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Abstract. We present three results on divisibility monoids. These divisibility monoids were intro-
duced in [11] as an algebraic generalization of Mazurkiewicz trace monoids. (1) We give a decid-
able class of presentations that gives rise precisely to alldivisibility monoids. (2) We show that any
divisibility monoid is an automatic monoid [5]. This implies that its word problem is solvable in
quadratic time. (3) We investigate when a divisibility monoid satisfies Kleene’s Theorem. It turns
out that this is the case iff the divisibility monoid is a rational monoid [25] iff it is width-bounded.
The two latter results rest on a normal form for the elements of a divisibility monoid that generalizes
the Foata normal form known from the theory of Mazurkiewicz traces.

1 Introduction

Different mathematical structures have been proposed to model the behavior of con-
current systems, among them process algebras, sets of partially ordered sets, Petri nets
etc. One particular approach in this line of research is thatintroduced by Mazurkiewicz
[21], now known as trace monoids. Since Mazurkiewicz’s observation that trace monoids
can be used to model the behavior of 1-safe Petri nets, much research has dealt with
the topic, see [9] for a collection of surveys. Despite theirsuccess, certain limitations
of trace monoids have been observed. Therefore, several generalizations were consid-
ered. One of these generalizations are divisibility monoids [12].1 In this paper, we de-
scribe the relation to other classes of monoids known in theoretical computer science,
namely to automatic [17], rational [25] and Kleene monoids.As corollaries, we obtain
a quadratic lower bound for the complexity of the word problem and a characterization
of those divisibility monoids that satisfy Kleene’s theorem.

Mazurkiewicz traces model the sequential behavior of a parallel system in which
the order of two independent actions is regarded as irrelevant. One considers pairs(�; I) where� is the set of actions, andI is a symmetric and irreflexive binary relation
on� describing the independence of two actions. The trace monoid or free partially
commutative monoidM (�; I) is then defined as the quotient�?=� where� is the
congruence on the free monoid�? generated by all equationsab � ba with (a; b) 2I. Thus, originally, trace monoids are defined by a decidable class of presentations.

1 Similar monoids have been considered in [7, 6] where they arerelated to braid and other groups traditionally of
interest in mathematics.



An algebraic characterization of trace monoids was given only later by Duboc [13].
Divisibility monoids are a lattice theoretically easy generalization of these algebraic
conditions. Our first result (Theorem 4) describes a decidable class of presentations
that give rise precisely to all divisibility monoids. Sincethe canonical presentations for
trace monoids belong to this class, our result can be seen as an extension of Duboc’s
characterization to the realm of divisibility monoids.

For trace monoids, the word problem can be solved in linear time [8]. From our pre-
sentation result, an exponential algorithm for the word problem in divisibility monoids
follows immediately. But we show that one can do much better:The work on au-
tomatic groups [15] has been generalized to the realm of semigroups. Intuitively, a
semigroup is automatic if it admits a presentation such thatthe equality can be decided
by an automaton and such that the multiplication by generators can be performed by
an automaton [17, 5]. In particular, Campbell et al. [5] showed that the word problem
for any automatic semigroup is solvable in quadratic time. Theorem 8 shows that any
divisibility monoid is an automatic semigroup. Hence, we can infer from the result
of Campbell et al. that the word problem for any divisibilitymonoid can be solved
in quadratic time. We do not know whether this result can be improved, but we have
serious doubts that a linear time algorithm exists. Kleene [18] showed that in a free
finitely generated monoid the recognizable languages are precisely the rational ones.
It is known that in general this is false, but Kleene’s resultwas generalized in several
directions, e.g. to formal power series by Schützenberger[26], to infinite words by
Büchi [4], and to rational monoids by Sakarovitch [25]. In all these cases, the notions
of recognizability and of rationality were shown to coincide. This is not the case in
trace monoids any more. Even worse, in any trace monoid (which is not a free monoid),
there exist rational languages that are not recognizable. But a precise description of the
recognizable languages in trace monoids using c-rational expressions could be given
by Ochmański [22]. A further generalization of Kleene’s and Ochmański’s results to
concurrency monoids was given in [10]. The proofs by Ochmański as well as by Droste
heavily used the internal structure of the elements of the corresponding monoid. The
original motivation for the consideration of divisibilitymonoids in [12] was the search
for an algebraic version of these proofs. We succeeded showing that in a divisibility
monoid with finitely many residuum functions, the recognizable languages coincide
with the (m)c-rational ones (cf. [12] for precise definitions of these terms). Thus, two
main directions of generalization of Kleene’s Theorem in monoids are represented by
Sakarovitch’s rational monoids and by trace monoids. Sincethe only trace monoids
that satisfy Kleene’s Theorem are free monoids, these two directions are “orthogo-
nal”, i.e. the intersection of the classes of monoids in consideration is the set of free
monoids. In [12] we already remarked that there are divisibility monoids that satisfy
Kleene’s Theorem and are not free. Thus, our further extension of Ochmański’s result
to divisibility monoids [12] is not “orthogonal” any more. In this paper, we describe
the class of divisibility monoids that satisfy Kleene’s Theorem. Essentially, Theorem
13 says that a divisibility monoid satisfies Kleene’s Theorem if and only if it is ra-
tional if and only if it is width-bounded. Thus, in the context of divisibility monoids,
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the classes of Kleene monoids and rational monoids coincidewhich is not the case in
general [23], and we give an internal characterization of these monoids.

