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ABSTRACT  
  

This study presents a detailed comparison between viable adaptive intelligent torque control 
strategies of induction motor, emphasizing advantages and disadvantages. The scope of this 
study is to choose an adaptive intelligent controller for induction motor drive proposed for 
high performance applications.  Induction motors are characterized by complex, highly non-
linear and time varying dynamics and inaccessibility of some states and output for 
measurements and hence can be considered as a challenging engineering problem. The advent 
of torque and flux control techniques have partially solved induction motor control problems, 
because they are sensitive to drive parameter variations and performance may deteriorate if 
conventional controllers are used. Intelligent controllers are considered as potential candidates 
for such an application. In this paper, the performance of the various sensorless intelligent 
Direct Torque Control (DTC) techniques of Induction motor such as neural network, fuzzy 
and genetic algorithm based torque controllers are evaluated. Adaptive intelligent techniques 
are applied to achieve high performance decoupled flux and torque control. The theoretical 
principle, numerical simulation procedures and the results of these methods are discussed.   
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1. INTRODUCTION  
  

Direct Torque Control (DTC) of pulse - width - modulated inverter fed induction motor drive 
is receiving wide attention in the recent years [1-5]. Figure 1 shows the basic configuration for 
the direct torque controlled induction motor drive. The scheme uses stator flux vector and 

torque estimators on a PWM – inverter- fed drive. The stator flux amplitude ψs

*
 and torque Te

*
 

are the command signal and which are compared with the estimated ψs and Te values, 
respectively, giving instantaneous flux error Eψ and torque error ETe as shown in Figure 1.   
 
 

*Corresponding author. 
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Figure 1  Basic configuration of DTC scheme  

  
In the conventional scheme, the flux error Eψ and torque error ETe signals are 

delivered to two hysteresis comparators. The corresponding digitalized output variables and 
the stator flux position sector create a digital word, which selects the appropriate voltage 
vector from the switching table. Selection of voltage vector is also depending upon the sector 
in which the stator flux positioned. Thus, the selection table generates pulses Sa, Sb, Sc to 
control the power switches in the inverter. Figure 2 shows the pulses Sa, Sb, Sc generated when 
the position of stator flux is in sector 1.  
 
 
 

   
  
  

 
Figure 2 Generation of Pulses for PWM inverter when flux vector lies on sector 1  
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The expression for the developed torque of an induction motor is given by (1).  
  

                                                       

(1) T   

 
 
where:  

                                       σ = 1- M
2
/ (Ls Lr)  

  
                      ψ s =  Stator flux  
  
Under normal operating conditions, the amplitude of the working flux is kept 

constant at the maximum value. Hence the developed torque is proportional to the sine of the 
torque angle ‘δ’ between stator and rotor fluxes, and can be controlled by suitably changing 
the angle ‘δ’. Since the time constant of rotor current is large compared to stator, the stator 
flux is accelerated or decelerated with respect to the rotor flux to change the torque angle. 
Stator flux is a computational quantity, which is obtained using the stator-measured current 
‘Is’ and voltage ‘Vs’.         
                                                  

                                             
(2) 

 
 In general, Conventional DTC scheme has the following disadvantages:  

 i) Variable switching frequency  
ii) Violence of polarity consistency rules  
iii) Current and torque distortions caused by the sector changes  
iv) Starting and low - speed operation problems  
v) High sampling frequency needed for digital implementation of hysteresis comparators.  

 
  Introducing adaptive controllers instead of conventional hysteresis controllers can 
eliminate all the above difficulties. In this study, viable intelligent controllers in DTC scheme 
are discussed to improve the performance in low speed operations and to minimize the torque 
ripples. Intelligent controls using expert systems, fuzzy logic, neural networks and genetic 
algorithms have been recently recognized as important tools to enhance the performance of 
the power electronic systems. The combination of intelligent control with adaptive and robust 
control appears today the most promising research accomplishment in the drive control area 
and in the meantime, as the best approach for the optimal exploitation of intelligent control 
prerogatives and practical realization of adaptive and robust ac motor drives. In this study, 
detailed investigations on viable intelligent torque control schemes are carried out by 
simulation and the results are compared.  

