
A NEW PARADIGM FOR TH E
DESIGN OF CONCURRENT SYSTEMS

Ralph Back
Abo Akademi, Fdnriksgatan 3, SF-20500 Ab o

and

Reino Kurki-Suonio
Tampere University of Technology, P .O.Box 527, SF-33101 Tampere

ABSTRACT

A concurrent system is usually understood as a collection of processes that interact through some com-
munication mechanisms . The active components of such a system are the processes ; their interaction is
described in terms of messages and operations on shared memory . The principal process communication
mechanism of Ada, the rendezvous, is a high-level mechanism based on synchronizing messages .

In this position paper we argue that appropriate design methods and languages for real-time system s
should be based on a notion of interaction that is compatible with the corresponding concepts in the imple-
mentation language but provides a higher level of abstraction . It is claimed that existing methods do not
satisfy this requirement with respect to Ada. A new paradigm is therefore suggested that reverses the tradi-
tional setting as follows . The active components of the system are not the processes but the interactions in
which they participate. Such interactions, called joint actions, can be executed whenever they are enabled,
i .e . when the required processes are free and willing to participate in these actions .

This change of viewpoint has an effect on the kind of entities that are described and refined in the design
process . In particular, refinement of joint actions changes the granularity of the system . i .e . the atomicity
of events being considered . Another novelty introduced by joint actions is the application of the produc-
tion language paradigm to the design of concurrent systems . As joint actions are a generalization of th e
rendezvous, Ada is a suitable implementation language for this approach .

INTRODUCTIO N

There is no sharp distinction between languages for specification, design and implementation of concurrent systems .
Precision and formality are required in all stages . Incompleteness of the description should not increase when mov-
ing from specification towards implementation . Similarly, the level of abstraction should not get higher in this pro-
cess . In addition, the corresponding notions at different levels of abstraction should be compatible .

The rendezvous concept in Ada is an advanced mechanism for process interaction . It raises two questions :

(1) Is it an appropriate notion for real-time and other concurrent systems ?

(2) How should it be matched in specification and design languages ?

In this paper we are not going to discuss (1) ; we accept that the answer is a qualified "yes", and that the significanc e
of the qualifications can be reduced by suitable optimization techniques .

Permission to copy without fee all or part of this material is granted provided that the copies are no t
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery . To copy otherwise, or to republish, requires a fee and/or specific permission .

© 1987 ACM 0-89791-240-3/87/0500-0110 $00 .75

110

With respect to (2) we claim that existing notions, like Petri nets, signals, semaphores, critical regions, monitors ,
path expressions, and message queues, are either incompatible with the rendezvous or at a lower level of abstraction .
Therefore, these do not provide a suitable basis for the treatment of concurrency in the design methods an d
languages to be used in connection with Ada .

JOINT ACTIONS

The notion we propose is called joint actions . It arose in connection with using the simple rendezvous mechanis m
of CSP to express some distributed algorithms [1, 2] . The key observation was that the focus of the design could be
turned from the behavior of individual processes to the intended purpose of their interactions . In the example case s
it was found useful to turn the traditional viewpoint upside down : processes are passive carriers of their local data ,
and their interactions are the active components of the system . In our model, all data are assumed to be local t o
some process, and the concept of shared memory is not utilized. (This does not preclude the use of shared memory
in the implementation .)

More specifically, joint actions can be outlined as follows . For each joint action a there is a non-empty set o f
processes that are required for its execution . There is also a guard, ga, which determines whether a is enabled o r
not . The execution of a is triggered when the guard ga is true and none of the required processes is involved in
another joint action. The body of a is then executed ; this is a finite operation on the local data of the participating
processes . A private action by a single process is a special case of a joint action .

An important special case from the implementation point of view is a separable guard. This is one that depends
only on the local data of the participating processes and consists of components that can be evaluated by them in a
distributed way. This kind of joint action system can be efficiently executed on distributed systems .

An implementation of a system of joint actions contains two kinds of concurrency . Firstly, a single joint action ma y
involve concurrent operation of the participating processes . Secondly, several joint actions involving disjoint sets of
processes may execute in parallel .

