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Abstract

This chapter presents an introduction to fuzzy logic and to fuzzy databases. With regard to the first topic, 
we have introduced the main concepts in this field to facilitate the understanding of the rest of the chap-
ters to novel readers in fuzzy subjects. With respect to the fuzzy databases, this chapter gives a list of six 
research topics in this fuzzy area. All these topics are briefly commented on, and we include references to 
books, papers, and even to other chapters of this handbook, where we can find some interesting reviews 
about different subjects and new approaches with different goals. Finally, we give a historic summary 
of some fuzzy models, and we conclude with some future trends in this scientific area.

Introduction

Fuzzy logic is only a mathematical tool. It is pos-
sibly the best tool for treating uncertain, vague, 
or subjective information. Just to give an idea 
about the importance of this soft computing tool, 
we can mention the big quantity of publications 
in this field, including two research journals of 
great quality: Fuzzy Sets and Systems1 and IEEE 
Transactions on Fuzzy Systems.2 Particularly, fuzzy 
logic has been applied to databases in many sci-
entific papers and real applications. Undoubtedly, 
it is a modern research field and it has a long road 
ahead. This handbook is only one step. Perhaps, 
it is a big step.

For that reason, we will begin by introducing 
some basic concepts of the fuzzy sets theory. We 
include definitions, examples, and useful tables 
with reference data (for example, lists of t-norms, 
t-conorms, and fuzzy implications). We can find 
these and other concepts in other chapters of this 
book, possibly with different notation. The second 
part of this chapter studies basic concepts about 
fuzzy databases, including a list of six research 
topics on fuzzy databases. All these topics are 
briefly commented on, and we include references 
to books, papers, and even to other chapters of this 
handbook. Then, an overview about the basic fuzzy 
database models is included to give an introduction 
to these topics and also to the whole handbook.
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Fuzzy Sets

In written sources, we can find a large number of 
papers dealing with this theory, which was first 
introduced by Lotfi A. Zadeh3 in 1965 (Zadeh, 
1965). A compilation of some of the most interesting 
articles published by Zadeh on the theme can be 
found in Yager, Ovchinnikov, Tong, and Nguyen 
(1987). Dubois and Prade (1980, 1988) and Zim-
merman (1991) bring together the most important 
aspects behind the theory of fuzzy sets and the 
theory of possibility. A more modern synthesis 
of fuzzy sets and their applications can be found 
in Buckley and Eslami (2002); Kruse, Gebhardt, 
and Klawonn (1994); Mohammd, Vadiee, and Ross 
(1993); Nguyen and Walker (2005); and Piegat 
(2001), and particularly in Pedrycz and Gomide 
(1998). Ross (2004) includes some engineering 
applications and Sivanandam, Sumathi, and Deepa 
(2006) present an introduction using MATLAB. 
A complete introduction in Spanish is given in 
Escobar (2003) and Galindo (2001).

The original interpretation of fuzzy sets arises 
from a generalization of the classic concept of a 
subset extended to embrace the description of 
“vague” and “imprecise” notions. This generaliza-
tion is made considering that the membership of 
an element to a set becomes a “fuzzy” or “vague” 
concept. In the case of some elements, it may not 
be clear if they belong to a set or not. Then, their 
membership may be measured by a degree, com-
monly known as the “membership degree” of 
that element to the set, and it takes a value in the 
interval [0,1] by agreement.

Using classic logic, it is only possible to deal 
with information that is totally true or totally false; 
it is not possible to handle information inherent to 
a problem that is imprecise or incomplete, but this 
type of information contains data that would allow 
a better solution to the problem. In classic logic, the 
membership of an element to a set is represented 
by 0 if it does not belong and by 1 if it does, hav-
ing the set {0,1}. On the other hand, in fuzzy logic, 
this set is extended to the interval [0,1]. Therefore, 
it could be said that fuzzy logic is an extension of 
the classic systems (Zadeh, 1992). Fuzzy logic is 

the logic behind approximate reasoning instead of 
exact reasoning. Its importance lies in the fact that 
many types of human reasoning, particularly the 
reasoning based on common sense, are by nature 
approximate. Note the great potential that the use 
of membership degrees represents by allowing 
something qualitative (fuzzy) to be expressed 
quantitatively by means of the membership degree. 
A fuzzy set can be defined more formally as:

Definition 1: Fuzzy set A over a universe of dis-
course X (a finite or infinite interval within which 
the fuzzy set can take a value) is a set of pairs:

[ ]{ }ℜ∈∈∈= 1,0)( ,X:/)( xxxxA AA  	 (1)

where mA(x) is called the membership degree of 
the element x to the fuzzy set A. This degree ranges 
between the extremes 0 and 1 of the dominion of the 
real numbers: mA(x) = 0 indicates that x in no way 
belongs to the fuzzy set A, and mA(x) = 1 indicates 
that x completely belongs to the fuzzy set A. Note 
that mA(x) = 0.5 is the greatest uncertainty point.

Sometimes, instead of giving an exhaustive 
list of all the pairs that make up the set (discreet 
values), a definition is given for the function mA(x), 
referring to it as characteristic function or mem-
bership function.

The universe X may be called underlying uni-
verse or underlying domain, and in a more generic 
way, a fuzzy set A can be considered a function 
mA that matches each element of the universe of 
discourse X with its membership degree to the 
set A:

[ ]1,0X:)( →xA 			   (2)	

The universe of discourse X, or the set of con-
sidered values, can be of these two types:

•	 Finite or discrete universe of discourse 
{ }nxxx ,...,,X 21= , where a fuzzy set A can 

be represented by:
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	 nn xxxA /...// 2211 +++= 	 (3)
	
	 where mi  with i = 1, 2, ..., n represents the 

membership degree of the element xi. Nor-
mally, the elements with a zero degree are 
not listed. Here, the + does not have the same 
significance as in an arithmetical sum, but 
rather, it has the meaning of aggregation, and 
the / does not signify division, but rather the 
association of both values.

•	 Infinite universe of discourse, where a fuzzy 
set A over X can be represented by:

	 ∫= xxA A /)( 			   (4)

	 Actually, the membership function mA(x) of 
a fuzzy set A expresses the degree in which 
x verifies the category specified by A. 

A linguistic label is that word, in natural 
language, that expresses or identifies a fuzzy set, 
that may or may not be formally defined. With 
this definition, we can assure that in our every day 
life we use several linguistic labels for expressing 
abstract concepts such as “young,” “old,” “cold,” 
“hot,” “cheap,” “expensive,” and so forth. An-
other interesting concept, the linguistic variable 
(Zadeh, 1975), is defined in the chapter by Xexéo 
and Braga in this handbook. Basically, a linguistic 
variable is a variable that may have fuzzy values. 
A linguistic variable is characterized by the name 
of the variable, the underlying universe, a set of 
linguistic labels, or how to generate these names 
and their definitions. The intuitive definition of the 
labels not only varies from one to another person 
depending on the moment, but also it varies with 
the context in which it is applied. For example, a 
“high” person and a “high” building do not mea-
sure the same.

Example 1: The “Temperature” is a linguistic 
variable. We can define four linguistic labels, like 
“Very_Cold,” “Cold,” “Hot,” and “Very_Hot,” us-
ing the membership functions depicted in Figure 
1.

The frame of cognition, or frame of knowledge, 
is the set of labels, usually associated to normal-
ized fuzzy sets (Definition 11), used as reference 
points for fuzzy information processing.

Characteristics and Applications

This logic is a multivalued logic, the main char-
acteristics of which are (Zadeh, 1992):

•	 In fuzzy logic, exact reasoning is considered 
a specific case of approximate reasoning.

•	 Any logical system can be converted into 
terms of fuzzy logic.

•	 In fuzzy logic, knowledge is interpreted as a 
set of flexible or fuzzy restrictions over a set 
of variables (e.g., the variable Temperature 
is Cold).

•	 Inference is considered as a process of 
propagation of those restrictions. Inference 
is understood to be the process by which a 
result is reached, consequences are obtained, 
or one fact is deduced from another.

•	 In fuzzy logic, everything is a matter of 
degree.

From this simple concept, a complete math-
ematical and computing theory has been developed 
which facilitates the solution of certain problems 
(see the references in the beginning of this chap-
ter). Fuzzy logic has been applied to a multitude 
of disciplines such as control systems, modeling, 
simulation, prediction, optimization, pattern rec-

Very_Cold    Cold              Hot              Very_Hot 

0                                                                 Temperature 

1 

-1                                                                    35 ºC 

Figure 1. A frame of cognition with four linguistic 
labels for temperature (Example 1)
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ognition (e.g., word recognition), information or 
knowledge systems (databases, knowledge man-
agement systems, case-based reasoning systems, 
expert systems, etc.), computer vision, biomedicine, 
picture processing, artificial intelligence, artificial 
life, and so forth. Summarizing, fuzzy logic may 
be an interesting tool where hitherto known meth-
ods fail, highlighting complex processes, where 
we need to introduce the expert knowledge from 
experienced people, or where there are unknown 
magnitudes or ones that are difficult to measure 
in a reliably way. In general, fuzzy logic is used 
when we need to represent and operate with un-
certain, vague, or subjective information. Many 
applications use fuzzy logic with other general or 
soft computing tools like genetic algorithms (GAs), 
neural networks (NNs), or rule based systems.

Membership Functions

Zadeh proposed a series of membership functions 
that could be classified into two groups: those made 
up of straight lines, or “linear,” and Gaussian forms, 
or “curved.” We will now go on to look at some 
types of membership functions. These types of 
fuzzy sets are those known as convex fuzzy sets in 
fuzzy set theory, with the exception of that known 
as extended trapezium that does not necessarily 
have to be convex, although for semantic reasons, 
this property is always desirable.