  
2. NEURAL NETWORK CONTROLLERS FOR DTC SCHEME 

  
A neural network is a machine like human brain with properties of learning capability and 
generalization. They require a lot of training to understand the model of the plant. The basic 
property of this network is that it can able to approximate complicated nonlinear functions [6-
7]. In direct torque control scheme, neural network is used as a sector selector. The direct 
torque neuro controller is shown in Figure 3. In this control strategy, torque and flux errors are 
multiplied by the constant value ‘c’ and which are given as inputs along with the flux position 
information to the neural network controller. Output of the controller is compared with the 
previous switching states of inverter.  Artificial Neural Network (ANN) offers inherent 
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advantages over other conventional DTC schemes for induction motors, namely:  
i)  Reduction of the complexity of the controller;  
ii) Reduction of the effects of motor parameter variations, particularly in the stator-

flux estimation;  
iii) Improvement of controller time response, i.e., the ANN controller uses only 

parallel processing of sums, products by constant gains, and a set of well known 
non-linear functions so that no time- consuming sequential integrations routines 
are required;  

iv) Improvement of drive robustness – ANN’s are fault tolerant and can extract 
useful information from noisy signals  

 
.  

     
  

Figure 3 Schematic of DTC using Neural-Network controller  

  
3. PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS  

  
Feed forward artificial neural networks are universal approximators of nonlinear functions [8]. 
As such, the ANN’s use a dense interconnection of neurons that correspond to computing 
nodes. Each node performs the multiplication of its input signals by constant weights, sums up 
the results, and maps the sum to a nonlinear function; the result is then transferred to its 
output. The structure of neuron is shown in Figure 4 and the mathematical model of a neuron 
is given by  
 
  

                                                                      

(3) 

 
 where,  xi   = (x1, x2, .........., xN)    are inputs from the previous layer neurons. 

ωi =  (ω1, ω2, .........., ωN) are the corresponding weights, and ‘b’ is the bias of the 
neuron.  
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For a logarithmic sigmoidal activation function, the output is given by  
  

                                                                      

 (4) 

 
A feed forward neural network is organized in layers: an input layer, one or more 

hidden layers, and an output layer. No computation is performed in the input layer and the 
signals are directly supplied to the first hidden layer through input layer. Hidden and output 
neurons generally have a sigmoidal activation function. The knowledge in an ANN is acquired 
through a learning algorithm, which performs the adaptation of weights of the network 
iteratively until the error between the target vectors and output of network falls below a 
certain error goal. The most popular learning algorithm for multi-layer networks is the back 
propagation algorithm, which consists of a forward and backward action. In the first, the 
signals are propagated through the network layer by layer. An output vector is thus generated 
and subtracted from the desired output vector. The resultant error vector is propagated 
backward in the network and serves to adjust the weights in order to minimize the output 
error. The back propagation training algorithm and its variants are implemented by many 
general – purpose software packages such as the neural-network toolbox from MATLAB [9-
10] and the neural-network development systems described by Bose [11]. The time required to 
train an ANN depends on the size of the training data set and training algorithm. An improved 
version of back propagation algorithm with adaptive learning rate is proposed and which 
permits a reduction of the number of iterations. Figure 5 shows the proposed neural network 
for DTC scheme in which, input, output and hidden layers are shown. The error signals and 
stator flux angle are given to input layer. Switching state information is taken from the output 
layer.  
 
  

                       
 

Figure 4 Structure of Neuron  

 

 563



KMITL Sci. Tech. J. Vol. 5 No. 3 Jul.-Dec. 2005 

 

  
  
  

Figure 5 Structure of Neural network proposed for DTC scheme  
                  
  

4. DTC USING GENETIC ALGORITHM  
  

Genetic algorithm is an advanced technique for direct torque control of induction motor drive. 
Genetic algorithms (GA’s) are optimization procedures, which are well suitable to train the 
neural networks [11]. Generally, GA has following components:  

 v) A genetic representation for potential solution encoded as strings or 
chromosomes.  

vi)   A way to create an initial population of potential solutions  
vii)  An evaluation function for rating solutions in terms of their fitness  
viii) Genetic operator that alter the composition of children  
ix)  Values for various parameters that the genetic algorithm uses (population size, 

probabilities of applying genetic operators, etc.).  
  

For executing genetic algorithm to train the neural networks, detailed procedures were 
followed. Figure 7 shows the flowchart to execute a genetic algorithm. It gives an algorithm to 
select best chromosome from the total population of chromosomes. To select best 
chromosome, parent selection is prominent. Steps for parent selection are as summarized as 
follows:   

i) Selection of parents for reproduction is stochastic.  
ii)  Selection of parents with higher fitness value.  
iii) Roulette wheel technique for parent selection. A roulette wheel shown in Figure 7 
has   slots, which are sized according to the fitness of each chromosome.  
iv)  Selection process is to spin the roulette wheel.     

