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Abstract. We present three results on divisibility monoids. Theséshility monoids were intro-
duced in [11] as an algebraic generalization of Mazurkiewiace monoids. (1) We give a decid-
able class of presentations that gives rise precisely @iadibility monoids. (2) We show that any
divisibility monoid is an automatic monoid [5]. This impighat its word problem is solvable in
quadratic time. (3) We investigate when a divisibility maheatisfies Kleene’s Theorem. It turns
out that this is the case iff the divisibility monoid is a @tal monoid [25] iff it is width-bounded.
The two latter results rest on a normal form for the elemehasdivisibility monoid that generalizes
the Foata normal form known from the theory of Mazurkiewiezes.

1 Introduction

Different mathematical structures have been proposed tiefrtbe behavior of con-
current systems, among them process algebras, sets @lllyastdered sets, Petri nets
etc. One particular approach in this line of research isitiedduced by Mazurkiewicz
[21], now known as trace monoids. Since Mazurkiewicz’s oeon that trace monoids
can be used to model the behavior of 1-safe Petri nets, mgelaneh has dealt with
the topic, see [9] for a collection of surveys. Despite tiseiccess, certain limitations
of trace monoids have been observed. Therefore, severatajeations were consid-
ered. One of these generalizations are divisibility moadi®]! In this paper, we de-
scribe the relation to other classes of monoids known inrtezal computer science,
namely to automatic [17], rational [25] and Kleene monoiscorollaries, we obtain
a quadratic lower bound for the complexity of the word probknd a characterization
of those divisibility monoids that satisfy Kleene’s thewre

Mazurkiewicz traces model the sequential behavior of allghisystem in which
the order of two independent actions is regarded as irreted@ne considers pairs
(X, I) whereX is the set of actions, andis a symmetric and irreflexive binary relation
on Y’ describing the independence of two actions. The trace ndaoroiree partially
commutative monoid( Y, ) is then defined as the quotieht /~ where~ is the
congruence on the free monald" generated by all equation$ ~ ba with (a,b) €
1. Thus, originally, trace monoids are defined by a decidalalescof presentations.

! Similar monoids have been considered in [7, 6] where theyedated to braid and other groups traditionally of
interest in mathematics.



An algebraic characterization of trace monoids was givdy tater by Duboc [13].
Divisibility monoids are a lattice theoretically easy gealzation of these algebraic
conditions. Ouir first result (Theorem 4) describes a dedédalass of presentations
that give rise precisely to all divisibility monoids. Sinttee canonical presentations for
trace monoids belong to this class, our result can be seem @gtension of Duboc’s
characterization to the realm of divisibility monoids.

