
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 12, NO. 3, JUNE 2004 411

Fuzzy Identification Using Fuzzy Neural Networks
With Stable Learning Algorithms

Wen Yu and Xiaoou Li

Abstract—In general, fuzzy neural networks cannot match
nonlinear systems exactly. Unmodeled dynamic leads parameters
drift and even instability problem. According to system identi-
fication theory, robust modification terms must be included in
order to guarantee Lyapunov stability. This paper suggests new
learning laws for Mamdani and Takagi–Sugeno–Kang type fuzzy
neural networks based on input-to-state stability approach. The
new learning schemes employ a time-varying learning rate that is
determined from input–output data and model structure. Stable
learning algorithms for the premise and the consequence parts
of fuzzy rules are proposed. The calculation of the learning rate
does not need any prior information such as estimation of the
modeling error bounds. This offer an advantage compared to
other techniques using robust modification.

Index Terms—Fuzzy neural networks, identification, stability.

I. INTRODUCTION

BOTH NEURAL networks and fuzzy logic are universal
estimators, they can approximate any nonlinear function to

any prescribed accuracy, provided that sufficient hidden neurons
and fuzzy rules are available. Resent results show that the
fusion procedure of these two different technologies seems to
be very effective for nonlinear systems identification [1], [4],
[13]. Gradient descent and backpropagation are always used
to adjust the parameters of membership functions (fuzzy sets)
and the weights of defuzzification (neural networks) for fuzzy
neural networks. Slow convergence and local minimum are main
drawbacks of these algorithms [14]. Some modifications were
derived in recently published literatures. [3] suggested a robust
backpropagation law to resist the noise effect and reject errors
drift during the approximation. [24] used B-spline membership
functions to minimize a robust object function, their algorithm
can improve convergence speed. In [21], radial basis function
(RBF) neural networks were applied to fuzzy systems, a novel
approach of determining structure and parameters of fuzzy
neural systems was proposed.

The stability problem of fuzzy neural identification is very
important in applications. It is well known that normal iden-
tification algorithms (for example, gradient descent and least
square) are stable in ideal conditions. In the presence of unmod-
eled dynamics, they might become unstable. The lack of robust-
ness of the parameter identification was demonstrated in [5] and
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became a hot issue in the 1980s, when some robust modification
techniques were suggested [8]. The learning procedure of fuzzy
neural networks can be regarded as a type of parameter identi-
fication. Gradient descent and backpropagation algorithms are
stable, if fuzzy neural models can match nonlinear plants ex-
actly. However, some robust modifications must be applied to
assure stability with respect to uncertainties. Projection oper-
ator is an effective tool to guarantee fuzzy modeling bounded
[23]. It was also used by many fuzzy-neural systems [11]. An-
other general approach is to use robust adaptive techniques [8]
in fuzzy neural modeling. For example, [25] applied a switch

-modification to prevent parameters drift.
Fuzzy neural identification uses input–output data and model

structure. It can be regarded as black-box approximation. All
uncertainties can be considered as parts of the black-box,
i.e., unmodeled dynamics are within the black-box model,
not as structured uncertainties. Therefore, the robustifying
techniques usually employed are not necessary. In [22], the
authors suggested stable and optimal learning rate without
robust modification, a genetic search algorithm was proposed
to find the optimal rate. However the algorithm is complex, and
difficult to realize. By using the passivity theory, we successfully
proved that for continuous-time recurrent neural networks,
gradient descent algorithms without robust modification were
stable and robust to any bounded uncertainties [26], and for
continuous-time identification they were also robustly stable
[27]. Nevertheless, do fuzzy neural networks have the similar
characteristics? To the best of our knowledge, input-to-state
stability (ISS) approach for fuzzy neural system was not still
applied in the literature.

In this paper, the ISS approach is applied to system identi-
fication via fuzzy neural networks. Two cases are considered:
1) the premise memberships are assumed to be known, prede-
termined somehow in advance and learning is carried on only
on the consequence parameters; and 2) weight update concerns
both the premise and the consequent parameters. The new stable
algorithms with time-varying learning rates are applied to two
types of fuzzy neural models, namely, the traditional Mamdani’s
type model and Takagi–Sugeno–Kang’s (TSK) model. Two ex-
amples are given to illustrate the effectiveness of the suggested
algorithms.

II. PRELIMINARIES

ISS is another elegant approach to analyze stability besides
Lyapunov method. It can lead to general conclusions on stability
by using input and state characteristics. Consider the following
discrete-time nonlinear system:

(1)
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where is the input vector, is a state
vector, and is the output vector. and are general
nonlinear smooth function , . Let us now recall the
following definitions.

Definition 1:

a) If a function is continuous and strictly increasing with
, we call as -function

b) If a function is -function and ,
we call as -function.

c) If a function is -function and
, we call as -functions.