 

In Figure 6,   are fitness of chromosomes 1, 2, 3, 4 and 5, 
respectively. Pop represents the total population size; that is, if total number of chromosomes 
is 50, population size is also 50. Therefore,   

  

  Fitness of 50
th 

chromosome                   (5)  
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Total fitness is given by, F= Sum of the fitness of the population  
  

                                                         
(6) 

 
Probability function for each chromosome is           
 

(7) 
 

  
 
Accumulative probability function for each chromosome is  
     

                

(8) 

   
 
 

  
 

  
  
 
 
  

Figure 6 Roulette Wheel  
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Figure 7 Flowchart for execution of a Genetic Algorithm  
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5. NEURAL NETWORKS TRAINED BY GENETIC ALGORITHMS  
 
In neural networks, genetic algorithms are used to determine the weights and threshold values. 
Figure 8 shows the structure of neural networks trained using GA. The respective error vectors 
between the state selector of conventional DTC and the neural networks outputs are e1, e2, e3. 
To achieve minimum value of performance index, the groups of threshold values and weights 
have to be determined.  
  

  

 
 

Figure 8 Structure of neural networks trained using GA  
  
 

Performance index E (W) can be given by:  
  

                                                                                      
 (9) 

    where:              =        error vectors  

                             Symmetric positive definite matrix  
                          N       =    Sample size  
  
   

6. FUZZY LOGIC DIRECT TORQUE CONTROL 
OF INDUCTION MOTOR 

  
In DTC induction motor drive, there are torque and flux ripples because none of the inverter 
states is able to generate the exact voltage value required to make zero both the torque 
electromagnetic error and the stator flux error [12-13]. The suggested technique is based on 
applying switching state to the inverter and the selected active state just enough time to 
achieve the torque and flux references values. A null state is selected for the remaining 
switching period, which won't almost change both the torque and the flux. Therefore, the 
switching state has to be determined based on the values of torque error, flux error and stator 
flux angle. Exact value of stator flux angle (θ) determines where stator flux lies [6].  
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Figure 9 Schematic of fuzzy logic DTC  

 
The schematic of fuzzy logic direct torque control scheme for induction motor drive 

is shown in Figure 9. The fuzzy output of torque, flux errors and stator flux angle are given as 
input variables to fuzzy controller and output variable obtained from the fuzzy controller is 
switching state of the inverter. Switching state of the inverter is a crisp value. The input 
variables membership functions are shown in Figure 10.      
 

   
 (a)  

    
 (b)  

 
 (c)  

Figure 10 Membership distributions for input variables  
   (a) Torque Error (b) Flux Error and (c) Stator Flux angle  
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7. FUZZY RULES FOR DIRECT TORQUE CONTROL SCHEME 
  
To improve the performance of classical DTC scheme, Fuzzy rules have been developed. In 
the Table 1, ‘1’ represents the upper limb switches and ‘0’ represents the lower limb switches 
of the inverter. Switching states of the inverter varies from V0 to V7. From this table it is 
concluded that, V0=V7 and which are null states. That is, V0 and V7 are zero vectors. The 
fuzzy system comprises 12 groups of rules and each of which contains 15 rules. Each group 
represents the respective stator flux angle θ. For example, rules are shown in Table 2 for stator 
flux angle θ1, θ2 and θ3. For every combination of inputs and outputs, one rule can be applied. 
Totally, there are twelve-stator flux angles from θ1 to θ12 and 180 rules are formed. With the 
help of them, corresponding switching state of the inverter is selected.  
 

       Table 1 Switching States of Voltage Vectors 
 

  
States  

  
u1  u2  u3  

V0  0  0  0  
V1  1  0  0  
V2  1  1  0  
V3  0  1  0  
V4  0  1  1  
V5  0  0  1  
V6  1  0  1  
V7  1  1  1  

 
 

 Table 2 Fuzzy Rules Developed for Direct Torque Control Technique  

θ1  θ2  θ3  

  Eψ  
Ete  P  Z  N  P  Z  N  P  Z  N  

PL  V1  V2  V2  V2  V2  V3  V2  V3  V3  

PS  V2  V2  V3  V2  V3  V3  V3  V3  V4  

ZE  V0  V0  V0  V0  V0  V0  V0  V0  V0  

NL  V6  V0  V4  V6  V0  V5  V1  V0  V5  

NS  V6  V5  V5  V6  V6  V5  V1  V6  V6  
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From the rules, fuzzy inference equations are given as  
  

                   (10) 

                                      (11) 

                                    
  (12) 

 
8. SIMULATION PROCEDURES  

  
A 1-kW induction motor was used as a case study. The parameters of the machine were 
determined experimentally and are given in the Appendix. For the simulation of the viable 
torque control schemes, Voltage source inverter (VSI) was employed. The simulations were 
carried out using MATLAB / SIMULINK technical package described in [8].  
  