Our proofs that any divisibility monoid is automatic as wellas the proof that any
divisibility monoid satisfying Kleene’s Theorem is rational, use a normal form for
the elements of a divisibility monoid. This normal form generalizes the Foata normal
form from trace theory. It is studied in Section 3. Furthermore, we rely on the results
by Campbell et al. from [5] on automatic semigroups, by Sakarovitch from [25] on
rational monoids, on basic properties of distributive lattices that can be found in [2]
and on Ramsey’s Theorem [24].

2 Basic definitions

2.1 Order and monoid theoretic definitions

Let (P;�) be a partially ordered set andy 2 P . By #y, we denote theprincipal ideal
generated byy, i.e. the setfx 2 P j x � yg. Forx; y 2 P , we writex ��< y if x < y
and there is no element properly betweenx andy. A setA � P is anantichain if
any two distinct elements ofA are incomparable. Thewidth of a partially ordered set(P;�) is the supremum over all natural numbersn such that there exists an antichainA � P with n = jAj. The width ofP is denoted byw(P;�). If the width of (P;�) is
finite, any antichain inP has at mostw(P;�) elements. If the width is infinite,(P;�)
contains finite antichains of arbitrary size. In particular, the width of a finite partially
ordered set is always finite. Achain is a setC � P whose elements are mutually
comparable. Forx 2 P , theheighth(x) in the poset(P;�) is the maximal size of a
chain all of whose elements are properly belowx. Thelengthof the poset(P;�) is the
maximal height of its elements.

A lattice is a partially ordered set(P;�) where any two elementsx; y 2 P admit a
supremumx_y and an infimumx^y, i.e. a least upper and a largest lower bound. The
lattice(P;�) isdistributiveif for anyx; y; z 2 P we havex_(y^z) = (x_y)^(x_z).
For many results concerning lattices see [2]. In particular, any two maximal chains in
a finite distributive lattice have the same size.

A triple (M; �; 1) is a monoid if M is a set,� : M � M ! M is an associative
operation and1 2 M is theunit elementsatisfying1 � x = x � 1 = x for anyx 2 M .
Let (M; �; 1) be a monoid andX � M . Then, byhXi we denote the submonoid ofM generated byX, i.e. the intersection of all submonoids ofM that containX. IfhXi =M , X is aset of generators ofM . The monoidM is finitely generatedif it has
a finite set of generators. LetX be a set. ThenX? denotes the set of all words overX. With the usual concatenation of words and the empty word as unit element, this
becomes afree monoid generated byX.

A subsetL of a monoidM is rational if it can be constructed from the finite
subsets ofM by the operations concatenation�, union[ and iterationh:i (also known
as Kleene-star). A setL � M is recognizableiff there exists a finite monoid(S; �; 1)
and a homomorphism� : M ! S such thatL = ��1�(L). Recognizable sets are
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sometimes called recognizablelanguages. In general, the sets of recognizable and of
rational subsets of a monoid are different and even incomparable. If the notions of
recognizability and rationality coincide in a monoidM , then the monoidM is said to
be aKleene monoid. Kleene showed that this holds in free finitely generated monoids:

Kleene’s Theorem [18].LetX be a finite set. Then a setL � X? is rational iff it is
recognizable.