The associated model of computation is quite simple, as the processes behave like passive resources for the join t
actions . This is an acceptable view for a design language ; for an implementation language that would be doubtful .
For purposes of reasoning it is important that a concurrent computation is always equivalent to a sequential execu-
tion of joint actions . Problems of concurrency are therefore reduced to those of nondeterministic sequential compu-
tations . The theoretical properties of the model of computation, and distributed implementation of joint action sys-
tems have been analysed in [3, 4, 5] .

RELATIONSHIP WITH RENDEZVOU S

Rendezvous and joint actions are both based on synchronous process communication . Joint actions provide a higher
level of abstraction and are therefore a possible match for the rendezvous in a specification or design language .

Although the body of an Ada rendezvous belongs to one of the tasks (processes) involved, it can be understood as an
action carried out jointly by the caller and the callee . Its interpretation in terms of a joint action means, however ,
that also the subsequent private codes in the two tasks be included in the same joint action . For a real-time system
this seems natural, as these private codes carry out the operations for which the communication probably wa s
intended .

In its general form the notion of joint actions can be seen as an extension of the rendezvous : it is not restricted to
two-process operations, and the guards are much more general than what can be directly implemented in Ada .

111

IMPACT ON DESIGN METHODS

In its full generality, the concept of joint actions is not suitable for an implementation language . The view we have
is that the design of a real-time system is first given in terms of general joint actions, and is then transformed step-
wise into a form that can be mechanically translated into the implementation language . The common base of syn-
chronous communication makes Ada a suitable target for this process .

Finally, we give a few comments about the design method we envisage . Work is in progress to test these ideas wit h
realistic case studies of real-time systems, and to develop tools to support such a design process .

The processes of a system are determined at a relatively early stage. Object-oriented design and the physical loca-
tion of the data (in a distributed system) give some guidance here: processes are carriers of their local data in th e
first place . However, susequent transformations may combine several processes (for efficiency), or introduce addi-
tional ones (interface tasks) .

The initial design is easier to verify if it uses multiprocess actions with non-separable guards. Transformations tha t
lead from non-separable to separable guards have been considered in [1] . Usually such a process requires introduc-
tion of auxiliary actions . Problems of splitting complex actions into simpler ones, and the connections of this pro-
cess to the logics of knowledge have been discussed in [6] . In general, none of such transformations is trivial, bu t
tools can be developed to support them and to check whether mechanical translation into the target language can b e
carried out .

An essential property of the design process is that the granularity of atomic events is gradually refined, while som e
of the parallelism is introduced that is initially hidden . This possibility for refinement of atomicity should be con-
sidered very important in any design method for real-time systems : the most intricate problems often relate to th e
fine degree of atomicity in the implementation .

Joint actions can also be seen as a production language for distributed systems . This extends the application of the
production language paradigm to the design of concurrent processes and real-time systems .

REFERENCE S

1.

	

R . J . R. Back and R. Kurki-Suonio, "Decentralization of process nets with a centralized control" . 2nd ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 131-142, August 1983 .

2. --, "A case study in constructing distributed algorithms : distributed exchange sort" . Proceedings of the Winter
School on Theoretical Computer Science, pp . 1-33 . Finnish Society of Information Processing Science, Janu-
ary 1984 .

3.

	

--, "Co-operation in distributed systems using symmetric multi-process handshaking" . Abo Akademi, Depart-
ment of Information Processing, Report A 34, 1984 .

4.

	

--, "Serializability in distributed systems with handshaking" . Department of Computer Science, Carnegie -
Mellon University, Report CMU-CS-85-109, 1985 .

5.

	

R . J . R. Back, E . Hartikainen, and R. Kurki-Suonio, "Multi-process handshaking on broadcasting networks" .
Abo Akademi, Department of Information Processing, Report A 42, 1985 .

6. R. Kurki-Suonio, "Towards programming with knowledge expressions" . Proceedings of the 13th ACM Sym-
posium on Principles of Programming Languages, pp. 140-149 . Association for Computing Machinery, Janu-
ary 1986 .

112