•	 Triangular (Figure 2): Defined by its lower 
limit a, its upper limit b, and the modal value 
m, so that a<m<b. We call the value b – m 
margin when it is equal to the value m – a.
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•	 Singleton (Figure 3): It takes the value zero 
in all the universe of discourse except in the 
point m where it takes the value 1. It is the 

representation of a nonfuzzy (crisp) value.
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•	 L Function (Figure 4): This function is 
defined by two parameters, a and b, in the 
following way, using linear shape:
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•	 Gamma Function (Figure 5): It is defined 
by its lower limit a and the value k > 0. Two 
definitions:
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	 This function is characterized by rapid 
growth starting from a.

	 The greater the value of k, the greater 
the rate of growth.

	 The growth rate is greater in the first 
definition than in the second.

	 Horizontal asymptote in 1.
	 The gamma function is also expressed 

in a linear way (Figure 5b): 
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•	 S Function (Figure 6): Defined by its lower 
limit a, its upper limit b, and the value m or 
point of inflection so that a<m<b. A typical 
value is: m = (a+b) / 2. Growth is slower when 
the distance a−b increases. 
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Figure 2. Triangular fuzzy sets: (a) General, (b) symmetrical
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Figure 3. Singleton fuzzy set Figure 4. L fuzzy set
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Figure 5. Gamma fuzzy sets: (a) General, (b) linear
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•	 Trapezoid Function (Figure 7): Defined 
by its lower limit a, its upper limit d, and 
the lower and upper limits of its nucleus or 

kernel, b and c, respectively:
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•	 Gaussian Function (Figure 8): This is the 
typical Gauss bell, defined by its midvalue 
m and the value of k>0. The greater k is, the 
narrower the bell. 

	
2)()( mxkexG −−= 			   (13)

•	 Pseudo-Exponential Function (Figure 9): 
Defined by its midvalue m and the value k>1. 
As the value of k increases, the growth rate 
increases and the bell becomes narrower.
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		  (14)

•	 Extended Trapezoid Function (Figure 10): 
Defined by the four values of a trapezoid 
(a,b,c,d), and a list of points between a and 
b, and/or between c and d, with their mem-

bership values (height) associated to each of 
these points (ei, hei). 

	 Comments:

	 In general, the trapezoid function adapts 
quite well to the definition of any concept 
in human contexts, with the advantage 
that it is easy to define, easy to represent, 
and simple to calculate.

	 In specific cases, the extended trap-
ezoid is very useful. This allows greater 
expressiveness through increased com-
plexity.

	 In general, the use of a more complex 
function is usually difficult to define 
with precision and probably it does not 
give increased precision, as we must 
keep in mind that we are defining a 
fuzzy concept.

	 Concepts that require a nonconvex 
function can be defined. In general, a 
nonconvex function expresses the union 
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Figure 7. Trapezoidal fuzzy set
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of two or more concepts, the representa-
tion of which is convex.

	 In fuzzy control, for example, the aim is to 
express the notions of  “increase,” “decrease,” and 
“approximation,” and in order to do this, the types 
of membership functions previously mentioned are 
used. The membership functions Gamma and S 
would be used to represent linguistic labels such 
as “tall” or “hot” in the dominion of height and 
temperature. Linguistic labels, such as “small” 
and “cold,” would be expressed by means of the L 
function. On the other hand, approximate notions 
are sometimes difficult to express with one word. 
In the dominion of temperature, it would be “com-
fortable” or “approximately 20ºC,” which would 
be expressed by means of the triangle, trapezoid, 
or gaussian function.

Concepts about Fuzzy Sets

In this section, the most important concepts about 
fuzzy sets are defined. This series of concepts 
regarding fuzzy sets allow us to deal with fuzzy 
sets, measure and compare them, and so on.

Definition 2: Let A and B be two fuzzy sets over 
X. Then, A is equal to B if:

)()(  ,X xxxBA BA =∈∀⇔= 		 (15)

Definition 3: Taking two fuzzy sets A and B over 
X, A is said to be included in B if:

)()(  ,X xxxBA BA ≤∈∀⇔⊆ 		 (16)

A fuzzy inclusion may be defined using a degree 
of subsethood. For example, when both fuzzy sets 
are defined in a finite universe, this degree may be 
computed as (Kosko, 1992):
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xBxAA
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)(Card
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						      (17)

Definition 4: The support of a fuzzy set A defined 
over X is a subset of that universe that complies 
with:

}0)(  ,X:{)(Supp >∈= xxxA A 		 (18)

Definition 5: The a-cut of a fuzzy set A, denoted 
by Aα is a classic subset of elements in X, whose 
membership function takes a greater or equal 
value to any specific α value of that universe of 
discourse that complies with:

[ ]{ }1,0 ,)(  ,X: ∈≥∈= xxxA A 	 (19)

The Representation Theorem allows the 
representation of any fuzzy set A by means of the 
union of its α-cuts.

Definition 6: The Representation Theorem states 
that any fuzzy set A can be obtained from the union 
of its α-cuts.

[ ]


1,0∈

= AA 				    (20)

Definition 7: By using the Representation Theorem, 
the concept of convex fuzzy set can be established 
as that in which all the α-cuts are convex:

[ ] ))()(min())1((:1,0,X, , yxyxyx AAA ≥⋅−+⋅∈∀∈∀

   [ ] ))()(min())1((:1,0,X, , yxyxyx AAA ≥⋅−+⋅∈∀∈∀ 	 (21)

This definition means that any point situated be-
tween another two will have a higher membership 

1 

0 X b a e1 c e2 e3 d 

he3 

he2 

he1 

 

Figure 10. Extended trapezoidal fuzzy set
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degree than the minimum of these two points. 
Figures 7, 8, or 9 are typical examples of convex 
fuzzy sets, whereas Figure 10 represents a non-
convex fuzzy set.

Definition 8: A concave fuzzy set complies 
with:

[ ] ))()(min())1((:1,0,X, , yxyxyx AAA ≤⋅−+⋅∈∀∈∀

     [ ] ))()(min())1((:1,0,X, , yxyxyx AAA ≤⋅−+⋅∈∀∈∀
						      (22)

Definition 9: The kernel of a fuzzy set A, defined 
over X, is a subset of that universe that complies 
with:

}1)(  ,X:{)(Kern =∈= xxxA A 		 (23)

Definition 10: The height of a fuzzy set A defined 
over X is:

)(sup)(Hgt
X

xA A

x∈

= 			   (24)

Definition 11: A fuzzy set A is normalized if and 
only if:

1)(Hgt)(,X ==∈∃ Axx A 		  (25)

Definition 12: The cardinality of a fuzzy set A 
with finite universe X is defined as:

∑
∈

=
X

)()(Card
x

A xA 			   (26)

If the universe is infinite, the addition must be 
changed for an integral defined within the uni-
verse.

Membership Function Determination

If the system uses badly defined membership 
functions the system will not work well, and these 
functions must therefore be carefully defined. 
The membership functions can be calculated in 
several ways. The chosen method will depend on 

the concrete application, the manner in which the 
uncertainty is to be represented, and how this one 
is to be measured during the experiments. The 
following points give a brief summary of some of 
these methods (Pedrycz & Gomide, 1998).

1.	 Horizontal method: It is based on the answers 
of a group of N “experts.”

•	 The question takes the following form. 
Can x be considered compatible with 
the concept A?”

•	 Only “Yes” and “No” answers are ac-
ceptable, so:

A(x) = (Affirmative Answers) / N
						     (27)

2.	 Vertical method: The aim is to build several 
α-cuts (Definition 5), for which several values 
are selected for α.

•	 Now, the question that is formulated for 
these predetermined α values is as fol-
lows: Can the elements of X that belong 
to A with a degree that is not inferior to 
α be identified?”

•	 From these α-cuts, the fuzzy set A can 
be identified, using the so-called iden-
tity principle or representation theorem 
(Definition 6).

3.	 Pair comparison method (Saaty, 1980): 
Supposing that we already have the fuzzy 
set A over the universe of discourse X of n 
values (x1, x2, ..., xn), we could calculate the 
reciprocal matrix M=[ahi], a square matrix 
n×n with the following format:
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						     (28)
•	 This matrix has the following properties: 

The principal diagonal is always one, ahi 
aih=1 (property of ������������������ reciprocity������� ), and ahi 
aik = ahk (transitive property), ∀ i, j, k = 
1, 2, …, n.

•	 If we want to calculate the fuzzy set A, 
the process is reversed: The matrix M 
is calculated, and then A is calculated 
from M.

•	 In order to calculate M, the level of prior-
ity or the highest membership degree of 
a pair of values is numerically quantified: 
xi with respect to xj.
	 The number of comparisons is: n (n 

– 1) / 2.
	 Transitivity is difficult to achieve (the 

eigenvalue of the matrix is used to 
measure the consistency of the data, 
so that if it is very low, the experi-
ments should be repeated).

4.	 Method based on problem specification: 
This method requires a numerical function 
that should be approximate. The error is de-
fined as a fuzzy set that measures the quality 
of the approximation. 

5.	 Method based on the optimization of pa-
rameters: The shape of a fuzzy set A depends 
on some parameters, indicated by the vector 
p, which is represented by A(x;p).  

•	 Some experimental results in the form 
of pairs (element, membership degree) 
are needed: (Ek, Gk) with k = 1, 2...., N. 

•	 The problem consists of optimizing the 
vector p, for example, minimizing the 
squared error:

	 [ ]∑
=

−
N

k
kkp pEAG

1

2);(min 	 (29)

6.	 Method based on fuzzy clustering: This is 
based on clustering together the objects of the 
universe in overlapping groups where levels 
of membership to each group are considered 
as fuzzy degrees. There are several fuzzy 
clustering algorithms, but the most widely 
used is the algorithm of “fuzzy isodata” 
(Bezdek, 1981). In this handbook, there is a 
chapter by Feil and Abonyi explaining some 
data mining techniques, including fuzzy 
clustering.

Fuzzy Set Operations

Fuzzy sets theory generalizes the classic sets theory. 
It means that fuzzy sets allow operations of union, 
intersection, and complement. These and other 
operations can be found in Pedrycz and Gomide 
(1998) and Petry (1996) such as concentration (the 
square of the membership function), dilatation (the 
square root of the membership function), contrast 
intensification (concentration in values below 0.5 
and dilatation in the rest of values), and fuzzifica-
tion (the inverse operation). These operations can 
be used when linguistic hedges, such as “very” or 
“not very,” are used.