8.1 DIRECT TORQUE NEURAL NETWORK CONTROLLER  
The neural network is trained using the MATLAB neural-networks toolbox. This network 
consists of a three layer neural –network with three input nodes connected to five log sigmoid 
neurons and three pure output nodes connected to five log sigmoid neurons (3-5-5-3) shown in 
Figure 5. The training strategy consists the parallel recursive error prediction was chosen as a 
learning technique for simulation purposes to update the weights of the neural network. The 
algorithm was chosen because of its learning speed, robustness and high learning capability. 
This algorithm is so powerful when complicated and nonlinear functions are to be learned by 
the neural network [9]. The neural network structure mentioned previously was simulated 
using this algorithm and using the hyperbolic tangent function  
  

                                   
(13) 

 
as the nonlinearity in the transfer functions of the hidden and output layers. The parameter ‘c’ 
was fixed to one for all the cases. Small values of ‘c’ are found to give larger weights and vice 
versa.  

 Simulation results were determined using an electromagnetic torque and stator flux 
commands of 2.5 Nm and 0.85 Weber respectively. The switching frequency of the inverter 
used by the simulations was 10 kHz while the frequency of the neural network was 100 Hz. 
The neural network frequency was chosen to give the plant enough time to stabilize its output. 
The data used to train the neural network have been determined by direct simulation of DTC 
using a sampling frequency of 100 Hz.  
  
8.2. DTC USING GENETIC ALGORITHM  
Neural network trained with genetic algorithm is implemented in such a way that the total 
number of thresholds and weights of the neural network be packed in n - dimensional vector 
‘w’ as given in equation (14).  
  

                                (14) 
  
where, th = threshold vector  
           m= weight vector  
  and   n=38;  
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To represent the values of weights w, binary encoding or floating point encoding  is used as a 
chromosome. Genetic operators used for binary representation are one point crossover, two-
point crossover and bit mutation and for floating point representation are two point 
arithmetical crossover, uniform mutation, non-uniform mutation and non- uniform 
arithmetical mutation. Table 3 shows the parameters used for simulation:  
 
Table 3  Parameters used for Genetic Algorithm based DTC  

  
  

Parameters used  
  

Binary representation 
  

Floating point representation  

Number of chromosomes  30  100  
Crossover probability  0.8  0.9  
Mutation probability  0.005  0.008  

 
 

In binary encoding algorithm, Lower number of chromosomes was used than floating 
point encoding algorithm. The performance of the system is affected if number of 
chromosomes reduced. To improve the performance and to overcome this drawback, the best 
member of each generation must be copied into the succeeding generation. Crossover 
probability can be chosen from 0.5 to 0.9. Convergence rate becomes slower with the higher 
crossover probability values. Convergence rate should be in high bias level. Mutation rate 
taken for simulation as shown in Table II will make the convergence faster.  In floating point-
encoding algorithm, non-uniform mutation and non-uniform arithmetic mutation operators 
were introduced to prevent premature convergence. Fine tuning capabilities of genetic 
algorithm were achieved by using these operators and performance of the algorithm was also 
improved.  
  
8.3. DIRECT TORQUE FUZZY LOGIC CONTROLLER  
Direct torque control of induction motor using fuzzy logic was also simulated using the 
MATLAB / SIMULINK package. Membership functions were chosen and simulations were 
carried out. Only for three flux angle positions, rules were given in Table 2. Similarly, rules 
could be formed for another nine flux angle positions and totally for twelve positions, rules 
were written and membership functions were formed. Simulations include all the possible 
rules and total number of rules found is 180.   
  