Definition 2:

a) System (1) is said to be input-to-state stable if there exists
a -function and -function , such that, for
each , ie., , and each initial
state , it holds that

b) A smooth function is called an ISS-Lya-
punov function for (1) if there exist -functions ,

, , and -function such that for any
, each ,

Theorem 1: If a discrete-time nonlinear system admit a ISS-
Lyapunov function, it is input-to-state stable, and the behavior
of the system remains bounded when its inputs are bounded [9].

From (1) we have

(2)

Denoting

so , . Since
(1) is smooth nonlinear system, (2) can be expressed as

. This leads to the multi-
variable NARMA model [2]

(3)

where

(4)

is an unknown nonlinear difference equation representing
the plant dynamics, and are measurable scalar input

and output, is time delay. One can see that Definitions 1 and
2 and Theorem 1 do not depend on the exact expression of non-
linear systems. In this paper, we will apply ISS to the NARMA
model (3).

A generic fuzzy model is presented as a collection of fuzzy
rules in the following form (Mamdani fuzzy model [16]):

IF is and is and is

THEN is and is (5)

We use fuzzy IF–THEN rules to perform a
mapping from an input linguistic vector
to an output linguistic vector .

and are standard fuzzy sets. Each
input variable has fuzzy sets. In the case of full connection,

. From [23] we know, by using product
inference, center-average and singleton fuzzifier, the th output
of the fuzzy logic system can be expressed as

(6)

where is the membership functions of the fuzzy sets ,
is the point at which . If we define

(7)

(6) can be expressed in matrix form

(8)

where parameter . . . , data

vector . The structure of the
fuzzy neural system is shown in Fig. 1. This four layers fuzzy
neural networks was discussed [7], [11], [13], and [22]. Each
node of layer II represent the value of the membership func-
tion of the linguistic variable. Nodes at layer III represent fuzzy
rules. Layer IV is the output layer, the links between layer III
and layer IV are full connected by the weight matrix .

For Takagi–Sugeno–Kang fuzzy model [19]

IF is and is and is

THEN (9)

where . The th output of the fuzzy logic system can
be expressed as

(10)
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Fig. 1. Architecture of fuzzy neural system.

where is defined as in (7). Equation (10) can be also ex-
pressed in the form of the Mamdani-type (8)

(11)

where

...
...

...

III. FUZZY NEURAL MODELING WITH KNOWN PREMISE

MEMBERSHIP FUNCTIONS

When we have some prior information of the identified plant,
we can construct fuzzy rules as (5) or (9). In this section, we
assume the premise membership functions are given
by prior knowledge, i.e., is
known (see [4], [21], and [25]). Mamdani (8) and the TSK (11)
models have the same forms because is known, the
only different is the definition of .

The object of fuzzy neural modeling is to find the center
values of (the weights between Layer III and Layer
IV in Fig. 1), such that the output of fuzzy neural networks
(8) can follow the output of nonlinear plant (3). Let us de-
fine identification error vector as

(12)

We will use the modeling error to train the fuzzy neural
networks (8) online such that can approximate . Ac-
cording to function approximation theories of fuzzy logic [22]
and neural networks [6], the identified nonlinear process (3) can
be represented as

(13)

where is unknown weights which can minimize the unmod-
eled dynamic . The identification error can be represented
by (12) and (13)

(14)

where . In this paper we are only interested
in open-loop identification, we assume that the plant (3) is
bounded-input–bounded-output (BIBO) stable, i.e., and

in (3) are bounded. By the bound of the membership
function , in (13) is bounded. The following theorem
gives a stable gradient descent algorithm for fuzzy neural
modeling.

Theorem 2: If we use the fuzzy neural networks (8) to iden-
tify nonlinear plant (3), the following gradient descent algorithm
with a time-varying learning rate can make identification error

bounded

(15)

where the scalar , . The
normalized identification error

satisfies the following average performance:

(16)

where .
Proof: We selected a positive defined scalar as

(17)

By the updating law (15), we have

Using the inequalities

for any and . By using (14) and , we have

(18)
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Since

So

(19)

where is defined as

Because

where and are -functions, and
is an -function, is a -function. So

admits a ISS-Lyapunov function as in Definition 2. By Theorem
1, the dynamic of the identification error is input-to-state stable.
From (14) and (17), we know is the function of and

. The “INPUT” corresponds to the second term of (19),
i.e., the modeling error . The “STATE” corresponds to the
first term of (18), i.e., the identification error . Because
the “INPUT” is bounded and the dynamic is ISS, the
“STATE” is bounded.