Union and Intersection: 
T-conorms and T-norms

Definition 13: If A and B are two fuzzy sets over a 
universe of discourse X, the membership function of 
the union of the two sets A∪B is expressed by:

X)),(),(()( ∈=∪ xxxfx BABA 	 (30)

where f is a t-conorm (Schweizer & Sklar, 1983).
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Definition 14: If A and B are two fuzzy sets over 
a universe of discourse X, the membership func-
tion of the intersection of the two sets A∩B, is 
expressed by:

X)),(),(()( ∈=∩ xxxgx BABA 		 (31)

where g is a t-norm (Schweizer & Sklar, 1983).

Both t-conorms (s-norms) and t-norms establish 
generic models respectively for the operations 
of union and intersection, which must comply 
with certain basic properties (commutative, as-
sociative, monotonicity, and border conditions). 
They are concepts derived from Menger (1942) 
and Schweizer and Sklar (1983), and that have 
been studied in-depth more recently (Butnario & 
Klement, 1993).

Definition 15: Triangular Norm, t-norm: binary 
operation, t: [0,1]2 → [0,1] that complies with the 
following properties:

1.	 Commutativity: x t y = y t x.
2.	 Associativity: x t (y t z) = (x t y) t z.
3.	�����������������  Monotonicity: If x ≤ y, and w ≤ z then x t w 

≤ y t z.
4.	 Boundary conditions: x t 0 = 0, and x t 1 = 

x.

Definition 16: Triangular Conorm, t-conorm, or 
s-norm: Binary operation, s: [0,1]2 → [0,1] that 
complies with the following properties:

1.	 Commutativity: x s y = y s x. 
2.	 Associativity: x s (y s z) = (x s y) s z.
3.	 Monotonicity: If x ≤ y, and w ≤ z then x s w 

≤  y s z.
4.	 Boundary conditions: x s 0 = x, and x s 1 = 

1.

The most widely used of this type of function is 
the t-norm of the minimum and the t-conorm or 
s-norm of the maximum as they have retained a 
large number of the properties of the boolean opera-
tors, such as the property of idempotency (x t x = x; 

x s x = x). In Figure 11, we can see the intersection 
and union, using respectively the minimum and 
maximum, of two trapezoid fuzzy sets.

There is an extensive set of operators, called 
t-norms (triangular norms) and t-conorms (tri-
angular conorms), that can be used as connectors 
for modeling the intersection and union respectively 
(Dubois & Prade, 1980; Piegat, 2001; Predycz & 
Gomide, 1998; Yager, 1980). The most important 
are shown in Tables 1 and 2. 

A relationship exists between t-norms (t) and 
t-conorms (s). It is an extension of De Morgan’s 
Law:

)1(  )1(1  
)1(  )1(1  

ysxytx
ytxysx

−−−=
−−−=

		
(32)

When a t-norm or a t-conorm comply with this 
property they are said to be conjugated or dual.

T-norms and t-conorms cannot be ordered from 
larger to smaller. However, it is easy to identify 
the largest and the smallest t-norm and t-conorm: 
the largest and smallest t-norm are respectively the 
minimum and the drastic product, and the largest 
and smallest t-conorm are respectively the drastic 
sum and the maximum function. Note that if two 
fuzzy sets are convex, their intersection will also 
be (but not necessarily their union).

Negations or Complements

The notion of the complement can be constructed 
using the concept of strong negation (Trillas, 
1979).

0

1

Intersection  U nion 

X

Figure 11. Intersection (minimum) and union 
(maximum)
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Definition 17: A function N: [0,1] → [0,1] is a strong 
negation if it fulfills the following conditions:

1.	 Boundary conditions: N(0) = 1 and N(1) = 0.
2.	 Involution: N(N(x)) = x.
3.	 Monotonicity: N is nonincreasing.
4.	 Continuity: N is continuous.

Although there are several types of operators 
which satisfy such properties or relaxed versions 
of them, Zadeh’s version of the complement (Za-
deh, 1965) is mainly used: N (x) = 1 – x. Thus, for 
a fuzzy set A in the universe of discourse X, the 
membership function of the complement, denoted 
by A¬ , or by A , is shown as:

X),(1)( ∈−=¬ xxx AA 		  (33)

Implication Operators

A fuzzy implication (Dubois & Prade, 1984; Za-
deh, 1975) is a function to compute the fulfillment 
degree of a rule expressed by IF X THEN Y, where 
the antecedent or premise and the consequent or 
conclusion are fuzzy.

Definition 18: A function f:  [0, 1] × [0, 1] → [0, 1] 
is a fuzzy implication, f(x,y) ∈ [0,1], also denoted 
by x ⇒f  y, if it fulfils the following conditions:

1.	 0 ⇒f a = 1, ∀ a ∈ [0,1]
2.	 a ⇒f 1 = 1, ∀ a ∈ [0,1]
3.	 1 ⇒f a = a, ∀ a ∈ [0,1]
4.	 Decreasing (respectively increasing) mono-

tonicity with respect to the first (respectively 
second) argument.

Sometimes, another condition is added: (x ⇒f  
(y ⇒f  z)) = ( y ⇒f  (x ⇒f  z)). The most important 
implication functions are shown in Table 3. Note 
that Kleene-Dienes implication is based on the 
classical implication definition (x⇒y  =  ¬x ∨ y); 
that is, it is a strong implication, using the Zadeh’s 
negation and the maximum s-norm.

In standard fuzzy sets theory, there are, basical-
ly, four models for implication operations (Trillas 

& Alsina, 2002; Trillas, Alsina, & Pradera, 2004; 
Trillas, Cubillo, & del Campo, 2000; Ying, 2002): 
(1) Strong or S-implications (x ⇒f y = N(x) s y),  (2) 
Residuated or R-implications (x ⇒f y = supc{x∈[0,1], 
x s c ≤ y),  (3) Quantum logic, Q-implications, or 
QM-implications (x ⇒f y = N(x) s (x t y)), and (4) 
Mamdani–Larsen or ML-implications (x ⇒f y = 
ϕ1(x) t ϕ(y), where ϕ1 is an order automorphism on 
[0,1] and ϕ2: [0,1] → [0,1] is a non-null contractive 
mapping, that is, ϕ2(w)≤w,∀w∈[0,1]). Some of these 
types of fuzzy implications are overlapping (for 
example, Łukasiewicz implication is an S-implica-
tion and an R-implication). 

Some applications utilize implication func-
tions, which do not fulfill all the conditions in the 
previous definition, like the modified Łukasiewicz 
implication. Besides, it is very usual to use t-norms 
as implications functions (Gupta & Qi, 1991) ob-
taining very good results, especially the minimum 
(Mandani implication) and the product t-norms.

Comparison Operations on Fuzzy Sets

The fuzzy sets, defined using a membership func-
tion, can be compared in different ways. We will 
now list several methods used to compare fuzzy 
sets (Pedrycz & Gomide, 1998).

Distance Measures: A distance measure con-
siders a distance function between the membership 
functions of two fuzzy sets in the same universe. 
In such a way, it tries to indicate the proximity 
between the two fuzzy sets. In general, the distance 
between A and B, defined in the same universe of 
discourse, can be defined using the Minkowski 
distance:

p

X

p dxxBxABAd
1

 )()(),( 







−= ∫ 		 (34)

where p ≥ 1 and we assume that the integral exists. 
Several specific cases are typically used:

1.	 Hamming Distance (p = 1):

	 ∫ −=
X

dxxBxABAd  )()(),( 		 (35)
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t-norms Expression 
Minimum ),min(),( yxyxf =  
Product (Algebraic) yxyxf =),(  

Drastic Product 







=
=

=
otherwise,0

1  if,
1  if,

),( xy
yxy

yxf  

Bounded Product 
(bounded difference) [ ]pxyyxpyxf −−++= )1)(1(,0max),( ,     where 1−≥p  

Hamacher Product 
))(1(

),(
xyyxpp

xyyxf
−+−+

=  ,     where 0≥p  

Yager Family [ ] ))1()1(,1min(1),( /1 ppp yxyxf −+−−= ,     where 0>p  

Dubois-Prade Family 
),,max(

),(
pyx

xyyxf = ,     where 10 ≤≤ p  

Frank Family 







−

−−
+=

1
)1)(1(1log),(

p
ppyxf

yx

p ,     where 1  ;0 ≠> pp  

Einstein Product 
)1()1(1

),(
yx

xyyxf
−+−+

=  

Others 
[ ] ppp yyxx

yxf /1))1(())1((1
1),(

−+−+
= ,   where 0>p  

111
1),(

−+
= pp yx

yxf          

[ ] ppp yxyxf /1)1,0max(),( −+=  

 

Table 1. t-norms functions: f(x,y) = x t y

2.	 Euclidean Distance (p = 2):

	 2
1

2 )()(),( 







−= ∫

X

dxxBxABAd
	 (36)

For discrete universe of discourses, integra-
tion is replaced with sum. The more similar are 
the fuzzy sets, smaller is the distance between 
them. Therefore, it is convenient to normalize 
the function of distance, denoted by dn(A,B), and 
use this form to express the similarity as a direct 
complementation:  1 − dn(A,B).