For trace monoids, the word problem can be solved in linea {B]. From our pre-
sentation result, an exponential algorithm for the wordjam in divisibility monoids
follows immediately. But we show that one can do much beff&e work on au-
tomatic groups [15] has been generalized to the realm ofgrennps. Intuitively, a
semigroup is automatic if it admits a presentation suchttieéquality can be decided
by an automaton and such that the multiplication by genesatan be performed by
an automaton [17, 5]. In particular, Campbell et al. [5] skdwhat the word problem
for any automatic semigroup is solvable in quadratic timeedrem 8 shows that any
divisibility monoid is an automatic semigroup. Hence, wa aafer from the result
of Campbell et al. that the word problem for any divisibilityonoid can be solved
in quadratic time. We do not know whether this result can beraved, but we have
serious doubts that a linear time algorithm exists. Kler® fhowed that in a free
finitely generated monoid the recognizable languages a&galy the rational ones.
It is known that in general this is false, but Kleene’s restds generalized in several
directions, e.g. to formal power series by Schitzenbei2@; to infinite words by
Buichi [4], and to rational monoids by Sakarovitch [25]. Ihthese cases, the notions
of recognizability and of rationality were shown to coireidrhis is not the case in
trace monoids any more. Even worse, in any trace monoid {whicot a free monoid),
there exist rational languages that are not recognizaliiea Brecise description of the
recognizable languages in trace monoids using c-ratiofakssions could be given
by Ochmanski [22]. A further generalization of Kleene'slabchmahski’s results to
concurrency monoids was given in [10]. The proofs by Ochskass well as by Droste
heavily used the internal structure of the elements of theesponding monoid. The
original motivation for the consideration of divisibilitponoids in [12] was the search
for an algebraic version of these proofs. We succeeded sigatvat in a divisibility
monoid with finitely many residuum functions, the recogbiealanguages coincide
with the (m)c-rational ones (cf. [12] for precise definittoof these terms). Thus, two
main directions of generalization of Kleene’s Theorem imids are represented by
Sakarovitch’s rational monoids and by trace monoids. Stheeonly trace monoids
that satisfy Kleene’'s Theorem are free monoids, these twnextions are “orthogo-
nal”, i.e. the intersection of the classes of monoids in @eTation is the set of free
monoids. In [12] we already remarked that there are diVisfanonoids that satisfy
Kleene’s Theorem and are not free. Thus, our further exdensi Ochmanski’s result
to divisibility monoids [12] is not “orthogonal” any moren lthis paper, we describe
the class of divisibility monoids that satisfy Kleene’s Dhem. Essentially, Theorem
13 says that a divisibility monoid satisfies Kleene’s Theoriéand only if it is ra-
tional if and only if it is width-bounded. Thus, in the cont®f divisibility monoids,
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the classes of Kleene monoids and rational monoids coirveideh is not the case in
general [23], and we give an internal characterization e§¢hmonoids.

Our proofs that any divisibility monoid is automatic as wedl the proof that any
divisibility monoid satisfying Kleene’s Theorem is ratapnuse a normal form for
the elements of a divisibility monoid. This normal form gealezes the Foata normal
form from trace theory. It is studied in Section 3. Furthereave rely on the results
by Campbell et al. from [5] on automatic semigroups, by Sakiéch from [25] on
rational monoids, on basic properties of distributiveitats that can be found in [2]
and on Ramsey’s Theorem [24].

2 Basic definitions

2.1 Order and monoid theoretic definitions

Let (P, <) be a partially ordered set ande P. By |y, we denote th@rincipal ideal
generated by, i.e. the se{z € P | v < y}. Forz,y € P,we writex —< yif x <y
and there is no element properly betweeandy. A setA C P is anantichainif
any two distinct elements of are incomparable. Theidth of a partially ordered set
(P, <) is the supremum over all natural numbersuch that there exists an antichain
A C P with n = |A|. The width of P is denoted byu (P, <). If the width of (P, <) is
finite, any antichain inP has at most (P, <) elements. If the width is infinite,P, <)
contains finite antichains of arbitrary size. In particutae width of a finite partially
ordered set is always finite. ghainis a setC C P whose elements are mutually
comparable. Fox € P, theheighth(z) in the pose( P, <) is the maximal size of a
chain all of whose elements are properly belavrhelengthof the poset P, <) is the
maximal height of its elements.

A latticeis a partially ordered sétP, <) where any two elements y € P admita
supremum: V y and an infimume: Ay, i.e. a least upper and a largest lower bound. The
lattice (P, <) isdistributiveif for any =, y, = € P we haverV (yAz) = (zVy)A(zVz).
For many results concerning lattices see [2]. In partic@ay two maximal chains in
a finite distributive lattice have the same size.

A triple (M, -, 1) is amonoidif M is a set, : M x M — M is an associative
operation and € M is theunit elemensatisfyingl - * = = - 1 = z for anyx € M.
Let (M,-,1) be a monoid and{ C M. Then, by(X) we denote the submonoid of
M generated byX, i.e. the intersection of all submonoids &f that containX. If
(X) = M, X is aset of generators af/. The monoid} is finitely generatedf it has
a finite set of generators. Léf be a set. TherX* denotes the set of all words over
X. With the usual concatenation of words and the empty wordnatselement, this
becomes &ee monoid generated by.