Let X be a set and� : X? ! X? a function which is not necessarily an homo-
morphism. Let furthermoreM be a monoid. The function� is anormal form function
for M if it is idempotent, the kernelker(�) = f(v; w) 2 X? � X? j �(v) = �(w)g
is a monoid congruence, andX?= ker(�) �= M . A monoidM is rational [25] if there
exist a finite alphabetX and a normal form function� : X? ! X? for M such thatf(v; �(v)) j v 2 X?g is a rational subset of the monoidX? �X?.

In [25, 23], the authors are particularly interested in closure properties of the class
of rational monoids. Sakarovitch [25, Theorem 4.1] also shows that any rational monoid
is a Kleene monoid (there are Kleene monoids which are not rational, see [23] for an
example).

2.2 Divisibility monoids

LetM = (M; �; 1) be a monoid. We callM cancellativeif x � y � z = x � y0 � z impliesy = y0 for anyx; y; y0; z 2M . This in particular ensures thatM does not contain a zero
element (i.e. an elementz such thatz � x = x � z = z for anyx 2M ). Forx; z 2M , x
is a left divisor ofz (denotedx � z) if there isy 2 M such thatx � y = z. In general,
the relation� is not antisymmetric, but reflexive and transitive, i.e., a preorder.

Lemma 1. Let (M; �; 1) be a cancellative monoid anda 2 M . Then the mappinga : (M;�) ! (a �M;�) defined bya(x) := a � x is a preorder isomorphism.

Let � := (M n f1g) n (M n f1g)2. The set� consists of those elements ofM
that do not have a proper divisor, its elements are calledirreducible. Note that� is
contained in any set generatingM .

Definition 2. A monoid(M; �; 1) is called aleft divisibility monoid provided the fol-
lowing hold

1. M is cancellative and its irreducible elements form a finite set of generators ofM ,
2. x ^ y exists for anyx; y 2 M , and
3. (#x;�) is a finite distributive lattice for anyx 2M .

A left divisibility monoid iswidth-boundedif there exists a natural numbern 2 N such
thatw(#x;�) � n for anyx 2 M , i.e. if the widths of the distributive lattices#x are
uniformly bounded.
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Note that by the third axiom the prefix relation in a left divisibility monoid is a
partial order relation. Since, by Lemma 1,y � z impliesx � y � x � z, a left divis-
ibility monoid is a left ordered monoid. Ordered monoids where the order relation is
the intersection of the prefix and the suffix relation were investigated e.g. in [2] un-
der the name “divisibility monoid”. Despite that we requiremore than just the fact that(M; �;�) be a left ordered monoid, this might explain why we call the monoids defined
above “left divisibility monoid”. Since Birkhoff’s divisibility monoids will not appear
in our investigations any more, we will simply speak of “divisibility monoids” as an
abbreviation for “left divisibility monoid”. “Divisibility semigroups” are investigated
in several papers by Bosbach, e.g. [3]. Despite the similarity of the name, we bap-
tized our monoids independently and there seems to be no intimate relation between
Bosbach’s divisibility semigroups and our divisibility monoids.

Let (M; �; 1) be a divisibility monoid and letx; y 2 M with x � y = 1. Then1 � x � 1 impliesx = 1 since by the third axiom� is a partial order. Hence we havey = x � y = 1, i.e. there are no proper divisors of the unit element.
By the second requirement on divisibility monoids, the partial order(M;�) can

be seen as the set of compacts of a Scott-domain. This in particular ensures that any
setA � M that is bounded above in(M;�) has a supremum in this partial order.
Since, in addition, any element ofM dominates a finite2 distributive lattice,(M;�)
is even the set of compacts of a dI-domain (cf. [1, 27]). Thus,we have in particular(x _ y) ^ z = (x ^ z) _ (y ^ z) whenever the left hand side is defined.

Example 3.Using standard results from trace theory [21, 9], it is easily seen that any
(finitely generated) trace monoid is a divisibility monoid.Now let � = fa; b; ; dg
be an alphabet. Let�1 be the least congruence on the free monoid�? that identifies
the wordsab andd. In a trace monoid, the equalityab = d impliesfa; bg = f; dg
for any generatorsa; b; ; d. Hence the quotient monoid�?=�1 is not a trace monoid.
But, as we will see later, it is a divisibility monoid. Similarly, let �2 identify aa andbb. Again,�?=�2 is no trace but a divisibility monoid. Finally, identifyingaa andb
again results in a divisibility monoid as Theorem 4 below shows.