Equality Indexes: This is based on the logical 
expression of equality, i.e., two sets A and B are 
equals if A⊂B and B⊂A. In fuzzy sets, a certain 
degree of equality can be found. With that, the 
following expression is defined:

( ) [ ] [ ] [ ] [ ]
2

)()()()()()()()()( xAxBxBxAxAxBxBxAxBA ∧+∧
=≡

( ) [ ] [ ] [ ] [ ]
2

)()()()()()()()()( xAxBxBxAxAxBxBxAxBA ∧+∧
=≡

						      (37)
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Table 2. s-norms functions: f(x,y) = x s y

t-conorms or s-norms Expression 

Maximum ),max(),( yxyxf =  

Sum-Product 
(Algebraic sum) xyyxyxf −+=),(  

Drastic sum 







=
=

=
otherwise,1

0  ify,
0  if,

),( x
yx

yxf  

Bounded sum ),1min(),( pxyyxyxf ++= ,     where 0≥p  

Einstein sum 
xy
yxyxf

+
+

=
1

),(  

Sugeno Family ),1min(),( xypyxyxf −++= ,     where 0≥p  

Yager Family )][,1min(),( 1 ppp yxyxf += ,     where 0>p  

Dubois-Prade Family 
)  ,1  ,1max(

)1)(1(),(
pyx

yxyxf
−−
−−

= ,     where [ ]1 ,0∈p  

Frank Family 







−

−−
+=

−−

1
)1)(1(1log),(

11

p
ppyxf

yx

p  

where 1  ;0 ≠> pp  

Others 

xyp
xypxyyxyxf

)1(1
)1(),(

−−
−−−+

= ,     where 0≥p  

)]1)1()1[(,0max(1),( 1 ppp yxyxf −−+−−= , where 0>p  

ppp yyxx
yxf 1])1()1([1

1),(
−+−−

= ,     where 0>p  

ppp yx
yxf 1]1)1(1)1(1[1

1),(
−−+−−

= ,   where 0>p  

 

where the conjunction (∧) is modeled on the mini-
mum operation, and the inclusion is represented 
by the operator ϕ (phi), induced by a continuous 
t-norm t:

[ ]
[ ])( )( sup)()(

1,0
xBctxAxBxA

c
≤=

∈

	 (38)

Taking the t-norm of bounded product with 
p=0 (Table 1) as an example:





≥+−
<+−

=≡⇒




≥+−
<

=
)()( if1)()(
)()( if1)()(

)( )(
)()( if1)()(
)()( if1

)()(
xBxAxAxB
xBxAxBxA

xBA
xBxAxAxB
xBxA

xBxA





≥+−
<+−

=≡⇒




≥+−
<

=
)()( if1)()(
)()( if1)()(

)( )(
)()( if1)()(
)()( if1

)()(
xBxAxAxB
xBxAxBxA

xBA
xBxAxAxB
xBxA

xBxA

						      (39)

Three basic methods can be used to obtain a 
single value ( X∈∀x ):
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•	 Optimistic Equality Index:
	
	 )( )(sup)( xBABA Xxopt ≡=≡ ∈ 	 (40)

•	 Pessimistic Equality Index: 
	
	 )( )(inf)( xBABA Xxpes ≡=≡ ∈ 	 (41)

•	 Medium Equality Index:

	 ∫ ≡




=≡

xavg dxxBAxCardBA )( )()(
1)(

						     (42)

Thus, the following relationship is satisfied:

	
optavgpes BABABA )()()( ≡≤≡≤≡

	 		 	 	 	 (43)

Possibility and Necessity Measures: These 
concepts use the fuzzy sets as possibility distri-

butions where A(x) measures the possibility of 
being A for each value in X (Zadeh, 1978). Thus, 
the comparison, that is, the possibility of value 
A being equal to value B, measures the extent to 
which A and B superpose each other. It is denoted 
by Poss(A,B) and defined as:

 ( )[ ] )(),( min  sup) ,(  Poss
X

xBxABA
x∈

= 	 (44)

The necessity measure describes the degree 
to which B is included in A, and it is denoted by 
Nec(A,B):

 ( )[ ] )( 1),( max  inf) ,(Nec
X

xBxABA
x

−=
∈ 	

(45)

In Figures 12 and 13, we can see graphi-
cally how these measurements, for two concrete 
fuzzy sets, are calculated. It can be stated that: 

),(  Poss    ) ,(  Poss ABBA = . On the other hand, 
the measurement of necessity is asymmetrical, 

) ,(  Nec    ) ,(  Nec ABBA ≠ . However, the follow-
ing relation is fulfilled:

Implication Expression 

Kleene-Dienes    f(x, y) = max(1 – x, y)  
Reichenbach, M izumoto or 
Kleene-Dienes-    f(x, y) = 1 – x + xy 

Klir-Yuan   f(x, y) = 1 – x + x2y 

G�del 


 ≤

=
otherwise,

  if,1
),(

y
yx

yxf  

Rescher-Gaines 


 ≤

=
otherwise,0

  if,1
),(

yx
yxf  

Goguen 




≠
=

=
)0( otherwise),/,1min(

0  if,1
),(

xxy
x

yxf  

ukasiewicz 




+−
≤

=
otherwise,1

  if,1
),(

yx
yx

yxf  

Modified ukasiewicz   f(x, y) = 1 – |x – y| 

Yager   f(x, y) = xy 
Zadeh   f(x, y) = max(1 – x, min(x, y)) 

 

Table 3. Implication functions: f(x,y) = x ⇒f  y
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1   ) ,(  Poss    ) ,(  Nec =+ BABA 		  (46)

Other equivalences are:

{ } ) ,( Poss ), ,( Poss max     ) ,(  Poss CBCACBA =

	
						      (47)

 { } ) ,( Nec ), ,( Nec min     ) ,(  Poss CBCACBA =

	
						      (48)

The generalization of the possibility and 
necessity measurements use triangular t-norms 
or t-conorms instead of min and max functions, 
respectively. If the concept is extended, the possi-
bility of a fuzzy set A (or a possibility distribution) 
in the universe X can be defined as:

( )[ ] )( sup 1),( min  supX) ,( Poss  )( 
XX

xAxAAA
xx ∈∈

===Π

						      (49)

This possibility measures whether or not a 
determined event (the fuzzy set A) is possible in 
universe X. It would not measure uncertainty, 
because if 1 )( =Π A , we know that event A is 
possible, but:

•	 if  1 )( =Π A , then the certainty is indeter-
minate.

•	 if  0 )( =Π A , then the occurrence of A is 
certain.

Therefore, the following two equalities are 
always satisfied:

•	 1 )X( =Π  (possibility of an element of the 
universe).

•	 0 )( =Π  (possibility of an element not in 
the universe).

Similarly, the necessity of a fuzzy set N(A) 
in X can be defined, and then we can set some 
equivalences of possibility and necessity (see 
Equation 50 and 51).

These equivalences explain why the necessity 
complements the information about the certainty 
of event A:

•	 The greater N(A), the smaller possibility of 
opposite event (¬A).

•	 The greater Π (A), the smaller necessity of 
the opposite event (¬A). 

•	 N(A) = 1 ⇔ ¬A is totally impossible (if an 
event is totally necessary, then the opposite 
event is totally impossible).

•	 Π(A) = 1 ⇔ ¬A is not necessary at all N(¬A) 
= 0 (if an event is totally possible, then the 
opposite event cannot be necessary in any 
way). 

•	 N(A) = 1 ⇒ Π(A) = 1 (if A is a totally neces-
sary event, then must be totally possible). 
Note that the opposite is not satisfied.

Figure 12. General illustration of the Poss(A,B) 
concept using the minimum t-norm

 
 1 

      Poss(A,B) 

 
A                  B 

min(A,B) 
 

 0 
 

X 

Figure 13. General illustration of the Nec(A,B) 
concept using the maximum t-conorm

0

1

Nec(A,B) 

A        

1–B 

max(A,1–B) 
B          

X
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•	 A ⊆ B ⇒ N(A) ≤ N(B)  and  Π(A) ≤ Π (B).

Compatibility Measures: This comparison 
operation measures the extent to which a certain 
fuzzy set is compatible with another (defined in 
the same space). The result is not a single number 
but a fuzzy set defined in the unit interval, [0,1], 
known as fuzzy set of compatibility. The compat-
ibility of B with A can be defined as:

{ } [ ]1,0  ,)(sup)( ) ,( )( ∈= = uxBuABComp xAu

						      (52)

Set B can be seen as a “fuzzy value” and set 
A as a “fuzzy concept.” Therefore, Comp(B,A) 
measures the compatibility with which B is A.

Example 2: Let B be the value “approx. 70 years” 
and A be the concept “very old.” Then, the fuzzy 
set Comp(B,A) is represented in Figure 14 and the 
fuzzy set Comp(A,B) in Figure 15.

The compatibility measurement has the fol-
lowing properties:

•	 It measures the degree to which B can fulfill 
concept A. That degree will be greater, the 
more similar the fuzzy set Comp (B, A) is to 
the singleton “1” value (maximum compat-
ibility).

•	 Supposing A is a normalized fuzzy set: 
Comp(A, A)(u) = u  (Linear membership 
function).

•	 If A is not normalized, the function will be the 
same between 0 and the height of set A: If  u 
> Height(A),   Comp(A, A)(u)= indeterminate 
(0).

•	 If B is a number x (“singleton” fuzzy set), the 
result will also be another “singleton” in the 
A(x) value:

	 

 =

=
    otherwise,0

)(  if,1
))(,( 

xAu
uABComp

		
				   (53)

•	 If B is not normalized, the result will not be 
either; its height is the same as that of set 
B. 

•	 If Support (A) ∩ Support(B) = ∅, then:
	

N(A) = infx∈X {A(x)} = 1–sup x∈X {1 – A(x)} = 1 – Π(¬A): N(A) = 1 – Π (¬A) 

Equation 50.

Equation 51.

Π (A) = sup x∈X {A(x)} = 1 – inf x∈X {1 – A(x)} = 1 – N(¬A): Π (A) = 1 – N(¬A)  

X 

u B          A 
1 

0.5              0 

0.5 
u0 

Comp(B, A)(u0)=0.5 

Comp(B, A) 

1 

Figure 14. Example 2: Illustration of Comp(B,A)

X 

u B          A 

Sup{0.92,0,4}=0.92  0.6                         0 

0.6 
u0 

Comp (A, B) 

x1             x2 

0.4 
0.92 1 

Figure 15. Example 2: Illustration of Comp(A,B)
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
 =

==
                                        otherwise,0

ity)compatibil (minimum  0  if,1
))(,( ))(,( 

u
uBACompuABComp

	


 =

==
                                        otherwise,0

ity)compatibil (minimum  0  if,1
))(,( ))(,( 

u
uBACompuABComp

						     (54)

•	 The possibility and necessity measurements 
between A and B are included in the support 
of Comp(B, A).