A subsetl. of a monoid M is rational if it can be constructed from the finite
subsets of\/ by the operations concatenatigrunionu and iteratiory.) (also known
as Kleene-star). A sdét C M is recognizabléff there exists a finite monoids, -, 1)
and a homomorphism : M — S such thatL = 5 '5(L). Recognizable sets are
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sometimes called recognizablguagesin general, the sets of recognizable and of
rational subsets of a monoid are different and even incoatgar If the notions of
recognizability and rationality coincide in a monaid, then the monoid/ is said to

be aKleene monoidKleene showed that this holds in free finitely generated s

Kleene’s Theorem [18].Let X be a finite set. Then a sét C X* is rational iff it is
recognizable.

Let X be a setand : X* — X™* a function which is not necessarily an homo-
morphism. Let furthermor@/ be a monoid. The functioa is anormal form function
for M if it is idempotent, the kerndler(5) = {(v,w) € X* x X* | 5(v) = B(w)}
is a monoid congruence, add“/ ker(5) = M. A monoid M is rational [25] if there
exist a finite alphabek and a normal form functiop : X* — X* for M such that
{(v,B(v)) | v € X*} is a rational subset of the monald* x X™.

In [25, 23], the authors are particularly interested in atesproperties of the class
of rational monoids. Sakarovitch [25, Theorem 4.1] alsonsdiinat any rational monoid
is a Kleene monoid (there are Kleene monoids which are niotnat see [23] for an
example).

2.2 Divisibility monoids

Let M = (M, -, 1) be a monoid. We call/ cancellativelf = -y -z =z -y'- z implies

y =y foranyz,y,y', 2 € M. Thisin particular ensures thaf does not contain a zero
element (i.e. an elementsuch that - = = = - z = z foranyx € M). Forz,z € M, x

is a left divisor ofz (denotedr < :z) if there isy € M such thatr - y = z. In general,
the relation< is not antisymmetric, but reflexive and transitive, i.e.y@qgoder.

Lemma 1. Let (M, -, 1) be a cancellative monoid and € M. Then the mapping
a:(M,<)— (a-M,<)defined byi(x) := a - x is a preorder isomorphism.

Let ¥ := (M \ {1}) \ (M \ {1})2. The set¥ consists of those elements of
that do not have a proper divisor, its elements are catleducible Note thatY is
contained in any set generating.

Definition 2. A monoid(/, -, 1) is called aleft divisibility monoid provided the fol-
lowing hold

1. M is cancellative and its irreducible elements form a finiteafeyenerators ofi/,
2. x N\ y exists for any:, y € M, and
3. ({x, <) is afinite distributive lattice for any € M.

A left divisibility monoid isvidth-boundedf there exists a natural number e N such
thatw(lz, <) < nforanyz € M, i.e. if the widths of the distributive latticés: are
uniformly bounded.



Note that by the third axiom the prefix relation in a left dilsisty monoid is a
partial order relation. Since, by Lemmal,< z impliesz - y < x - z, a left divis-
ibility monoid is a left ordered monoid. Ordered monoids véhthe order relation is
the intersection of the prefix and the suffix relation wereestigated e.g. in [2] un-
der the name “divisibility monoid”. Despite that we requinere than just the fact that
(M, -, <) be aleft ordered monoid, this might explain why we call thensids defined
above “left divisibility monoid”. Since Birkhoff’s dividiility monoids will not appear
in our investigations any more, we will simply speak of “diNdility monoids” as an
abbreviation for “left divisibility monoid”. “Divisibility semigroups” are investigated
in several papers by Bosbach, e.g. [3]. Despite the sirtylaiffi the name, we bap-
tized our monoids independently and there seems to be noatdirelation between
Bosbach'’s divisibility semigroups and our divisibility moids.

