
 

Autonomous Robot Path Planning using a Genetic Algorithm 
 

Salvatore Candido 
candido@uiuc.edu 

Everitt Lab 
1406 West Green Street 

Urbana IL 61801 
 

Department of Electrical and Computer Engineering 
University of Illinois at Champaign-Urbana 

 
 
Abstract 
 
This paper discusses using a genetic algorithm, a search strategy based on models of evolution, 
to solve the problem of robotic path planning. This method provides a solid alternative to 
conventional methods of path planning. Aside from being efficient and robust, the optimization 
parameters for the desired path can be changed without changing the overall algorithm. Although 
this paper discusses the two dimensional mobile robot case the algorithm can easily be extended 
to three dimensions or a higher dimensional configuration space. 
 



-  - - 1 -

Introduction 
 
One of the most difficult problems in building truly autonomous robotic systems is developing 
robust automatic motion planning. In order for an autonomous robot to be useful it must be able 
to efficiently and reliably plan a route between some starting point and a destination that does not 
cause the robot to collide with obstacles. Path planning algorithms attempt to connect these 
initial and final configurations by specifying a series of intermediate configurations through 
which the robot can safely traverse. 
 
Many algorithms exist which attempt to solve this problem but all have shortcomings. The path 
planning problem is known to be PSPACE hard (Reif, 1979). This means that the complexity of 
the path planning problem increases exponentially with the dimension of the configuration space. 
The configuration space is the space of all complete specifications of the position of every point 
of a robot system (Choset et al., 2005). Many global path planning methods presuppose a 
complete representation of the configuration space. This is at best computationally expensive and 
often intractable. Potential field and bug approaches are local methods that do not make this 
assumption but are not complete methods. Local minima or loops will often cause this class of 
path planners to fail (Choset et al., 2005). 
 
An alternate strategy which has not been greatly explored is the use of a genetic algorithm to 
plan a path. Genetic algorithms are search strategies based on models of evolution (Holland, 
1975). They have been shown to be able to solve hard problems in tractable time. Also, an 
advantage of genetic algorithms is that one can change the optimization criteria for the path 
while not changing the overall algorithm. 
 
Davidor (1990) has done work in this area and his paper, “Robot Programming with a Genetic 
Algorithm”, specifically discusses path planning for a robot arm. This paper uses a similar path 
representation to that used by Hocaoğlu and Sanderson (1998) who also discuss path planning 
with a genetic algorithm. While these papers lay a foundation for the work done in this paper, 
neither hybridize the genetic algorithm with a local search scheme. 
 
This paper discusses path planning in two dimensions for mobile point robot. This translates 
directly into a variety of systems such as a car or a novelty vacuum robot. Although this two 
dimensional case is in many ways the simplest case, it is also the most instructive. Working in 
two dimensions allows the researcher to simply view the path and see how using various 
operators, path representations, and parameters affect the efficiency and robustness of the 
algorithm’s output. Also, since the configuration space is never explicitly computed, this method 
scales directly to three dimensional path spaces or higher dimension configuration spaces for use 
in multi-actuator robot arms and other general robotics systems. 
 
Population and Path Representation 
 
Several path representations were used over the course of this project. The first was a variable 
length, real coding. Each member of the population, a path, was represented by a series of two 
dimensional displacements. Beginning at an anchor point, the desired starting point for the robot, 



-  - - 2 -

a list of two dimensional displacements was specified. Summing the displacements produced a 
series of coordinates that acted as waypoints along the path. 
 
Like most path planning algorithms, this project assumed the availability of a local planner. A 
local planner can take two points which are a short distance from one another and produce 
commands to move the robot between the two points. The most common assumption (and the 
one made in the paper) is the straight line planner which operates by moving in a straight line 
between the two points. 
 
This initial path representation failed. In addition to avoiding obstacles and minimizing distance, 
the fitness function of the genetic algorithm had to have a term to draw path endpoints towards 
the goal. This worked impressively for environments which were sparsely populated with 
obstacles. However, in environments where a robot had to navigate through corridors this 
scheme did not always work. (This is explained further in the 
results section.) Making clever use of the parameters of the 
fitness function and lengths of the paths in the initial population 
it was possible to overcome these shortcomings. However, 
without previous knowledge of the robot’s environment and 
significant tweaking of parameters for each environment this 
path representation scheme does not work robustly. This problem 
is a deceptive one when using this path representation. 
 

To fix these shortcomings a second path representation 
scheme was adopted. In this representation, each path is 
represented as an ordered set of angles. The angles are stored 
in a binary tree which can be decoded into a path. For the two 
dimensional case one needs only one angle per waypoint on 
the path for a unique representation of a path. Each node in 
the tree represents the angle that two path segments make at a 
specific point in the path, say pi. Varying the value of the 
angle at the node corresponding to pi we can move pi to 
anywhere equidistant from the previous waypoint, pi-1, and 
the next waypoint, pi+1 (Figure 1). The left child of that node 
then can modify the path segment between pi-1 and pi in the 
same manner while the right child modifies the path segment 
between pi and pi+1 (Figure 2). In this fashion, the path is 
uniquely defined in a recursive manner. By varying the 
height of the tree at specific nodes we can vary the resolution 
of the path at different places 
as necessary (Figure 3).  