Since a divisibility monoid(M; �; 1) is generated by the set� of its irreducible
elements, there is a natural epimorphismnat : �? ! M . Let jxj denote the length of
the lattice#x which equals the size of any maximal chain deduced by1. It is easily
checked thatx ��< y iff there existsa 2 � with x � nat(a) = y for anyx; y 2 M .
Hence the maximal chains in#x correspond to the wordsw 2 �? with nat(w) = x.
This implies that any two such words have the same length which equalsjxj.

Sincenat is an epimorphism, there is a congruence� on the free monoid�? such
that�?=� is isomorphic to the divisibility monoid(M; �). Hence, we can reformulate
the stipulations in Definition 2 into requirements on the congruence�. E.g. the prop-
erty ofM to be cancellative would be reformulated to “for any wordsu; v; w 2 �?

2 We just remark that the requirement (in the definition of a divisibility monoid) on the lattices#x to be finite is
not really necessary since it already follows from the otherstipulations [12].
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with uv � uw or vu � wu, we getv � w”. Although such a reformulation might look
more effective than the original definition, it is not finite since it makes statements
on words of arbitrary length. We now show that there is a decidable class of finite
representations that gives rise precisely to divisibilitymonoids.

In [12, Lemma 3.4], we showed that the congruence� is generated by equations of
the fromab � d for a; b; ; d 2 �. So let� be a finite set and let� be a congruence
on the free monoid�? that is generated by all equivalencesab � d for a; b; ; d 2 �.
We aim at a characterization of the fact thatM = �?=� is a divisibility monoid.
In this monoid, the elements from� (more precisely, the equivalence classes[a℄ fora 2 �) are the irreducible elements since� is length preserving. HenceM is finitely
generated by its irreducible elements. To ensure thatM is cancellative, we need at least
that the following holds for any elementsa; b; ; b0; 0 2 �:ab � ab00 or ba � b00a impliesb � b00: (1)

Note that (1) requires the cancellation for words of length3, only. In the same spirit,
we now weaken the second requirement concerning the existence of infima: Supposeb 6= , but ab � a0b0 anda � a00 for somea; b; ; a0; b0; 0 2 �. Then one can infer
from (1) thatab 6� a. Since� is length preserving,[a℄ and [a0℄ are maximal lower
bounds of[ab℄ and [a℄. Since by the second axiom of divisibility monoids infima
of any two elements exist, we obtaina = a0. Thus, the following requirement is a
weakening of the above mentioned second axiom to words of length2:ab � a0b0; a � a00 andb 6=  imply a = a0 (2)

for any lettersa; b; ; a0; b0; 0 2 �. The third axiom on divisibility monoids is restricted
verbatim to words of length3:(#([ab℄);�) is a distributive lattice (3)

for any lettersa; b;  2 �. The following theorem states that the three properties we
identified are sufficient to characterize all divisibility monoids:

Theorem 4. Let� be a finite set andE a set of equations of the formab � d witha; b; ; d 2 �. Let� be the least congruence on�? containingE. Then�?=� is a
divisibility monoid if and only if (1), (2) and (3) hold for any a; b; ; a0; b0; 0 2 �.
Conversely, each divisibility monoid arises this way.

We indicated that indeed any divisibility monoid arises this way. For the first state-
ment letR = fab ! d j (ab; d) 2 Eg be the (symmetric) semi Thue system asso-
ciated with the set of equationsE. Any two R-equivalent words can be transformed
into each other by at most one application of a rule fromR at the first position (this
statement is proved using deep results from the theory of semimodular and of distribu-
tive lattices [2]). From this property ofR, one can then infer that�?=� is a divisibility
monoid (cf. [19, Chapter 8] or [20]).
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Note that for a finite set of equationsE of the formab � d, it can be checked effec-
tively whether the three properties (1), (2) and (3) are satisfied by the least congruence
containingE. Hence Theorem 4 describes a decidable class of finite presentations that
give rise to the class of all divisibility monoids. Christian Pech of Dresden using the
GAP4-system [16] computed that there are219 divisibility monoids with4 generators
and8371 divisibility monoids with5 generators as opposed to only 10 resp. 34 trace
monoids.