Let (M,-,1) be a divisibility monoid and let:,y € M with = -y = 1. Then
1 <2 < 1impliesz = 1 since by the third axiomr is a partial order. Hence we have
y=x -y =1, i.e. there are no proper divisors of the unit element.

By the second requirement on divisibility monoids, the jgaxrder (1, <) can
be seen as the set of compacts of a Scott-domain. This ircplartiensures that any
setA C M that is bounded above i/, <) has a supremum in this partial order.
Since, in addition, any element éf dominates a finitedistributive lattice,(M, <)
is even the set of compacts of a dl-domain (cf. [1,27]). Thus,have in particular
(xVy)ANz=(xAz)V(yAz)whenever the left hand side is defined.

Example 3.Using standard results from trace theory [21, 9], it is gas@len that any
(finitely generated) trace monoid is a divisibility monoMow let &' = {a, b, ¢, d}
be an alphabet. Let' be the least congruence on the free monGidthat identifies
the wordsab andcd. In a trace monoid, the equalith = cd implies{a, b} = {c, d}
for any generators, b, ¢, d. Hence the quotient monoit* /~' is not a trace monoid.
But, as we will see later, it is a divisibility monoid. Similg, let ~? identify aa and
bb. Again, ¥* /~? is no trace but a divisibility monoid. Finally, identifying: andbc
again results in a divisibility monoid as Theorem 4 belomgso

Since a divisibility monoid(}M, -, 1) is generated by the sét of its irreducible
elements, there is a natural epimorphisan : X* — M. Let |z| denote the length of
the lattice|z which equals the size of any maximal chain deduced .by is easily
checked that: —< y iff there existsa € X with x - nat(a) = y foranyx,y € M.
Hence the maximal chains ipx correspond to the words € Y* with nat(w) = .
This implies that any two such words have the same lengthmdgcialgz|.

Sincenat is an epimorphism, there is a congruercen the free monoidt* such
that X* /~ is isomorphic to the divisibility monoid}/, -). Hence, we can reformulate
the stipulations in Definition 2 into requirements on thegrence~. E.g. the prop-
erty of M to be cancellative would be reformulated to “for any words, w € X¥*

2 We just remark that the requirement (in the definition of asilility monoid) on the latticeg to be finite is
not really necessary since it already follows from the o#tgulations [12].
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with uv ~ uw or vu ~ wu, we getv ~ w”. Although such a reformulation might look
more effective than the original definition, it is not finitenee it makes statements
on words of arbitrary length. We now show that there is a deail class of finite
representations that gives rise precisely to divisibiynoids.

In[12, Lemma 3.4], we showed that the congruerds generated by equations of
the fromab ~ cd fora,b,c,d € X. So letY be a finite set and let be a congruence
on the free monoid.* that is generated by all equivaleneés~ cd for a, b, ¢, d € ¥.
We aim at a characterization of the fact thdt = ¥*/~ is a divisibility monoid.
In this monoid, the elements froml (more precisely, the equivalence clasgedor
a € X)) are the irreducible elements sinsds length preserving. Henc¥ is finitely
generated by its irreducible elements. To ensureth# cancellative, we need at least
that the following holds for any elemenisbh, ¢, ', ¢ € X

abc ~ ab'c orbca ~ V'c’'a impliesbe ~ 'c. Q)

Note that (1) requires the cancellation for words of lengjtbnly. In the same spirit,
we now weaken the second requirement concerning the egestdrinfima: Suppose
b # ¢, butab ~ a't’ andac ~ a'c for somea, b, c,a’, V', ¢ € X. Then one can infer
from (1) thatab + ac. Since~ is length preservingya| and [«'] are maximal lower
bounds of[ab] and [ac]. Since by the second axiom of divisibility monoids infima
of any two elements exist, we obtain= «’. Thus, the following requirement is a
weakening of the above mentioned second axiom to words gfhen

ab ~ da't',ac ~ d'd andb # cimply a = o (2

for any letters:, b, ¢, d’, b, ¢ € X. The third axiom on divisibility monoids is restricted
verbatim to words of length:

({([abc]), <) is a distributive lattice 3)

for any lettersu, b, ¢ € Y. The following theorem states that the three properties we
identified are sufficient to characterize all divisibilityomoids:

Theorem 4. Let X be a finite set andv a set of equations of the fornd ~ cd with
a,b,c,d € X. Let~ be the least congruence di* containingE. ThenX*/~ is a
divisibility monoid if and only if (1), (2) and (3) hold for g, b,c,d', V. ¢ € X.
Conversely, each divisibility monoid arises this way.

We indicated that indeed any divisibility monoid arisestivay. For the first state-
ment letR = {ab — cd | (ab,cd) € E} be the (Symmetric) semi Thue system asso-
ciated with the set of equatiorfs. Any two R-equivalent words can be transformed
into each other by at most one application of a rule frBnat the first position (this
statement is proved using deep results from the theory ofsedular and of distribu-
tive lattices [2]). From this property d?, one can then infer that* /~ is a divisibility
monoid (cf. [19, Chapter 8] or [20]).



Note that for a finite set of equatiosof the formab ~ cd, it can be checked effec-
tively whether the three properties (1), (2) and (3) ares§iatl by the least congruence
containingFE. Hence Theorem 4 describes a decidable class of finite geggaTs that
give rise to the class of all divisibility monoids. Christi®ech of Dresden using the
GAP4-system [16] computed that there aié divisibility monoids with4 generators
andg&371 divisibility monoids with5 generators as opposed to only 10 resp. 34 trace
monoids.

3 A Foata Normal Form

Throughout this section, I€t\/, -, 1) be a fixed divisibility monoid and let’ denote
the set of its irreducible elements. In this section, we défine a Foata normal form
for elements ofM that generalizes the known Foata normal forms from the theor
of Mazurkiewicz traces. These Foata normal forms are this ti@sour proofs in the
following sections that any divisibility monoid is auton@aand that a width-bounded
divisibility monoid is rational. We define the setadfques to consist of all nonempty
subsets of that are bounded above, i.€/,= {A C ¥ | ) # A and sup(A) exists
Next we define the sétNF C &* of Foata normal forms as

{A1Ay. . A, e X |Vt e A, VB e @ :supB # (sup 4;) -tforl <i < n}.

Since the condition that constitutes membership'NE is local, FNF is a rational
language in the free monoi@*. Let o’ : & — M denote the mapping that as-
sociates with any cliquel € & its supremumsup A in M. This mapping extends
uniquely to a monoid homomorphism from &* to M. Thena(A;A5... A,) =
(sup Ay) - (sup Ay) - - - (sup A,). This mapping is not injective, but surjective since
a({arH{as} .. {a,}) = a1 - as---a, foranya; € ¥ and X generatesV/. The set
FNF is particularly useful since it provides normal forms foe thlements ofi/, i.e.
since the restriction of to FNF is a bijection:

Lemma 5. The mappingy [ FNF : FNF — M is bijective.

Proof. To show injectivity, one proves for any; A, ... A,, € FNF that A, is the set

of irreducible elements € ¥ that dividea(A; A ... A,,) and continues by induction.
To show surjectivity, one builds the Foata Normal Form: @fiductively by setting

rr=x,A ={a€X]|a<z},anda(A;) -z = ;. O

Thus, for anyr € M, the seta!(z) N FNF is a singleton. We denote the unique
preimage of: in FNF by fuf(x) and call it theFoata Normal Fornof z.