Equation (18) can be rewritten as

(20)

Summarizing (20) from 1 up to , and by using and
is a constant, we obtain

(16) is established.
Remark 1: In general, a fuzzy neural model cannot match

any nonlinear system exactly. The parameters of the fuzzy

neural network will not converge to its optimal values. The idea
of online identification proposed in this paper is to force the
output of the fuzzy neural networks to follow the output of the
plant. Although the parameters cannot converge to their optimal
values, (16) shows that the normalized identification error will
converge to a ball radius . If the fuzzy neural networks (8)
can match the nonlinear plant (3) exactly , i.e., we
can find the best membership function and such that
the nonlinear system can be written as .
Since , the same learning law (15) makes the
identification error asymptotically stable

(21)

Remark 2: Normalizing learning rate in (15) is
time-varying in order to insure the stability of identification
error. These learning rates are easier to be decided than [22]
(for example we may select ), without requiring any prior
information. Time-varying learning rates can be found in some
standard adaptive schemes [8]. But they need robust modifica-
tions to guarantee stability of the identification. Equation (15)
is similar to the results of [15], however, the approaches are
different. In this paper, the algorithm is derived from stability
analysis (or ISS-Lyapunov function), the algorithm of [15] was
obtained from minimization of the cost function. We focus on
the bound of identification error, [15] focused on convergence
analysis. It is interested to see that the two different methods
can get similar results.

IV. FUZZY NEURAL MODELING WITH PREMISE MEMBERSHIP

FUNCTIONS LEARNING

When we regard the plant as a black-box, neither the premise
nor the consequent parameters are known (see [20], [22], and
[24]). Now, the object of the fuzzy neural modeling is to find the
center values of , as well as the membership func-
tions , such that the fuzzy neural networks (8) can
follow the nonlinear plant (3).

Gaussian membership function is exploited to identify fuzzy
rules in this paper, which is defined by

(22)

The th output of the fuzzy neural model can be expressed as

(23)

Let us define
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So

Similar to (13), the nonlinear plant (3) can be represented as

(24)

where , and are unknown parameters which may
minimize the unmodeled dynamic .

In the case of three independent variables, a smooth function
has Taylor formula as

where is the remainder of the Taylor formula. If we let ,
, and correspond to , , and , , , and cor-

respond to , , and

(25)

where is a second-order approximation error of the Taylor
series, . Using the chain rule, we get

In matrix form

(26)

where the equation shown at the bottom of the page holds. The
identification error is defined as , using (26) we
have

(27)

In vector form

(28)

where

. . .

. . .

, , .
By the bound of the Gaussian function and the plant is

BIBO stable, and in (24) and (25) are bounded. So in
(28) is bounded. The following theorem gives a stable algorithm
for discrete-time Mamdani-type fuzzy neural networks.

. . .

. . .



416 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 12, NO. 3, JUNE 2004

Theorem 3: If we use the Mamdani-type fuzzy neural net-
work (23) to identify nonlinear plant (3), the following back-
propagation algorithm makes identification error bounded

(29)

where , . The average
of the identification error satisfies

(30)

where , ,

.

Proof: Let use define ,
, the element of is expressed as

. So

We selected a positive defined scalar as

(31)

From the updating law (29)

By using (28), we have

(32)

where is defined as

Because

where and

are -functions,

and is an -function, is a -function.
So admits a ISS-Lyapunov function as in Definition 2.
From Theorem 1, the dynamic of the identification error is
input-to-state stable. From (28) and (31) we know is the
function of and . Because the “INPUT” is
bounded and the dynamic is ISS, the “STATE” is bounded.

Equation (32) can be rewritten as

(33)

Summarizing (33) from 1 up to , and by using and
is a constant, we obtain

(30) is established.
For TSK-type fuzzy neural model (9), we select as

Gaussian functions. The th output of the fuzzy logic system
can be expressed as

(34)

where The part in (25) is
changed as

The following theorem gives a stable algorithm for TSK-type
fuzzy neural networks.

Theorem 4: If we use TSK-type fuzzy neural network (34)
to identify nonlinear plant (3), the following algorithm makes
identification error bounded

where , .
Proof: The proof is the same as Theorem 3.
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One can see that TSK requires only a different formulation
compared to traditional Mamdani model and the difference be-
tween Theorems 3 and 4 is the inclusion of the update law for
the .

Remark 3: Like the second Lyapunov method, the condition
is a necessary but not sufficient condition ensuring

ISS of the learning process. It is possible to speed up conver-
gence of the algorithms by considering values of larger than
unity. However, we cannot ensure the stability in whole identi-
fication period. The contradiction in stability and fast
convergence still exists in the gradient-like algorithms.
In this paper we are focus exclusively on the first issue rather on
the last one.

Remark 4: If we select as a dead-zone function

if
if

(29) is the same as [23]. If a -modification term or modified
-rule term are added in in (15) or (29), it becomes that of [25]

or [12]. However, all of them need the upper bound of modeling
error , and the identification error is enlarged by the robust
modifications [8].