3 A Foata Normal Form

Throughout this section, let(M; �; 1) be a fixed divisibility monoid and let� denote
the set of its irreducible elements. In this section, we willdefine a Foata normal form
for elements ofM that generalizes the known Foata normal forms from the theory
of Mazurkiewicz traces. These Foata normal forms are the basis for our proofs in the
following sections that any divisibility monoid is automatic and that a width-bounded
divisibility monoid is rational. We define the set ofcliquesC̀ to consist of all nonempty
subsets of� that are bounded above, i.e.,C̀ = fA � � j ; 6= A and sup(A) existsg

Next we define the setFNF � C̀ ? of Foata normal forms asfA1A2 : : : An 2 C̀ ? j 8t 2 Ai+18B 2 C̀ : supB 6= (supAi) � t for 1 � i < ng:
Since the condition that constitutes membership inFNF is local,FNF is a rational
language in the free monoidC̀ ?. Let �0 : C̀ ! M denote the mapping that as-
sociates with any cliqueA 2 C̀ its supremumsupA in M . This mapping extends
uniquely to a monoid homomorphism� from C̀ ? to M . Then�(A1A2 : : : An) =(supA1) � (supA2) � � � (supAn). This mapping is not injective, but surjective since�(fa1gfa2g : : : fang) = a1 � a2 � � �an for any ai 2 � and� generatesM . The setFNF is particularly useful since it provides normal forms for the elements ofM , i.e.
since the restriction of� toFNF is a bijection:

Lemma 5. The mapping� � FNF : FNF !M is bijective.

Proof. To show injectivity, one proves for anyA1A2 : : : An 2 FNF thatA1 is the set
of irreducible elementsa 2 � that divide�(A1A2 : : : An) and continues by induction.

To show surjectivity, one builds the Foata Normal Form ofx inductively by settingx1 = x, Ai = fa 2 � j a � xig, and�(Ai) � xi+1 = xi. ut
Thus, for anyx 2 M , the set��1(x) \ FNF is a singleton. We denote the unique

preimage ofx in FNF by fnf(x) and call it theFoata Normal Formof x.
Now let � : C̀ ? ! C̀ ? be defined by� = fnf Æ �, i.e.�(W ) is the Foata normal

form of the element�(W ) for any wordW over the alphabetC̀ . This function is
idempotent. Sincefnf is injective, we obtainker(�) = ker(�). Since� is a monoid
homomorphism,ker(�) is a congruence. FinallyC̀ ?= ker(�) = C̀ ?= ker(�) �= M
holds since� is surjective. Thus, we obtain
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Lemma 6. The functionfnf Æ � : C̀ ? ! C̀ ? is a normal form function for the divisi-
bility monoidM .

Next we show that the Foata Normal Form ofnat(w) can be computed from the
wordw 2 �? by an automaton. In general, this automaton has infinitely many states,
but for width-bounded divisibility monoids its accessiblepart will be shown to be
finite.

An automaton over the monoidS is a tupleA = (Q; S;E; I; F ) where

1. Q is a set ofstates,
2. E � Q� S �Q is a set oftransitions, and
3. I; F � Q are the sets ofinitial and final states, respectively.

The automatonA is finite if E is. A computationinA is a finite sequence of transitions:p0 a1! p1 a2! p2 � � � an! pn:
It is successfulif p0 2 I andpn 2 F . The label of the computation is the elementa1 � a2 � � �an of the monoidS. For a computation with first statep0, last statepn and
labela, we will usually writep0 a! pn without mentioning the intermediate states. The
behavior ofA is the subsetjAj of S consisting of labels of successful computations
in A.

Lemma 7. There exists an automatonAM with state setM � (C̀ [ f"g) over the

monoid�? � C̀ ? that has a computation(1; ") (w;B1B2:::Bm)�! (z; C) iffBm = C; fnf(nat(w) � z) = B1B2 : : : Bm, andjfnf Æ nat(w)j = m:
for anyw 2 �?,Bi 2 C̀ for 1 � i � m, z 2M andC 2 C̀ " = C̀ [ f"g.