Now let5 : &* — &* be defined by; = fnf o o, i.e. 5(W) is the Foata normal
form of the elementy(W) for any word W over the alphabe®. This function is
idempotent. Sincénf is injective, we obtairker(a) = ker(/). Sincea is a monoid
homomorphismker(3) is a congruence. Finallg/*/ ker(3) = &*/ker(a) = M
holds since is surjective. Thus, we obtain
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Lemma 6. The functiontnf o o : &* — &* is a normal form function for the divisi-
bility monoid M .

Next we show that the Foata Normal Formeft(w) can be computed from the
wordw € Y* by an automaton. In general, this automaton has infinitelgynssates,
but for width-bounded divisibility monoids its accessilgart will be shown to be
finite.

An automaton over the monoflis a tupled = (Q, S, E, I, F') where
1. ) is a set ofstates
2. EC Q@ xS x (Qis aset oftransitions and
3. I, F C @ are the sets dhitial and final statesrespectively.

The automatomnt isfiniteif £ is. Acomputationn A is a finite sequence of transitions:
Po gpl EPQ"'%pn-

It is successfuif p, € [ andp, € F. Thelabel of the computation is the element
ay - as - - - a,, of the monoidS. For a computation with first stagg, last statep,, and
labela, we will usually writep, — p,, without mentioning the intermediate states. The
behavior ofA is the subsetA| of S consisting of labels of successful computations
in A.

Lemma 7. There exists an automatof,, with state setM x (& U {=}) over the

monoidS* x @* that has a computatiofi, ) "2 (. ¢ iff
B, = C, fnf(nat(w) - z) = By By ... B, and|fnf o nat(w)| = m.
foranyw € ¥*, B; € @for1 <i<m,z e MandC € &. = X U {e}.

Proof. For (x, A),(z,C) € M x &. and(a,B) € X x ., there is a transition
(o, 4) Y (2, 0) iff

l.a<z,B=c¢a-z=ux,andC = A, or

2.afx,B=C+#¢, AB € FNF,anda - z = z - (sup B). O

We can think of(1, ¢) (w0 B1 By Bm) (z,C) as denoting the fact that, on input of the

word w € ¥*, the automaton output8, B; . .. B,,, and reaches the state C'). Thus,

by the lemma above, the automaton stores the last lettes olitputB,, from & in

the second componeatof the state reached. Furthermore, it outputs the Foataalorm
form of some elementat(w)-z of M thatis an extension of the input. The “difference”
between the inputat(w) and the outputy(B; B, ... B,,) (seen as elements aff)
equalsz and is stored in the first component of the reached state. adteptoperty
mentioned in the lemma above ensures that the Foata normas fof nat(w) and of
nat(w) - z have the same length. Intuitively, the difference between the inputt (w)
and the outputv (B, B> . .. B,,) is not too “large”.

Note that the automaton outputs only element§'§t. Even more, if: = 1 the
automaton outputs the Foata normal form of the input. (let) be the only initial
state and let the set of final statesfdd x .. Then the behavior of the automaton
Ay is (the graph of) the functiofnf o nat : X* — &/*.
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4 Divisibility monoids are automatic — the word problem

Since the equations that define a divisibility monoid argtbmpreserving, the word
problem for any divisibility monoid is decidable. In thiscs®n, we show that it can
be solved in quadratic time.

For an alphabel, let . = YU{c} and¥, = . x X.\ {(¢,¢)}. Let furthermore
U= 5152...5, andw = tit,...t, be words over with s,,t; € X. We define

(Sl,tl)(SQ,tQ> o (Sn,tn)(€,tn+1><€,tn+2> .. <€,tm) if n <m
(v, W) = < (s1,t1)(82,t2) ... (Sps Tn) if n=m

(s1,t1)(s2,t2) oo (S tin) (St €) (St €) oo (Sp,e)  ifn>m

Then(v,w)® is an element of the free monold;. Now let M be a monoid X a finite
set, . C X* a recognizable language in the free monditdandn : ¥* — M a
homomorphism. TheY' L, n) is anautomatic structure fod/ [5] if n(L) = M and
if the sets

L ={(v,w)®|v,we Landn(v) =n(w)}and
L,={(v,w)°|v,w e Landn(va) =n(w)}

are rational subsets of; for anya € ¥. The monoidV is anautomatic monoidf it
admits an automatic structure.