In order to have a clearer vision of what this 
measurement means, we can look at the examples 
shown in Figure 16. We can conclude that fuzzy 
set B is more compatible with another A, the closer 
Comp(B, A) is to 1 and the further it is from 0 (the 
less area it has).

Fuzzy Relations

A classic relation between two universes X and Y 
is a subset of the Cartesian product X×Y. Like the 
classic sets, the classic relation can be described 
using a characteristic function. In the same way, a 
fuzzy relation R is a fuzzy set of tuples. In the event 
of a binary relation, the tuple has two values.

Definition 19: Let U and V be two infinite (con-
tinuous) universes and [ ]0,1VU: →×R . Then, a 
binary fuzzy relation R is defined as:

),/(),(
VU

vuvuR R∫ ×
= 			   (55)

The function mR may be used as a similarity 
or proximity function. It is important to stress 
that not all functions are relations and not all re-
lations are functions. Fuzzy relations generalize 
the concept of relation by allowing the notion of 
partial belonging (association) between points in 
the universe of discourse.

Example 3: Take as an example the fuzzy relation 
in ℜ2 (binary relation), “approximately equal,” with 
the following membership function in X ⊂ ℜ, with 
X2 = {1,2,3}2: 1/(1,1) + 1/(2,2) + 1(3,3) + 0.8/(1,2) + 
0.8/(2,3) + 0.8/(2,1) + 0.8/(3,2) + 0.3/(1,3) + 0.3/(3,1). 
This fuzzy relation may be defined as:

















=
=

=
=

2y-x  if,3.0
1y-x  if,8.0

y       xif,1
)y,x(    :y   toequalely approximatx  R

where x, y ∈ ℜ. When the universe of discourse 
is finite, a matrix notation can be quite useful to 
represent the relation. This example would be 
shown as:

X2 1 2 3

1 1 0.8 0.3

2 0.8 1 0.8

3 0.3 0.8 1

Definitions of basic operations with fuzzy 
relations are closely linked to operations of fuzzy 
sets. Let R and W be two fuzzy relations defined 
in X × Y:

•	 Union: (R ∪ W)(x,y) = R(x,y) s W(x,y), using 
a s-norm s.

•	 Intersection: (R ∪ W)(x,y) = R(x,y) t W(x,y), 
using a t-norm t.

•	 Complement: (¬R)(x,y) = 1 – R(x,y).
•	 Inclusion: R ⊆ W ⇔ R(x,y) ≤ W(x,y).
•	 Equality: R = W ⇔ R(x,y) = W(x,y).

Figure 16. Three sets (B1, B2, and B3) with the 
same shape placed in different positions and 
compared to A

X 

u 
B1    B2     B3 

1 

1                                0 
Comp(B1, A) 

A 

Comp(B2, A) 

Comp(B3, A) 
Maximum Compatibility 

Minimum Compatibility 
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Fuzzy Numbers

The concept of fuzzy number was first introduced 
in Zadeh (1975) with the purpose of analyzing and 
manipulating approximate numeric values, for 
example, “near 0,” “almost 5,” and so forth. The 
concept has been refined (Dubois & Prade, 1980, 
1985), and several definitions exist.

Definition 20: Let A be a fuzzy set in X and )(xA

be its membership function with x∈X. A is a fuzzy 
number if its membership function satisfies that:

1.	 )(xA is convex.
2.	 )(xA is upper semicontinuity.
3.	 Support of A is bounded.

These requirements can be relaxed. The gen-
eral form of the membership function of a fuzzy 
number A with support (a,d) and kernel or modal 
interval (b,c) can be defined as:











∈
∈
∈

=

otherwise0
),( if)(
],[ if
),( if)(

)(
dcxxs
cbxh
baxxr

x
A

A

A

		  (56)

where rA, sA:X → [0,1], rA is not decreasing, sA is 
not increasing

rA(a) = sA(d) = 0     and     rA(b) = sA(c) = h
						      (57)

with h∈(0,1] and a, b, c, d ∈X. The number h is 
called the height of the fuzzy number, and some 
authors include the necessity of normalized fuzzy 
numbers, that is, with h = 1. The numbers b – a and 
d – c are the left and right spaces, respectively.

Throughout this study, we will often use a 
particular case of fuzzy numbers that is obtained 
when we consider the functions rA and sA as linear 
functions. We will call this type of fuzzy number 
triangular or trapezoidal, and it takes the form 

shown in Figure 7. Many applications usually work 
with normalized trapezoidal fuzzy numbers (h=1) 
because these fuzzy numbers are easily character-
ized using the four really necessary numbers: A 
≡ (a, b, c, d).

The Extension Principle

One of the most important notions in the fuzzy sets 
theory is the extension principle, proposed by Zadeh 
(1975). It provides a general method that allows 
nonfuzzy mathematical concepts to be extended 
to the treatment of fuzzy quantities. It is used to 
transform fuzzy quantities, which have the same or 
different universes, according to a transformation 
function between those universes.

Let A be a fuzzy set, defined in universe of 
discourse X and f a nonfuzzy transformation 
function between universes X and Y, so that f: X 
→ Y. The purpose is to extend f so that it can also 
operate on the fuzzy sets in X. The result must be 
a fuzzy set B in Y: B = f(A). This transformation 
is represented in Figure 17. It is achieved with the 
use of the Sup-Min composition, which will now 
be described in a general way in the case of the 
Cartesian product in n universes.

Definition 21: Let X be a Cartesian product of 
n universes such as X = X1 × X2 × ... × Xn, and 
A1, A2, …, An are n fuzzy sets in those n universes 
respectively. Moreover, we have a function f from 
X to the universe Y, so a fuzzy set B from Y is 

Figure 17. Graphic representation of the extension 
principle, where f carries out its transformation 
from X to Y
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defined by the extension principle as B = f(A1, 
A2,..., An) defined as:

))),...,min(sup)( (1(
)(,X

1 nAA
xfyx

B xxy n
=∈

=
						      (58)

Example 4: Let both X and Y be the universe of 
natural numbers.

•	 Sum 4 function: y = f(x) = x + 4;
	 A = 0.1/2 + 0.4/3 + 1/4 + 0.6/5;
	 B = f(A) = 0.1/6 + 0.4/7 + 1/8 + 0.6/9;

•	 Sum: y = f(x1,x2) = x1 + x2:
	 A1 =0.1/2 + 0.4/3 + 1/4 + 0.6/5;
	 A2 =0.4/5 + 1/6;
	 B = f(A1, A2) = 0.1/7 + 0.4/8 + 0.4/9 + 1/10 

+ 0.6/11;

We can conclude that the extension principle 
allows us to extend any function (for example 
arithmetic) to the field of fuzzy sets, making pos-
sible the fuzzy arithmetic.

Fuzzy Arithmetic

Thanks to the extension principle (Definition 21), 
it is possible to extend the classic arithmetical 
operations to the treatment of fuzzy numbers (see 
Example 4). In this way, the four main operations 
are extended in:

1.	 Extended sum: Given two fuzzy quantities A1 
and A2 in X, the membership function of the 
sum A1 + A2 is found using the expression:

}X/))(),(sup{min()( 2121 ∈−=+ xxxyy AAAA

						     (59)

	 In this way, the sum is expressed in terms of 
the supreme operation. The extended sum is 
a commutative and associative operation and 
the concept of the symmetrical number does 
not exist.

2.	 Extended difference: Given two fuzzy 
quantities A1 and A2, in X, the membership 
function of the difference A1 – A2 is found 
using the expression:

}X/))(),(sup{min()( 2121 ∈+=− xxxyy AAAA

						      (60)

3.	 Extended product: The product of two fuzzy 
quantities A1 * A2 is obtained as follows:




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=
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4.	 Extended division: The division of two fuzzy 
quantities A1 ÷ A2 is defined as follows:

})),(),(sup{min()( 2121 Xxxxyy AAAA ∈=÷ 	
					    (62)

From these definitions, we can easily conclude 
that if A1 and A2 have a discrete universe (with finite 
terms) and they have n and m terms respectively, 
then the number of terms of A1+A2 and of A1−A2 
is (n−1)+(m−1)+1, that is, n+m−1. Based on a par-
ticular expression from the uncertainty principle, 
adapted to the use of α-cuts and in a type of num-
bers similar to those previously described, called 
LR fuzzy numbers (Dubois & Prade, 1980), rapid 
calculus formulae for the previous arithmetical 
operations are described.

It is important to point out that if we have two 
fuzzy numbers, the sum or remainder of both 
fuzzy numbers will be fuzzier (it will have greater 
cardinality) than the most fuzzy of the two (that 
which has greatest cardinality). This is logical, 
since if we add two “approximate” values, the 
exact value of which we do not know, the result 
can be as varied as the initial values are. The same 
thing happens with division and multiplication but 
on a larger scale.
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Possibility Theory

This theory is based on the idea of linguistic 
variables and how these are related to fuzzy sets 
(Dubois & Prade, 1988; Zadeh, 1978). In this way, 
we can evaluate the possibility of a determinate 
variable X being (or belonging to) a determinate 
set A, like the membership degree of the X ele-
ments in A.

Definition 22: Let there be a fuzzy set A defined in 
X with membership function mA(x) and a variable x 
in X (whose value we do not know). So, the propo-
sition “x is A” defines a possibility distribution, 
in such a way that it is said that the possibility of  
x = u  is mA(u), ∀u∈X.

The concepts of fuzzy sets and membership 
functions are now interpreted as linguistic labels 
and possibility distributions. Instead of member-
ship degrees, we have possibility degrees, but all 
the tools and properties defined for fuzzy sets are 
also applicable to possibility distributions.