9. RESULTS AND DISCUSSION 
  
Results obtained for viable torque and flux control techniques such as conventional DTC, 
DTC using neural networks, DTC using neural networks trained with genetic algorithm and 
DTC using fuzzy logic have been discussed. As described earlier, 1 kW induction motor was 
used for simulation and results were obtained. Switching frequency of the inverter taken for 
simulation was 10 KHz. There fore, the sampling time taken for simulation was 0.1 ms. 
Torque and flux reference values taken were 2.5 Nm and 0.5 wb when torque and flux 
hysteresis values are 0.5 Nm and 0.02 wb respectively. An index error has been used to 
quantify the error in both the stator flux and torque responses. This index is the integral of the 
square error (IE2), which is computed by means of the square error instead of just the error. 
Errors obtained in control schemes have been compared with each other. The error 
comparison is shown in Table 4.   
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Table 4 Errors obtained in various control strategies  
  

Index Error (EI)  Classical DTC  DTC_NN  DTC_NN_GA  
  

DTC_ Fuzzy  
  

T=a*Tn  ω=b*ωn  Flux  Torque Flux  Torque Flux  Torque  Flux  Torque 
a = 100%  b = 10%  2.53 e-3  0.189  2.2 e-3  0.165  1.97 e-3  0.156   2.74e-3  0.169  

a = 50%  b = 50%  2.57 e-3  0.068  0.53 e-3 0.025  0.68 e-3  0.023  0.88 e-3  0.033  

a = 10%  b = 10%  7.46 e-3  0.0367  1.58 e-3  0.0014  5.68 e-3  0.0015  0.14 e-3  0.00135  

a = 100%  b = 100%  2.46 e-3  0.297  2.1 e-3 0.263  2.33 e-3  0.31  2.55 e-3  0.251  

 
From the Table 4,  
T  = Actual torque;  
Tn = Nominal torque = 5 Nm;  
ω  = Actual motor speed;  
ωn = Nominal motor speed = 1420 r. p. m.;  

e-3 = X10
-3

;  
  
From the Table 4, it is realized that the index errors for flux and torque have been calculated 
for the different values of torque and speed in terms of their respective nominal values. Figure 
11 shows the actual torque developed in induction motor using conventional DTC. Referring 
to the Figure, torque rises from 0 to 2.5 Nm in 10 ms and then oscillates around the reference 
value in a narrow band. Figure 12 shows the torque developed using artificial neural network. 
Figures 13 and 14 show the actual torque developed using DTC by neural network trained 
with genetic algorithm in which Figure 13 represents binary coding and Figure 14 represents 
the floating point coding representations. Stator phase currents of induction motor using 
genetic algorithm is shown in Figure 15. Figure 16 exhibits the step function of the developed 
torque in induction motor using neural network trained with genetic algorithm in binary 
coding representation. Figure 17 shows the locus of the stator flux and it is noticed that flux 
follows a circular shape. The components of stator fluxes in stationary reference frame are 
sinusoidal and 90º phase displacement to each other. Figures 18 and 19 are the torque 
developed by fuzzy controller and which have been compared with the conventional DTC 
technique.  
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Figure 11 Torque developed in conventional DTC  
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Figure 12 Torque developed in DTC using neural network  
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      Figure 13 Torque developed in DTC using neural network trained with genetic algorithm  

          (Binary coding representation)  
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        Figure 14 Torque developed in DTC using neural network trained with genetic algorithm  
 (Floating-point coding representation)  
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Figure 15 Stator phase currents  
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Figure 16 Torque step response using genetic algorithm (Binary coding representation)  
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Figure 17 Locus of the stator fluxes in the stationary reference frame  
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Figure 18 Torque developed in conventional DTC and DTC using fuzzy logic  

 
  

  

Figure 19 Initial stator flux rise  

  
 

10. CONCLUSION  
  
Three different intelligent torque control schemes, direct torque neuro controller, direct torque 
neuro controller trained with genetic algorithm and direct torque fuzzy controller have been 
evaluated for induction motor control and have been compared with the conventional direct 
torque control technique.  Since the conventional DTC presents some disadvantages such as 
difficulties in torque and flux control at very low speed, high current and torque ripple, 
variable switching frequency behavior, high noise level at low speed and lack of direct current 
control, an adaptive torque controller must be proposed for high performance applications. In 
this study, three adaptive intelligent torque controllers have been proposed and results were 
compared. Each and every scheme has individual advantages and limitations.  
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APPENDIX  

  
Rating 1kW  

P  4  
Rs  7.23 Ω  
Rr  8.38 Ω  
Lm  0.7014 H  

Ls=Lr 0.0391 H  
ωnom  1420 r.p.m. 
Tnom  6.7 Nm  

J 0.006 kg.m
2
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