We will show that any divisibility monoid is automatic. Mopeecisely, letV be
a divisibility monoid. ForA € &, choose a wordv, € X* with nat(w4) = a(A).
Then the mapping¥ — Y* : A — w, admits a unique extension to a monoid
homomorphism) : @* — Y*. Let L = ¢)(FNF) denote all words oveE of the form
P(A)Y(As) ... (A,) for some cliqguesd; such thatd; A, ... A, is a Foata normal
form. We are going to prove that the trigl&, L, nat) is an automatic structure for the
divisibility monoid M:

Note thatny = nat o). Since, by Lemma 5, the mapping| FNF is surjective, we
obtainM = «(FNF) = nat o¢p(FNF) = nat(L).

Next, we show thaf — is rational. Recall thaFNF C &* is rational. Hence its
image L with respect to the homomorphismis rational, too. This implies imme-
diately that the se{(v,v)® | v € L} is rational inX}. Now letv,w € L with
nat(v) = nat(w). Thenv = ¢ o fnf o nat(v) = 1 o fnf o nat(w) = w. Hence
we showed._ = {(v,v)° | v € L} which is rational in%3.

It remains to show that for € Y the setl, is rational inX. Note thatl, =
{(v,¢¥(fnf o nat(va))) | v € L}. To show that this set is rational, we have to construct
an automaton that outputs fnf o nat(va)) on input ofv for v € L. Since this can
indeed be achieved (cf. [20]), we obtain

Theorem 8. Let M be a divisibility monoid. Thed/ is an automatic monoid.

Using that the word problem for automatic monoids can beesbin quadratic
time [5], we obtain immediately



Corollary 9. Let M be a divisibility monoid. Then the word problem fbf can be
solved in quadratic time.

5 When does Kleene’s Theorem hold?

As mentioned in the introduction, Kleene’s Theorem holda divisibility monoid M/
iff it is width-bounded iff it is rational. To obtain this ralt, we first sketch the proof
that any width-bounded divisibility monoid is rational. d brucial step in the proof is
expressed by the following lemma

Lemma 10. Let (M, -, 1) be a width-bounded divisibility monoid and € N such
thatw(lz, <) < nforanyxz € M. Letz,z € M with |[fnf(xz)| = |[fnf(x)|. Then
|z] < 2(n+1)|X].

Using Lemma 7, we obtain that the automatbpn has only finitely many reachable
states forM/ width-bounded, i.e., the reachable parbf the automatord ,, is a finite
automaton. Note that the behavior.éfand that ofA,, coincide. Thus, by [14], the
behavior A| = |Ay| = {(w, fnf o nat(w)) | w € X*} is a rational set in the monoid
AFx .

We consider again the homomorphigm &* — Y* that we constructed in the
previous section. Since is a homomorphism, the sétiV, v(W)) | W € &*} is
rational in&* x X*. Furthermorenat oy) = a and thereforénf o o = fnf o nat o).
Hence the functiofinf o « is the product of two rational functiorisf o nat and. This
implies by [14] that the sef(WW, fnf o (1)) | W € &*} is rational sincel™ is a free
monoid. Recall that by Lemma 6, the functiéif o  is a normal form function for
the divisibility monoid}M . Hence we showed that a width-bounded divisibility monoid
indeed admits a rational normal form function, i.e. is aoal monoid:

Proposition 11. Any width-bounded divisibility monoid is rational.