Fuzzy Quantifiers

Fuzzy or linguistic quantifiers (Liu & Kerre, 1998a, 
1998b; Yager, 1983; Zadeh, 1983) have been widely 
applied to many applications, including database 
applications (Galindo, 1999; Galindo, Medina, Cu-
bero, & García, 2001). Fuzzy quantifiers allow us 
to express fuzzy quantities or proportions in order 
to provide an approximate idea of the number of 
elements of a subset fulfilling a certain condition 
or the proportion of this number in relation to the 
total number of possible elements. Fuzzy quanti-
fiers can be absolute or relative:

•	 Absolute quantifiers express quantities over 
the total number of elements of a particular set, 
stating whether this number is, for example, 
“much more than 10,” “close to 100,” “a great 
number of,”and so forth. Generalizing this 
concept, we can consider fuzzy numbers as 
absolute fuzzy quantifiers, in order to use 

expressions like “approximately between 5 
and 10,” “approximately −8,”and so on. Note 
that the expressed value may be positive or 
negative. In this case, we can see that the 
truth of the quantifier depends on a single 
quantity. For this reason, the definition of 
absolute fuzzy quantifiers is, as we shall see, 
very similar to that of fuzzy numbers.

•	 Relative quantifiers express measurements 
over the total number of elements, which ful-
fill a certain condition depending on the total 
number of possible elements (the proportion 
of elements). Consequently, the truth of the 
quantifier depends on two quantities. This 
type of quantifier is used in expressions such 
as “the majority” or “most,” “the minority,” 
“little of,” “about half of,”and so forth. In 
this case, in order to evaluate the truth of the 
quantifier, we need to find the total number of 
elements fulfilling the condition and consider 
this value with respect to the total number 
of elements which could fulfill it (including 
those which fulfill it and those which do not 
fulfill it).

Some quantifiers such as “many” and “few” can 
be used in either sense, depending on the context 
(Liu & Kerre, 1998a). In Zadeh (1983), absolute 
fuzzy quantifiers are defined as fuzzy sets in 
positive real numbers and relative quantifiers as 
fuzzy sets in the interval [0,1]. We have extended 
the definition of absolute fuzzy quantifiers to all 
real numbers. 

Definition 23: A fuzzy quantifier named Q is 
represented as a function Q, the domain of which 
depends on whether it is absolute or relative:

[ ]1,0: →ℜabsQ 			   (63)

[ ] [ ]1,01,0: →relQ 			   (64)

where the domain of Qrel is [0,1] because the divi-
sion a/b ∈ [0,1], where a is the number of elements 
fulfilling a certain condition, and b is the total 
number of existing elements.



  21

Introduction and Trends to Fuzzy Logic and Fuzzy Databases

In order to know the fulfillment degree of the 
quantifier over the elements that fulfill a certain 
condition, we can apply the function Q of the 
quantifier to the value of quantification Φ, with Φ 
= a if Q is absolute and Φ = a/b if Q is relative.

There are two very important classic quanti-
fiers: The universal quantifier (for all, ∀), and the 
existential quantifier (exist, ∃). The first of them 
is relative and the second one is absolute. They are 
discretely defined as:



 =

=∀ otherwise0
1 if1

)(
x

xQ
			   (65)



 =

=∃ otherwise1
0 if0

)(
x

xQ 			   (66)

Some quantifiers (absolute or relative) may 
have arguments, and in these cases, the function is 
defined using the arguments (Galindo, Urrutia, & 
Piattini, 2006). A survey of methods for evaluating 
quantified sentences and some new methods are 
shown in the literature (Delgado, Sánchez, & Vila, 
1999, 2000), and in this volume, see the chapter 
by Liétard and Rocacher.

Fuzzy Databases

In the Foreword of this handbook, Vila and Del-
gado refer to a series of five reports, which are a 
guideline for the development of research in this 
area. They state that “one of the lines that appears 
with more continuity and insistence is the treat-
ment of the imprecise and uncertain information in 
databases.” Imprecision has been studied in order 
to elaborate systems, databases, and consequently 
applications which support this kind of informa-
tion. Most works which studied the imprecision in 
information have used possibility, similarity, and 
fuzzy techniques. 

If a regular or classical database is a structured 
collection of records or data stored in a computer, 
a fuzzy database is a database which is able to 
deal with uncertain or incomplete information 

using fuzzy logic. Basically, a fuzzy database is 
a database with fuzzy attributes, which may be 
defined as attributes of an item, row, or object in a 
database, which allows storing fuzzy information 
(Bosc, 1999; De Caluwe & De Tré, 2007; Galindo 
et al., 2006; Petry, 1996).

There are many forms of adding flexibility in 
fuzzy databases. The simplest technique is to add 
a fuzzy membership degree to each record, that is, 
an attribute in the range [0,1]. However, there are 
other kinds of databases allowing fuzzy values to 
be stored in fuzzy attributes using fuzzy sets, pos-
sibility distributions, or fuzzy degrees associated 
to some attributes and with different meanings 
(membership degree, importance degree, fulfill-
ment degree, etc.).

Of course, fuzzy databases should allow fuzzy 
queries using fuzzy or nonfuzzy data, and there are 
some languages based on SQL (ANSI, 1992; Date 
& Darwen, 1997) that allow these kind of queries 
like FSQL (Galindo, 2007; Galindo et al., 2006) or 
SQLf  (Bosc & Pivert, 1995; Goncalves & Tineo, 
2006). The research on fuzzy databases has been 
developed for about 20 years and concentrated 
mainly on the following areas:

1.	 Fuzzy querying in classical databases, 
2.	 Fuzzy queries on fuzzy databases,
3.	 Extending classical data models in order to 

achieve fuzzy databases (fuzzy relational 
databases, fuzzy object-oriented databases, 
etc.),

4.	 Fuzzy conceptual modeling tools,
5.	 Fuzzy data mining techniques, and 
6.	 Applications of these advances in real data-

bases. 

All of these different issues have been studied 
in different chapters of this volume, except the 
fourth item because, in general, there is little inter-
est in fuzzy conceptual issues and, besides, these 
subjects have been studied in some other works in 
a very exhaustive manner (Chen, 1998; Galindo et 
al., 2006; Kerre & Chen, 2000; Ma, 2005; Yazici 
& George, 1999).



22  

Introduction and Trends to Fuzzy Logic and Fuzzy Databases

The first research area, fuzzy queries in clas-
sical databases, is very useful because currently 
there are many classical databases. The second 
item includes the first one, but we prefer to sepa-
rate them because item 2 finds new problems that 
must be studied and because it must be framed in 
a concrete fuzzy database model (third item). The 
querying with imprecision, contrary to classical 
querying, allows the users to use fuzzy linguistic 
labels (also named linguistic terms) and express 
their preferences to better qualify the data they 
wish to get. An example of a flexible query, also 
named in this context fuzzy query, would be “list 
of the young employees, working in department 
with big budget.” This query contains the fuzzy 
linguistic labels “young” and “big budget.” These 
labels are words, in natural language, that express 
or identify a fuzzy set.

In fact, the flexibility of a query reflects the 
preferences of the end user. This is manifested 
by using a fuzzy set representation to express a 
flexible selection criterion. The extent to which 
an object in the database satisfies a request then 
becomes a matter of degree. The end user provides 
a set of attribute values (fuzzy labels) which are 
fully acceptable to the user, and a list of mini-
mum thresholds for each of these attributes. With 
these elements, a fuzzy condition is built and the 
fuzzy querying system ranks the answered items 
according to their fulfillment degree. Some ap-
proaches, the so-called bipolar queries, need both 
the fuzzy condition (or fuzzy constraint) and the 
less-compulsory positive preferences or wishes. A 
very interesting work about bipolar queries may 
be found in this volume in the chapter by Dubois 
and Prade. In another chapter, Urrutia, Tineo and 
Gonzalez study the two most known fuzzy query-
ing languages, FSQL and SQLf. Of course, we must 
reference the interesting and general review about 
the fuzzy querying proposals, written by Zadrożny, 
de Tré, de Caluwe, and Kacprzyk. Other chapters 
about fuzzy queries study different aspects, such 
as evaluation strategies or quantified statements, 
for example.

About fuzzy data mining issues, this handbook 
includes a complete review chapter by Feil and 

Abonyi, studying the main fuzzy data mining 
methods. Perhaps the more interesting and use-
ful tools are the fuzzy clustering and the fuzzy 
dependencies, and both of them are also studied 
in different other chapters of this handbook. The 
last item, applications, is also studied in some 
chapters. These chapters mix different theoreti-
cal issues like data mining to real contexts with 
different goals.

About the third item, extending classical data 
models in order to achieve fuzzy databases, this 
handbook also includes interesting chapters. Ben 
Hassine et al. study in their chapter how to achieve 
fuzzy relational databases, giving different meth-
ods and addressing their explanations, mainly to 
database administrators and enterprises, in order to 
facilitate the migration to fuzzy databases. Takači 
and Škrbić present their fuzzy relational model 
and propose a fuzzy query language with the pos-
sibility to specify priorities for fuzzy statements. 
Barranco et al. give a good approach of a fuzzy 
object-relational database model, whereas some 
other interesting fuzzy object-oriented database 
models are presented and summarized respectively 
(De Caluwe, 1997; Galindo et al., 2006). This last 
book includes fuzzy time data types and in the book 
you have in your hands, Schneider defines fuzzy 
spatial datatypes. In another chapter, Belohlavek 
presents an overview of foundations of formal con-
cept analysis of data with graded attributes, which 
provides elaborated mathematical foundations for 
relational data in some fuzzy databases.

In this section, we want to give a wide histori-
cal point of view summarizing the main published 
models aiming at solving the problem of represen-
tation and treatment of imprecise information in 
relational databases. This problem is not trivial 
because it requires relation structure modification, 
and actually, the operations on these relations 
also need to be modified. To allow the storage of 
imprecise information and the making of an inac-
curate query of such information, a wide variety 
of case studies is required, which do not occur in 
the classic model, without imprecision.