 
In the actual code, this binary tree was represented as an array of 
angles with the indices of the array corresponding to positions in 
the binary tree. The path waypoints were generated recursively and 
then sorted to build the actual path to test fitness and display. The 
tree was limited to six levels which is equivalent to sixty-four 

pi-1 pi+1 

pi 

Figure 1 

θ1 

θ2 

θ3 

θ2 

θ1 θ3 

Figure 2 Start

p1 

p2 

p3 

Figure 3 

low res.

high res. 

Goal



-  - - 3 -

degrees of freedom in each path. This number was chosen because it shortened run times yet 
allowed more resolution than necessary to find a path in the experimental environments. 
 
By experimentation it was found that the best population sizes were between twenty and fifty 
paths. The results published later in the paper were generated with a population size of forty 
paths except for the ones hybridized with a local search. Those were generated with a population 
of only twenty paths. 
 
Fitness Function 
 
A good path, first and foremost, must avoid collisions with obstacles. Then, when considering 
two paths the better one is defined as the path where less distance traversed on route to the goal. 
Keeping these two rules in mind, a suitable fitness function can be expressed as (1). 
 
(1)  ∑

∈

∆+⋅=
Oo

i
i

oPCaPaPf ),,()()( 21 δ  

 
The first term is simply a scaled version of the length of the entire path. In two dimensions, this 
can be calculated by summing the Euclidean norms of all the path segments comprising a path as 
shown in (2).  
 

(2) ( ) ( )∑
∈

∆+∆=
Pp

xyP 22)(δ   

 
The second term of (1) is a penalty function to assess against paths intersecting obstacles. It is 
computed by counting the number of collisions between the path and all obstacles, in the robot’s 
workspace checked at some resolution,∆ , along the path. By experimentation it was found that a 
ratio, a2/a1 of about 10 was best with 1.0=∆ . 
 
This fitness can easily be extended to penalize paths for traversing certain terrain or modified to 
push paths away from obstacles to maximize clearance. As mentioned previously, a genetic 
algorithm method can easily change the search criteria without modifying the entire planning 
algorithm. 
 
Operators 
 
Several operators were used to search for and select candidate paths. Simple cross, random 
mutation, and the selection operators are components of the simple genetic algorithm. The other 
operators are specialized operators which have a specific purpose for this application. 
 
Simple Cross – Simple cross is a simple one point crossover between two of the arrays of angles 

representing each path.  
 
Subtree Cross – Subtree cross is also a one point crossover. A node is chosen in each binary tree 

and the nodes as well as their children are swapped between the two trees. Another variant of 
this operator swaps the two subtrees in the same location in both trees. This crossover is 



-  - - 4 -

better than the simple cross. Each subtree, not consecutive values in the array holding the 
tree, represents a segment of the path. Using the subtree cross with the same cross site in both 
trees is equivalent to exchanging a portion of the two paths. 

 
Random Mutation – This mutation randomly selects one node in the binary tree and replaces its 

value with a random angle. 
 
Small Mutation – This mutation randomly selects one node and perturbs the angle contained 

there a small amount. This operator is performed more and more frequently as the number of 
generations increase and serves to fine tune an otherwise good path. 

 
Flip Mutation – This mutation randomly selects one node and makes a convex segment of the 

path concave or vice versa. This mutation can be used to target path segments that intersect 
with obstacles and perturb them into free space (Figure 4). 

 
Proportionate Selection – This operator propagates paths from 

one generation to the next giving each path a number of 
copies proportionate to its fitness compared to other paths.  

 
Tournament Selection – This operator propagates paths from 

one generation to the next by selecting the best path of 
from a number of randomly selected paths.  

 
Although all operators were implemented during the course of 
this project, only a subset was used to obtain the results 
published later in the paper. As previously stated, subtree cross is superior to simple cross and 
thus simple cross was not used. Fifteen crosses were done on the population per generation and 
selection was done with replacement. All three mutation operators were used. Random mutation 
had a probability of .05 which decreased as the number of generations increased. Small mutation 
and flip mutation started with a probability of .025 but were applied with increasing probability 
as the number of generations increased. This changing mutation rate was adopted to facilitate 
diversity initially but then fine tuning later on. Lastly tournament selection with a tournament 
size of two was chosen over proportionate selection. 
 
Hybridization 
 
Using the system already described the algorithm already performs well. However, it seems 
fairly obvious from the results shown below that better paths are available. The genetic algorithm 
using mutation will eventually find optimal paths but once the population converges to a solution 
it will take a long time to move to that optimal path through mutation alone. 
 