By [25, Theorem 4.1], this proposition implies that any wkiditounded divisibility
monoid is a Kleene monoid. The remainder of this sectionvetdel to the inverse im-
plication: LetM be a divisibility monoid that is not width-bounded, i.e.; &myn € N,
there isz € M such that the width of the distributive latti¢e is at least:. This im-
plies, that for any: € N, there exists € M, such that the latticg{1,2, 3, ..., k}?, <)
(with the coordinatewise order) can be embedded into thiedaz. Let f be such
embedding. If the divisibility monoid// has finitely many residuum functions (see
below), we can apply Ramsey’s Theorem [24] twice and obtakd i < i/ < n,
1< j<j <mn,andz,y € M such thatf(i,j) -z = f(i,j"), f(i'.5) -z = f(i', j"),
fi,5)-y= f(, 7),andf(i,5")-y = f(¢, j'). By cancellation, this implies-y = y-x.
Furthermorer || y sincef is a lattice embedding ant/ is cancellative. This was the
proof of the following lemma that we state after defining desim functions: Let\/
be a divisibility monoid and:, y € M. We say that: andy arecomplementaryde-
notedr || y) if # Ay = 1 and the sef{x, y} is bounded above. Hence, two nonidentity
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elements of\/ are complementary if they are complements in one of thecéstiz

with z € M. Since bounded elements have a supremum, there exists)M with

x -y = x Vy. This elemeny’ is uniquely determined by andy sinceM is cancella-

tive. We call it theresiduum ofy after = and denote it by, (y). Thus,r, is a partial
function from M to M whose domain is the set of elements that are complements of
x. Let Ry, denote the set of all partial functions for somez € M. The divisibility
monoid M is said to havdinitely many residuum functionisR,; is finite2

Lemma 12. Let (M, -, 1) be a divisibility monoid with finitely many residuum func-
tions that is not width-bounded. Then there exisy € M \ {1} such that: || y and

'/I/‘ . y = y . .’Ij.
Now we can characterize the divisibility monoids that gtideene’s Theorem.

Theorem 13. Let (M, -, 1) be a divisibility monoid. Then the following assertions are
equivalent

1. M is width-bounded,

2. M is a rational monoid and has finitely many residuum functj@amsl

3. M is a Kleene monoid and has finitely many residuum functions.

Proof. A width-bounded divisibility monoid is rational by Proptisn 11. Now let
si,t; € Mforl < i < nsuchthatr = sy -sy---s, andy = t; - t5---1, are
complementary. Then the elements sy - s, Vit - ty---t,_, for1 < k < n form
an antichain that is bounded above by= x Vv y. Hence the latticg z has width at
leastn — 1. Now let M be width-bounded such that the latticeshave width at most
n — 2. Then, as we just saw, at most one of two complementary elesnoérd/ has
length at leasti. Let M,, denote the finite set of elements &f of length at most.
Forx € M\ M,, the domain of, is therefore contained if/,, and, since-, is length-
preserving, so is its image. Hence there are only finitelyymasiduum functions,,
forx € M\ M,. SinceM,, is finite, M therefore has only finitely many residuum
functions.

Any rational monoid is a Kleene monoid by [25, Theorem 4.bf. fhe remaining
implication assume by contradictidd not to be width-bounded. Then, by Lemma 12,
there arer,y € M\ {1} suchthat:-y = y-x andz || y. Hence the mappin@, 1) — «
and(1,0) — y can be extended to a monoid embedding fdinx N, +) into A/. The
image of{(n,n) | n € N} in M under this embedding is a rational set which is not
recognizable. Thusy/ is not a Kleene-monoid. O

6 Open questions

There are several open questions that call for a treatmettiel lower bound for the
complexity of the word problem given in Corollary 9 optimaé& did not consider
the nonuniform word problem, i.e. the complexity of an aitfon that takes as input a

3 It is not known whether this class is a proper subclass ofialitility monoids.
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presentation as described in Theorem 4 and two words andtsughether these two
words denote the same monoid element. Furthermore, walstitiot know whether
there exist divisibility monoids with infinitely many residm functions.
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