The first approaches, which do not utilize the 
fuzzy logic, were proposed by Codd (1979, 1986, 
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1987, 1990). Then, some basic models were pro-
posed, like the Buckles-Petry model (1982a, 1982b, 
1984), the Prade-Testemale model (1984, 1987a, 
1987b; Prade, 1984), the Umano-Fukami model 
(Umano, 1982, 1983; Umano & Fukami, 1994), and 
the GEFRED model of Medina-Pons-Vila (1994; 
Galindo, Medina, & Aranda, 1999; Galindo et al., 
2001; Medina, 1994).

Imprecision without Fuzzy Logic

In this section, some ideas allowing for imprecise 
information treatment will be summarized, without 
utilizing either the fuzzy set theory or possibil-
ity theory. In the bibliography, these models are 
dealt with globally in the section on imprecision 
in conventional databases, although some of the 
ideas discussed here have not been implemented 
in any of the models. The first attempt to represent 
imprecise information on databases was the intro-
duction of NULL values by Codd (1979), which 
was further expanded (Codd, 1986, 1987, 1990). 
This model did not use the fuzzy set theory. A 
NULL value in an attribute indicates that such a 
value is any value included in the domain of such 
an attribute.

Any comparison with a NULL value originates 
an outcome that is neither True (T) nor False (F) 
called “maybe” (m) (or unknown, in the SQL of 
Oracle). The truth tables of the classical compara-
tors NOT, AND, and OR can be seen in Table 4.

Later on, another nuance was added, differenti-
ating the NULL value in two marks: The “A-mark” 
representing an absent or unknown value, although 
it was applicable, and the “I-mark” representing 
the absence of the value because it is not appli-
cable (undefined). An I-mark may be situated, for 

instance, in the car plate attribute of someone who 
does not have a car. This is a tetravalued logic where 
the A value, having a similar meaning to that of 
the m in the trivalued logic mentioned above, is 
generated by comparing any value containing an 
A-mark, and a new I value is added as a result of 
the comparison of any value containing an I-mark. 
The tetravalued logic is shown in Table 5.

In Galindo et al. (2006), some other approaches 
are summarized, like the “default values” approach 
by Date (1986), similar to the DEFAULT clause 
in SQL, the “interval values” approach by Grant 
(1980), who expands the relational model in order 
to allow that a possible value range/interval be 
stored in one attribute, and statistical and proba-
bilistic databases.

Basic Model of Fuzzy Databases

The simplest model of fuzzy relational databases 
consists of adding a grade, normally in the [0,1] 
interval, to each instance (or tuple). This keeps 
database data homogeneity. Nevertheless, the 
semantic assigned to this grade will determine its 
usefulness, and this meaning will be utilized in the 
query processes. This grade may have the meaning 
of membership degree of each tuple to the relation 
(Giardina, 1979; Mouaddib, 1994), but it may mean 
something different, like the dependence strength 
level between two attributes, thus representing 
the relation between them (Baldwin, 1983), the 
fulfillment degree of a condition or the importance 
degree (Bosc, Dubois, Pivert, & Prade, 1997) of 
each tuple in the relation, among others.

The main problem with these fuzzy models 
is that they do not allow the representation of 
imprecise information about a certain attribute of 

NOT AND T m F OR T m F

T F T T m F T T T T

m m m m m F M T m m

F T F F F F F T m F

Table 4. Truth tables for the trivalued logic: True, false, and maybe
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a specific entity (like the “tall” or “short” values 
for a “height” attribute). Besides, the fuzzy char-
acter is assigned globally to each instance (tuple) 
it making impossible to determine the specific 
fuzzy contribution from each constituting attribute. 
These problems are solved in the model presented 
in Galindo et al. (2006), and you can learn about 
this model in the chapter by Ben Hassine et al. in 
this handbook.

Similarity Relations Model: 
Buckles-Petry Model

This is the first model that utilizes similarity rela-
tions (Zadeh, 1971) in the relational model. It was 
proposed by Buckles and Petry (1982a, 1982b, 
1984). In this model, a fuzzy relation is defined as 
a subset of the following Cartesian product: P(D1)× 
... ×P(Dm), where P(Di) represents the parts set of 
a Di domain, including all the subsets that could 
be considered within the Di domain (having any 
number of elements). The data types permitted by 
this model are finite set of scalars (labels), finite set 
of numbers, and fuzzy number set. The meaning 
of these sets is disjunctive, that is, the real value 
is one belonging to the set. 

The equivalence types on a domain are con-
structed from a similarity function or relation, 
in which the values taken by such a relation are 
provided by the user. Typically, these similar-
ity values are standardized in the [0,1] interval, 
where 0 corresponds to “totally different” and 1 
to “totally similar.” A similarity threshold can be 
established with a value between 0 and 1 in order 

to get the values whose similarity is greater than 
the threshold, or to consider those values indis-
tinguishable.

Possibilistic Models

Under this denomination, models using the possi-
bility theory to represent imprecision are included. 
The most important models in this group are Prade-
Testemale model, Umano-Fukami model, and 
GEFRED model. Another important model is the 
the Zemankova-Kaendel model (1984, 1985), which 
is briefly summarized in Galindo et al. (2006).

Prade-Testemale Model

Prade and Testemale published a fuzzy relational 
database (FRDB) model that allows the integration 
of what they call incomplete or uncertain data in 
the possibility theory sphere (Prade, 1984; Prade 
& Testemale, 1984, 1987a, 1987b). An attribute 
A, having a D domain, is considered. All the 
available knowledge about the value taken by A 
for an x object can be represented by a possibility 
distribution πA(x) about D ∪ {e}, where e is a spe-
cial element denoting the case in which A is not 
applied to x. In other words, πA(x) is an application 
that goes from D ∪ {e} to the [0,1] interval. From 
this formulation, all value types adopted by this 
model can be represented.

In every possibilistic model one must take into 
account that, for a value d ∈ D, if πA(x) (d) = 1, then 
this just indicates that the d value is totally possible 
for A(x), and not that the d value is true for A(x), 

NOT AND T A I F OR T A I F

T F T T A I F T T T T T

A A A A A I F A T A A A

I I I I I I F I T A I F

F T F F F F F F T A F F

Table 5. Truth tables for the tetravalued logic
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unless this is the only possible value, that is, πA(x) 
(d’) = 0, ∀d’ ≠ d. Both the information and repre-
sentation of this model is shown in Table 6. How 
two possibility distributions can be compared was 
discussed in the Comparison Operations on Fuzzy 
Sets section earlier in this chapter. In general, the 
most commonly used measurements are possibil-
ity and necessity.

Umano-Fukami Model

This proposal (Umano, 1982, 1983; Umano & 
Fukami, 1994) also utilizes the possibility distribu-
tions in order to model information knowledge. In 
this model, if D is the discourse universe of A(x), 
πA(x) (d) represents the possibility that A(x) takes the 
value d∈D. The following kind of knowledge may 
be modeled: unknown and applicable information, 
the non-applicable information (undefined), and the 
total ignorance (we do not know if it is applicable 
or non-applicable):

Unknown = πA(x)(d) = 1,    ∀ d ∈ D 	 (67)

Undefined = πA(x)(d) = 0,    ∀ d ∈ D	 (68)

Null = {1/Unknown, 1/Undefined}	 (69)

For the remaining cases of imprecise informa-
tion, a similar model to the one above is adopted.  
The kind of fuzzy information and the representa-
tion of this model are shown in Table 6. Besides, 
every instance of a relation in this model has a 
possibility distribution associated with it in the [0,1] 
interval, thus indicating the membership degree of 
that particular instance to such a relation. In other 
words, a fuzzy relation R, with m attributes, is 
defined as the following membership function: 

µR: P(U1) × P(U2) × … × P(Um) → P([0,1])
						      (70)

Information 
Prade-Testemale Model Umano-Fukami Model

The precise data are known and
this is crisp: c

πA(x)(e) = 0
πA(x)(c) = 1
πA(x)(d) = 0,   ∀ d ∈ D, d ≠ c

πA(x)(d) = {1 / c }

Unknown but applicable
πA(x)(e) = 0
πA(x)(d) = 1,   ∀ d ∈ D

Unknown (Equation 67)

Not applicable or nonsense
πA(x)(e) = 1
πA(x)(d) = 0,   ∀ d ∈ D

Undefined (Equation 68)

Total ignorance πA(x)(d) = 1,   ∀ d ∈ D ∪ {e} Null (Equation 69)

Range [m, n]
πA(x)(e) = 0
πA(x)(d) = 1,   if d ∈ [m, n] ⊆ D
πA(x)(d) = 0,   in other case

πA(x)(d) = 1, if d ∈ [m, n] ⊆ D
πA(x)(d) = 0,   in other case

The information available is a
possibility distribution µa

πA(x)(e) = 0
πA(x)(d) = µa(d),   ∀ d ∈ D

πA(x)(d) = µa(d),   ∀ d ∈ D

The possibility that it may not be
applicable is λ and, in case it is 
applicable, the data are µa

πA(x)(e) = λ
πA(x)(d) = µa(d),   ∀ d ∈ D

Without representation

Table 6. Representation of information in two possibilistic models
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where the × symbol denotes the Cartesian prod-
uct, P(Uj) with j=1, 2, ..., m is the collection of 
all the possibility distributions in the discourse 
universe Uj of the j-th R attribute. The function 
µR associates a P([0,1]) value to every instance of 
the relation R, which corresponds to all the pos-
sibility distributions in the [0,1] interval; this shall 
be considered an R membership degree of such an 
instance. Finally, in the query process, expressed 
either in fuzzy or precise terms, the model solves 
the query problem by dividing the set of instances 
involved in the relation into three subsets, where 
the first subset contains the instances completely 
satisfying the query; the second subset groups 
those instances that might satisfy the query; and 
the third subset consists of those instances which 
do not satisfy the query.