Remark 5: Even if the input is persistent exciting, the mod-
eling error will not make the weights converge to their
optimal values. It is possible that the output error is convergent,
but the weight errors are very high when the fuzzy rules are well
defined. The relations of the output error and the weight errors
are shown in (14) and (28). Simpler case is that we use(14) and
fuzzy neural networks can match the nonlinear plant exactly

plant

fuzzy neural networks

output error

If is large, small output error does not mean
good convergence of the weight error . This means
that the weights do not gradually converge to certain values. In
other words, the update laws should be always in alert for on-
line identification. Several algorithms suggested in fuzzy online
modeling follow this standard procedure [10], [23], [25].

V. SIMULATION

In this section, the suggested stable learning algorithms
are applied to function approximation and nonlinear system
identification.

A. Two-Dimensional Function Approximation

We the fuzzy neural networks (8) to approximate following
nonlinear function:

This example is taken from [23] where the following fuzzy
system was used:

(35)

In this paper, we use fuzzy neural network as

(36)

Compared with (35), the advantage of (36) is that it has adaptive
ability. The number of fuzzy sets for each input variable is 2. The
membership functions for and are triangular function in

, see Fig. 2. As in Fig. 1, , , ,
. We use the gradient descent learning (15) with .

We first use 300 data to train the model. The training
data is selected as , ,

. Then we fixed the weights , use another
300 data to test the model. The testing data is ,

, . The identification results
are shown in Fig. 3. Let us define the mean squared error for
finite time is

(37)

In the training phase , in the testing phase
. Following Remark 5, the online identifica-

tion algorithm cannot make the weights converge to the optimal
values after a certain period training. Even for this simple non-
linear function, the testing result is not quit encouraging.

In this example, we found that the stability limit for is about
2. This limit depends on model parameters, such as initial condi-
tion of the number of fuzzy set, etc. Although
can speedup the learning process, we cannot guarantee the sta-
bility for any condition and whole learning period. Theorem
2 insures the modeling error is stable for any condition when

.
Modeling errors in (13) and in (28) depend on the

complexity of the particular model selected and how close it is to
the actual plant. In this example, if we select , all the
other conditions do not change. The training result is shown in
Fig. 4. The identification error is enlarged as .
The worse results obtained are due to the redundant fuzzy rules,
or the rules (memberships) are not well defined. From the point
of identification, it is because the model is not close to the plant.
We should mention that model structure influences modeling
error, but does not destroy stability of identification process.

B. Nonlinear System Identification

We use a nonlinear system to illustrate the backpropagation
algorithm (29). The identified plant is [18, Ex. 2], which was
also discussed in [10], [17], and [22]

(38)

The input signal is selected as random number in the interval
We use the fuzzy neural network (23) to identify (38)

In order to avoid to computation burden, we use
single connection, i.e., the input for is only
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Fig. 2. Membership functions.

Fig. 3. Function approximation.

, , . The
membership functions are chosen as Gaussian functions

We assume the membership function is unknown. We use
(29) with to update , , and . The initial condi-
tions for , , and are random delected in the range .
The online identification results are shown in Fig. 5.

Now, we compare our algorithm with normal backpropaga-
tion algorithm [18] and optimal learning [22]. We use the same
multilayer neural networks as [18], it is (two hidden
layers with 20 and ten nodes), and a fixed learning rate .
In this simulation, we found after the neural networks
become unstable. We also repeated simulation of [22, Ex. 3].
The performance comparison can be realized by mean squared
errors (37). The comparison results are shown in Fig. 6.

We can see that the optimal learning for fuzzy neural net-
works [22] is the best with respect to identifications error. How-
ever, it is difficult to realize because we have to solve a equation

, or use genetic algorithm to find the optimal
learning rate. The stable algorithm proposed in this paper has
almost the same convergence rate as the optimal learning. Al-
though the identification error is bigger, , but
it is simple and easy to realize. Normal backpropagation algo-
rithm for multilayer neural networks has a slow convergence
speed and a big identification error, .

VI. CONCLUSION

This paper applies ISS approach to Mamdani- and TSK-type
fuzzy neural networks and proposes robust learning algorithms
which can guarantee the stability of training process. The pro-
posed algorithms are effective. The main contributions are as
follows.

1) By using ISS approach, we conclude that the com-
monly-used robustifying techniques in discrete-time
fuzzy neural modeling, such as projection and dead-zone,
are not necessary.

2) New algorithms with time-varying learning rates are pro-
posed, which are robust to any bounded uncertainty.
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Fig. 4. Function approximation with redundant fuzzy rules.

Fig. 5. Nonlinear system online identification.

Fig. 6. Perform comparision.

Further works will be done on structure learning. It will
assure that the fuzzy regions and respective fuzzy sets are well
posed within the premise space according to the particular
system under consideration. Combined with such a scheme,

the weight update laws will provide a smaller modeling error
within a certain small ball.
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