reachable state of
the network is neither an unspecified
reception state nor a deadlock state.

For every reachable state s where
machine M’ is at a node v with an
outgoing receiving edge, there exist
two states s’ and s” such that (i) s’ is
reachable from s over some edges in P,
and (ii) s” follows s’ over an outgoing
receiving edge of node v.

3. Prove that network [N’,Q] satisfies the same
two conditions a and b in 2. (Replace M’
by N’ in condition b.)

4. Prove that the communication of network
[M”,N”] will progress indefinitely.

5. Proving 2, 3, and 4 guarantees that the
communication of network [P,M,N,Q] will
progress indefinitely. (The correctness of
this assertion follows from the discussion in

Pal-1

Notice that the function of network
decomposition in this procedure is to reduce the
problem of proving some property for a four-machine
network into proving some related properties for three

two-machine networks; it is a divide and conquer
technique.

The proof needed in Step 2 of the above
procedure is straightforward. This is because the
communication of network [P,M’] is bounded; hence all
reachable states of the network can be generated and
examined to verify that conditions a and b are
satisfied. Similarly, the proof needed in Step 3 is
straightforward, since the communication of (N’,Q] is
also bounded.

Unfortunately, the proof needed in Step 4 is not
straightforward since the communication of [M”,N”] is
usually unbounded. Therefore, to prove indefinite
progress for the communication of network [M”,N”),
we resort to the technique of closed covers [S]. But
before we use this technique, it is convenient to remove
the internal edges from M” and N”; this requires a
third technique known as machine equivalence.

5.2. Machine Equivalence
Let W be a network of communicating finite state

machines, and let M be a machine that have some
internal edges in W. Assume that each internal edge in
M is in some directed cycle. Then, the equivalence-
preserving transformations defined in [ll] can be
applied to transform M into an “equivalent” machine
EM that has no internal edges. The equivalence is such
that the communication of network W is guaranteed to
progress indefinitely iff the.communication of network
EW is guaranteed to progress indefinitely, where EW is
the same as W except that M is replaced by EM.

This result can be used to remove the internal
edges from the two machines in [M”,N”]. In particular,
these equivalence-preserving transformations can be
applied to the two machines M” and NV’ yielding the
equivalent machines EM” and EN”, respectively, such
that (i) EM” and EN” have no internal edges, and (ii)
the communication of [M”,N”] is guaranteed to
progress indefinitely iff the communication of
[EM”,EN”] is guaranteed to progress indefinitely. It
remains now to discuss how to prove that the
communication of [EM”,EN”] will progress indefinitely.
For that purpose, we need the technique of closed
covers.

5.3. Closed Covers
As discussed in [S], to prove that the

communication of a network will progress indefinitely,
it is sufficient to exhibit a closed cover of the network.
A closed cover C of network [EM”,EN”] is a finite set
of state schemas

kl f:l 1:::: 1: ;i :I’
such that the following three conditions are satisfied.

i. Each state schema

in C is such that
(a) vi is a node in EM”,
(b) wi is a node in EN”, and
(c) Xi and Yi are two (possibly infinite) sets
of message sequences.
Each state schema can be viewed as a set of
network states. A state

is in some state schema

in C iff the message sequences xi and yi are
in the sets Xi and Yi, respectively.

ii. The initial state of [EM”,EN”] is in some
state schema in C.

iii. For every state s that is in some state
schema in C, there exist two states s’ and 5”
such that
(a) s” is in a state schema in C, and
(b) either (s’ follows s over an edge in EM”
and s” follows s’ over an edge in EN”) or (s’
follows s over an edge in EN” and s”
follows s’ over an edge in EM”).

For more details on how to apply these three
techniques (network decomposition, machine
equivalence, and closed covers) to the verification of the
protocol models discussed in
reader to [O] and [IS].

this paper, we refer the

6. Concluding Remarks
We have presented a

physical layer protocols and
formal model to define
a methodology to verify

the correctness of the resulting protocol models. We
have applied this methodology to model and verify an
asynchronous start-stop protocol and a synchronous
transmission protocol with modems. In [O], we use the
same formal model and its accompanying verification
methodology to model and verify other physical layer
protocols that include the EL4 RS-449 Standard and
the CCITT X.21 Recommendation.

61

We hope that this experience can inspire others to
utilize these or other formal techniques in modeling
communica.tion protocols instead of resorting to
informal descriptions that are ambiguous and usually
invite errors or imprecision.

PI

PI

131

PI

151

I61

PI

REFERENCES

H. V. Bertine, “Physical interfaces and protocols,”
in Computer Network Architectures and Protocols,
P. E. Green, Ed. New York: Plenum Press, 1982,
pp. 57-83.
G. V. Bochmann, “Finite state description of
communication protocols,” Comput. Networks, vol.
2, pp. 361-371, 1978.
G. V. Bochmann and C. Sunshine, “Formal
methods in communication protocol design,” IEEE
Trans. Commun., vol. COM-28, pp.624-631, Apr.
1980.
D. Brand and P. Zafiropulo, “On communicating
finite-state machines,” Journal ACM, vol. 30, pp.
323-342, Apr. 1983.
C. H. Chow, M. G. Gouda, and S. S. Lam, “An
exercise in constructing multi-phase communication
protocols,” in Proc. SIGCOMM ‘84 Symposium,
June 1984.
C. H. Chow, M. G. Gouda, and S. S. Lam, “A
discipline for constructing multi-phase
communication protocols,” ACM Trans. Comput.
Syst., to appear Nov. 1985.
R. J. Cypser, Communications Architecture for
Distributed Systems. Reading, MA: Addison-
Wesley, 1978.

[8] M. G. Gouda, “Closed covers: to verify progress for
communicating finite state machines,” IEEE
Trans. Software Eng., vol. SE-lo, pp. 846-855,
Nov. 1984.

[9] M. G. Gouda and K. S. The, “On modeling and
verification of physical layer protocols,” Tech.
Rep., Dep. Comput. Sci., Univ. Texas, Austin, TX,
in preparation.

[lo] ~Ver~tica~io,“,“a, K. “d,s’“be;te~d C. K. Chang,
of - synchronization

systems via decomposition,” Tech. Rep., Dep.
Comput. Sci., Univ. Texas, Austin, TX, in
preparation.

[ll] M. G. Gouda and C. H. Youn, “On the notion of
equivalence for communicating finite state
machines,” TR-84-14, Dep. Comput. Sci., Univ.
Texas, Austin, TX, May 1984. Revised Feb. 1985.

[12] B. T. Hailpern and S. S. Owicki, “Modular
verification of computer communication protocols,”
IEEE Trans. Commun., vol. COM-31, pp. 5668,
Jan. 1983.

[13] S. S. Lam and A. U. Shankar, “Protocol
verification via projections,” IEEE Trans.
Software Eng., vol. SE-lo, pp.325-342, July 1984.

[14] J. E. McNamara, Technical Aspects of Data
Communication. Maynard, MA: Digital Equip.
Corp., 1977.

(151 A. S. Tanenbaum, Computer Networks. EngIe-
wood Cliffs, NJ: Prentice-Hall, 1981.

[16] K. S. The, “A framework for formal modeling and
verification of physical layer protocols,‘* Master’s
thesis, Univ. Texas, Austin, TX, 1985.

[17] P. Zafiropulo, C. H. West, H. Rudin, D. Brand,
and D. Cowan, “Towards analyzing and
synthesizing protocols,” IEEE Trans. Commun.,
vol. COM-28, pp. 651-661, Apr. 1980.

62