Proof. For (x;A); (z; C) 2 M � C̀ " and (a; B) 2 � � C̀ ", there is a transition(x;A) (a;B)! (z; C) iff

1. a � x, B = ", a � z = x, andC = A, or
2. a 6� x, B = C 6= ", AB 2 FNF, anda � z = x � (supB). ut

We can think of(1; ") (w;B1B2:::Bm)�! (z; C) as denoting the fact that, on input of the
wordw 2 �?, the automaton outputsB1B2 : : : Bm and reaches the state(z; C). Thus,
by the lemma above, the automaton stores the last letter of its outputBm from C̀ in
the second componentC of the state reached. Furthermore, it outputs the Foata normal
form of some elementnat(w)�z ofM that is an extension of the input. The “difference”
between the inputnat(w) and the output�(B1B2 : : : Bm) (seen as elements ofM )
equalsz and is stored in the first component of the reached state. The last property
mentioned in the lemma above ensures that the Foata normal forms ofnat(w) and ofnat(w) �z have the same lengthm. Intuitively, the difference between the inputnat(w)
and the output�(B1B2 : : : Bm) is not too “large”.

Note that the automaton outputs only elements ofFNF. Even more, ifz = 1 the
automaton outputs the Foata normal form of the input. Let(1; ") be the only initial
state and let the set of final states bef1g � C̀ ". Then the behavior of the automatonAM is (the graph of) the functionfnf Æ nat : �? ! C̀ ?.
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4 Divisibility monoids are automatic – the word problem

Since the equations that define a divisibility monoid are length preserving, the word
problem for any divisibility monoid is decidable. In this section, we show that it can
be solved in quadratic time.

For an alphabet�, let�" = � _[f"g and�2 = �"��" n f("; ")g. Let furthermorev = s1s2 : : : sm andw = t1t2 : : : tn be words over� with si; tj 2 �. We define(v; w)� = 8><>:(s1; t1)(s2; t2) : : : (sn; tn)("; tn+1)("; tn+2) : : : ("; tm) if n < m(s1; t1)(s2; t2) : : : (sn; tn) if n = m(s1; t1)(s2; t2) : : : (sm; tm)(sm+1; ")(sm+2; ") : : : (sn; ") if n > m
Then(v; w)� is an element of the free monoid�?2 . Now letM be a monoid,� a finite
set,L � �? a recognizable language in the free monoid�? and � : �? ! M a
homomorphism. Then(�;L; �) is anautomatic structure forM [5] if �(L) = M and
if the sets L= = f(v; w)� j v; w 2 L and�(v) = �(w)g andLa = f(v; w)� j v; w 2 L and�(va) = �(w)g
are rational subsets of�?2 for anya 2 �. The monoidM is anautomatic monoidif it
admits an automatic structure.

We will show that any divisibility monoid is automatic. Moreprecisely, letM be
a divisibility monoid. ForA 2 C̀ , choose a wordwA 2 �? with nat(wA) = �(A).
Then the mappingC̀ ! �? : A 7! wA admits a unique extension to a monoid
homomorphism : C̀ ? ! �?. LetL =  (FNF) denote all words over� of the form (A1) (A2) : : :  (An) for some cliquesAi such thatA1A2 : : : An is a Foata normal
form. We are going to prove that the triple(�;L; nat) is an automatic structure for the
divisibility monoidM :

Note that� = nat Æ . Since, by Lemma 5, the mapping� � FNF is surjective, we
obtainM = �(FNF) = nat Æ (FNF) = nat(L).

Next, we show thatL= is rational. Recall thatFNF � C̀ ? is rational. Hence its
imageL with respect to the homomorphism is rational, too. This implies imme-
diately that the setf(v; v)� j v 2 Lg is rational in�?2 . Now let v; w 2 L withnat(v) = nat(w). Thenv =  Æ fnf Æ nat(v) =  Æ fnf Æ nat(w) = w. Hence
we showedL= = f(v; v)� j v 2 Lg which is rational in�?2 .

It remains to show that fora 2 � the setLa is rational in�?2 . Note thatLa =f(v;  (fnf Æ nat(va))) j v 2 Lg. To show that this set is rational, we have to construct
an automaton that outputs (fnf Æ nat(va)) on input ofv for v 2 L. Since this can
indeed be achieved (cf. [20]), we obtain

Theorem 8. LetM be a divisibility monoid. ThenM is an automatic monoid.

Using that the word problem for automatic monoids can be solved in quadratic
time [5], we obtain immediately
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Corollary 9. LetM be a divisibility monoid. Then the word problem forM can be
solved in quadratic time.