The GEFRED Model by 
Medina-Pons-Vila

The GEFRED model dates back to 1994, and it 
has experienced subsequent expansions (Medina, 
1994; Medina et al., 1994; Galindo et al., 1999, 
2001, 2006). This model is an eclectic synthesis 
of some of the previously discussed models. One 
of the major advantages of this model is that it 
consists of a general abstraction that allows for 
the use of various approaches, regardless of how 
different they might look. As a possibilistic model, 
it refers particularly to generalized fuzzy domains, 
thus admitting the possibility distribution in the 
domains, but it also includes the case where the 
underlying domain is not numeric but scalars of 
any type. It includes UNKNOWN, UNDEFINED, 
and NULL values as well, having the same sense 
as that in Umano-Fukami model.

The GEFRED model is based on the definition 
which is called Generalized Fuzzy Domain (D) and 
Generalized Fuzzy Relation (R), which include 
classic domains and classic relations, respectively. 
Basically, the Generalized Fuzzy Domain is the 
basic domain, with possibility distributions defined 
for this domain and the NULL value. All data 
types that can be represented are shown in Table 
1 in the chapter by Ben Hassine et al.

On the other hand, the Generalized Fuzzy 
Relations of GEFRED model are relations whose 
attributes have a Generalized Fuzzy Domain, and 
each attribute may be associated to a “compatibil-
ity attribute” where we can store a compatibility 
degree. The compatibility degree for an attribute 
value is obtained by manipulation processes (such 
as queries) performed on that relation, and it indi-
cates the degree to which that value has satisfied 
or met the operation performed on it.

The GEFRED model defines fuzzy compara-
tors that are general comparators based on any 
existing classical comparator (>, <, =, etc.), but it 
does not consolidate the definition of each one. 
The only requirement established is that the fuzzy 
comparator should respect the classical compara-
tors outcomes when comparing possibility distri-
butions expressing nonfuzzy values (crisp). For 
example, the “approximately equal” comparator, 
“possibly equal” or “fuzzy equal” (FEQ), may 
be defined using the possibility measure (see the 
Comparison Operations on Fuzzy Sets section in 
this chapter).

On these definitions, GEFRED redefines the 
relational algebraic operators in the so-called Gen-
eralized Fuzzy Relational Algebra: union, inter-
section, difference, Cartesian product, projection, 
selection, join, and division. These operators are 
defined giving a generalized fuzzy relation, which 
is the result of the operation. All these operators 
are defined in the definition of GEFRED, but the 
fuzzy division is defined in Galindo et al. (2001). 
Fuzzy Relational Calculus is defined in Galindo 
et al. (1999). These theoretical concepts have been 
applied in an extended fuzzy version of SQL for 
fuzzy queries, the so-called FSQL (Galindo et al., 
2006). Some of these definitions have been imple-
mented in a free FSQL server (Galindo, 2007). 
The characteristics of FSQL are summarized for 
example in the aforementioned chapters by Urrutia 
et al. and by Ben Hassine et al. Applications in the 
data mining fields are proposed in some works 
(Carrasco, Vila, & Galindo, 2003; Galindo et al., 
2006), and it is shown in the chapter by Carrasco 
et al. in this handbook. An extension for Fuzzy 
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Deductive Relational Databases was presented by 
Blanco, Cubero, Pons, and Vila (2000).

Conclusion and 
Future Trends

This chapter presents an introduction to fuzzy 
logic and to fuzzy databases. With regard to the 
first topic, we have introduced concepts like fuzzy 
sets and fuzzy numbers, fuzzy logic and its main 
characteristics, linguistic labels, membership func-
tions and their determination methods, support and 
kernel, height and cardinality, α-cut, the representa-
tion theorem and the extension principle, fuzzy set 
operations like union and intersection (t-norms and 
t-conorms), negations, fuzzy implications, differ-
ent comparison operations, fuzzy relations, fuzzy 
quantifiers, and the possibility theory.

With respect to the fuzzy databases, this chap-
ter gives a list of six research topics in this fuzzy 
area. All these topics are briefly commented on, 
and we include references to books, papers, and 
even to other chapters of this handbook, where we 
can find some interesting reviews about different 
subjects and new approaches with different goals. 
Finally, we summarize the main published models 
approaching the problem of representation and 
treatment of imprecise information in relational 
databases, including methods with and without 
fuzzy logic.

Perhaps the main difficulty in fuzzy database 
technology is to solve the subjectivity problem 
in the definition and usage of fuzzy concepts, 
and the dependency between these concepts and 
the context. Bordogna and Psaila study in their 
chapter, in this handbook, some ideas about this 
context dependency, but there are other problems 
that should be studied, like fuzzy interfaces or that, 
in many applications, possibly it is better to use 
fuzzy intervals or approximate values instead of 
predefined fuzzy labels. Another interesting future 
line is to introduce fuzzy data types in current 
database management systems (relational, object-
oriented, etc.) and/or introduce fuzzy comparators 

and some other tools of fuzzy queries in the standard 
SQL. In this line, some researches of this volume 
may be very useful, as for example, the chapters 
by Urrutia et al., Ben Hassine et al., Barranco et 
al., Scheneider, or Takači and Škrbić. We can see 
that this is not only a theoretical research field and 
this book includes some interesting applications 
like those in the chapters by Veryha et al., Chen 
et al., Carrasco et al., or Xexéo and Braga. Surely, 
in some years, what now is a research proposal, 
will be a running application, and in this sense, 
this book includes many interesting works as, for 
example, those about fuzzy queries and fuzzy 
data mining.
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Key Terms

Fuzzy Attribute: In a database context, a 
fuzzy attribute is an attribute of a row or object in 
a database, with a fuzzy datatype, which allows 
storing fuzzy information. Sometimes, if a classic 
attribute allows fuzzy queries, then it is also called 
fuzzy attribute, because it has only some of the 
fuzzy attribute characteristics.

Fuzzy Database: If a regular or classical 
database is a structured collection of information 
(records or data) stored in a computer, a fuzzy 
database is a database which is able to deal with 
uncertain or incomplete information using fuzzy 
logic. There are many forms of adding flexibility 
in fuzzy databases. The simplest technique is to 
add a fuzzy membership degree to each record, 
that is, an attribute in the range [0,1]. However, 
there are other kinds of databases allowing fuzzy 
values to be stored in fuzzy attributes using fuzzy 
sets, possibility distributions, or fuzzy degrees 
associated to some attributes and with different 
meanings (membership degree, importance degree, 
fulfillment degree, etc.). Of course, fuzzy data-
bases should allow fuzzy queries using fuzzy or 
nonfuzzy data and there are some languages that 
allow this kind of queries, like FSQL or SQLf. In 
synthesis, the research in fuzzy databases includes 
the following areas: flexible querying in classical or 
fuzzy databases, extending classical data models in 
order to achieve fuzzy databases (fuzzy relational 
databases, fuzzy object-oriented databases, etc.), 
fuzzy conceptual modeling, fuzzy data mining 
techniques, and applications of these advances in 
real databases.

Fuzzy Implication: Function computing the 
fulfillment degree of a rule expressed by IF X 
THEN Y, where the antecedent and the consequent 
are fuzzy. These functions must comply with 
certain basic properties and the most typical is the 
Kleene-Dienes implication, based on the classical 
implication definition (x⇒y  =  ¬x ∨ y), using the 
Zadeh’s negation and the maximum s-norm, but 
other fuzzy implication functions exist (Table 3).
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Fuzzy Logic: Fuzzy logic is derived from fuzzy 
set theory by Zadeh (1965), dealing with reasoning 
that is approximate rather than precisely deduced 
from classical predicate logic. It can be thought of 
as the application side of fuzzy set theory dealing 
with well thought out real world expert values for 
a complex problem.

Fuzzy Quantifiers: Expressions allowing us 
to express fuzzy quantities or proportions in order 
to provide an approximate idea of the number of 
elements of a subset fulfilling a certain condition 
or of the proportion of this number in relation 
to the total number of possible elements. Fuzzy 
quantifiers can be absolute or relative. Absolute 
quantifiers express quantities over the total num-
ber of elements of a particular set, stating whether 
this number is, for example, “much more than 10,” 
“close to 100,” “a great number of,” and so forth. 
Relative quantifiers express measurements over the 
total number of elements, which fulfill a certain 
condition depending on the total number of pos-
sible elements. This type of quantifier is used in 
expressions such as “the majority” or “most,” “the 
minority,” “little of,” “about half of,” and so on.

Possibility Theory: This theory is based on 
the idea that we can evaluate the possibility of a 
determinate variable X being (or belonging to) 
a determinate set or event A. Here, fuzzy sets 
are called possibility distributions and instead of 
measuring the membership degrees, they measure 
the possibility degrees. All the tools and proper-
ties defined for fuzzy sets are also applicable to 
possibility distributions.

Soft Computing: Computational techniques 
in computer science and some engineering dis-
ciplines, which attempt to study, model, and ana-
lyze very complex phenomena: those for which 
more conventional methods have not yielded low 
cost, analytic, and complete solutions. Earlier 
computational approaches could model and pre-
cisely analyze only relatively simple systems. More 
complex systems arising in biology, medicine, 
the humanities, management sciences, artificial 
intelligence, machine learning, and similar fields 

often remained intractable to conventional math-
ematical and analytical methods. Soft computing 
techniques include: fuzzy systems (FS), neural 
networks (NN), evolutionary computation (EC), 
probabilistic reasoning (PR), and other ideas (chaos 
theory, etc.). Soft computing techniques often 
complement each other.

T-conorm or S-norm: Function s establishing 
a generic model for the operation of union with 
fuzzy sets. These functions must comply with 
certain basic properties: commutative, associative, 
monotonicity, and border conditions (x s 0 = x, 
and x s 1 = 1). The most typical is the maximum 
function, but other widely accepted s-norms exist 
(Table 2).

T-norm: Function t establishing a generic model 
for the operation of intersection with fuzzy sets. 
These functions must comply with certain basic 
properties: commutative, associative, monotonic-
ity, and border conditions (x t 0 = 0, and x t 1 = x). 
The most typical is the minimum function, but there 
exists other t-norms widely accepted (Table 1).
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