Using local search techniques a genetically generated path can quickly be turned into a close to 
optimal path. To shorten path length, after generating a path from the genetic algorithm a path 
straightening mechanism was employed. When applied to a path the straightening mechanism 
removed waypoints in a deterministic manner testing to see if the perturbation produced a more 

Flip Mutation 

Figure 4 



-  - - 5 -

fit path. The enhanced path was used to evaluate fitness but did not replace the original path in 
the population, a Baldwinian scheme. 
 
After experimentation it was found that the genetic algorithm did not perform as well enhancing 
all paths. This is because many similar paths are identical after applying the local search. Since 
there is no longer a fitness distinction between two similar paths, the genetic algorithm cannot 
choose which path is better to propagate to the next generation and continue the search with.  
 
To fix this problem a scheme was chosen where local search was only applied to paths not 
intersecting obstacles. Essentially, the genetic algorithm was used to find a feasible path. Once a 
good path is available to work with, local search is used to quickly build a close to optimal 
solution. This arrangement drastically improved run times and the quality of paths generated. 
 
Implementation 
 
In order to gain maximum flexibility, this algorithm was coded from scratch using Microsoft 
Visual Studio.NET. C++ and the standard template library (STL) provided a good framework to 
build objects that contained paths and operators modifying them. OpenGL was used to display 
the algorithm at work and its results in a separate processor thread from the genetic algorithm 
code. 
 
Results 
 
The first path representation produced excellent results in easy path planning problems. 
However, because the fitness function relied on the distance to the goal as a search criterion, 
paths could become stuck in local minima in the search space. Paths in the population would 
grow until they encountered an obstacle. Unable to go through it, if paths could not shorten their 
distance at every step of growing around the obstacle the population would stall and converge. 
Figure 5(c) shows the initial population for one run on the genetic algorithm. Figures 5(b) and 
5(c) show two instances where the population was “trapped” in a local minimum.  
 

Figure 5 

     
(a) Generation 0                (b) Trapped           (c) Trapped 

 



-  - - 6 -

With the new path representation scheme the local minimum problem was no longer an issue. 
Figures 6, 7, and 8 display three runs of the algorithm in three different environments. Notice 
that the genetic algorithm was quick to find a feasible solution but it took many generations for 
the population to converge to a path one would be likely to accept as a good solution. 
 

Figure 6 

    
(a) Generation 0                (b) Generation 23       (c) Generation 120 

 
Figure 7 

 
(a) Generation 0                (b) Generation 25       (c) Generation 204 

 
Figure 8 

 
 (a) Generation 0                (b) Generation 42       (c) Generation 185 



-  - - 7 -

Once local search was introduced, the genetic algorithm simply had to find a feasible path and 
within a few generations the population converged to a close to optimal path. Figures 9 and 10 
display the results of two runs of the algorithm hybridized with the application of local search on 
the paths.  
 

Figure 9 

   
(a) Generation 0                      (b) Generation 20 

 
Figure 10 

   
(a) Generation 0                      (b) Generation 43 
 

All the results shown above were typical of most runs with the same parameters and operators. 
Occasionally the population converged to an unfeasible solution but this was only a small 
fraction of runs. The results of these simulations indicate that this is a reasonable method for path 
planning. 
 
Although this work was done in two dimensions this algorithm could easily be extended to 
higher dimension spaces. Also, the hybridization scheme could be improved to return optimal 
paths rather than close to optimal paths. 
 
 
 
 



-  - - 8 -

Conclusions 
 
This paper has discussed using a genetic algorithm to solve the problem of robotic path planning. 
With the use of the correct path representation, fitness function, genetic operators, and 
parameters for the genetic algorithm it is possible to generate feasible paths in a small number of 
generations. Using a hybridization scheme which combines the genetic algorithm with a local 
search scheme on feasible paths we can dramatically reduce the time to find good paths while 
increasing the quality of generated paths. The simulation results demonstrate that the algorithm 
works well in a variety of environments. More needs to be done before this system can be 
applied to a real robotics system. However, this work shows encouraging results for future 
efforts.  
 
Acknowledgments 
 
This work was done as a semester project for GE 531 at the University of Illinois at Champaign-
Urbana during the fall semester of 2005. Thanks to the University of Illinois, the Department of 
General Engineering, and Professor David E. Goldberg for providing the means and forum to 
complete this work. 
 
Sources 
 
Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., et al. (2005). 
Principles of robot motion: theory, algorithms, and implementations. Boston: MIT Press. 
 
Davidor, Yuval. (1990). Robot programming with a genetic algorithm. Proceedings of the 1990 
IEEE International Conference on Computer Systems and Software Engineering, 186-191. 
 
Hocaoğlu, Cem & Sanderson, Arthur C. (1998). Multi-dimensional path planning using 
evolutionary computation. Proceedings of the IEEE Conference on Evolutionary Computation, 
165-170. 
 
Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of 
Michigan Press. 
 
Reif, J.H. (1979). Complexity of the mover’s problem and generalizations. Proceedings of the 
IEEE Transactions on Robotics and Automation, 421-427. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