5 When does Kleene’s Theorem hold?

As mentioned in the introduction, Kleene’s Theorem holds ina divisibility monoidM
iff it is width-bounded iff it is rational. To obtain this result, we first sketch the proof
that any width-bounded divisibility monoid is rational. The crucial step in the proof is
expressed by the following lemma

Lemma 10. Let (M; �; 1) be a width-bounded divisibility monoid andn 2 N such
that w(#x;�) � n for any x 2 M . Let x; z 2 M with jfnf(xz)j = jfnf(x)j. Thenjzj < 2(n+ 1)j�j.

Using Lemma 7, we obtain that the automatonAM has only finitely many reachable
states forM width-bounded, i.e., the reachable partA of the automatonAM is a finite
automaton. Note that the behavior ofA and that ofAM coincide. Thus, by [14], the
behaviorjAj = jAM j = f(w; fnf Æ nat(w)) j w 2 �?g is a rational set in the monoid�? � C̀ ?.

We consider again the homomorphism : C̀ ? ! �? that we constructed in the
previous section. Since is a homomorphism, the setf(W; (W )) j W 2 C̀ ?g is
rational inC̀ ? � �?. Furthermore,nat Æ = � and thereforefnf Æ � = fnf Æ nat Æ .
Hence the functionfnf Æ� is the product of two rational functionsfnf Ænat and . This
implies by [14] that the setf(W; fnf Æ �(W )) jW 2 C̀ ?g is rational since�? is a free
monoid. Recall that by Lemma 6, the functionfnf Æ � is a normal form function for
the divisibility monoidM . Hence we showed that a width-bounded divisibility monoid
indeed admits a rational normal form function, i.e. is a rational monoid:

Proposition 11. Any width-bounded divisibility monoid is rational.

By [25, Theorem 4.1], this proposition implies that any width-bounded divisibility
monoid is a Kleene monoid. The remainder of this section is devoted to the inverse im-
plication: LetM be a divisibility monoid that is not width-bounded, i.e., for anyn 2 N ,
there isz 2 M such that the width of the distributive lattice#z is at leastn. This im-
plies, that for anyk 2 N , there existsz 2M , such that the lattice(f1; 2; 3; : : : ; kg2;�)
(with the coordinatewise order) can be embedded into the lattice #z. Let f be such
embedding. If the divisibility monoidM has finitely many residuum functions (see
below), we can apply Ramsey’s Theorem [24] twice and obtain1 � i < i0 � n,1 � j < j 0 � n, andx; y 2 M such thatf(i; j) � x = f(i; j 0), f(i0; j) � x = f(i0; j 0),f(i; j)�y = f(i0; j), andf(i; j 0)�y = f(i0; j 0). By cancellation, this impliesx�y = y �x.
Furthermorex k y sincef is a lattice embedding andM is cancellative. This was the
proof of the following lemma that we state after defining residuum functions: LetM
be a divisibility monoid andx; y 2 M . We say thatx andy arecomplementary(de-
notedx k y) if x ^ y = 1 and the setfx; yg is bounded above. Hence, two nonidentity
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elements ofM are complementary if they are complements in one of the lattices#z
with z 2 M . Since bounded elements have a supremum, there existsy0 2 M withx � y0 = x _ y. This elementy0 is uniquely determined byx andy sinceM is cancella-
tive. We call it theresiduum ofy after x and denote it byrx(y). Thus,rx is a partial
function fromM toM whose domain is the set of elements that are complements ofx. Let RM denote the set of all partial functionsrx for somex 2 M . The divisibility
monoidM is said to havefinitely many residuum functionsif RM is finite.3

Lemma 12. Let (M; �; 1) be a divisibility monoid with finitely many residuum func-
tions that is not width-bounded. Then there existx; y 2 M n f1g such thatx k y andx � y = y � x.

Now we can characterize the divisibility monoids that satisfy Kleene’s Theorem.

Theorem 13. Let (M; �; 1) be a divisibility monoid. Then the following assertions are
equivalent
1.M is width-bounded,
2.M is a rational monoid and has finitely many residuum functions, and
3.M is a Kleene monoid and has finitely many residuum functions.

Proof. A width-bounded divisibility monoid is rational by Proposition 11. Now letsi; ti 2 M for 1 � i � n such thatx = s1 � s2 � � � sn and y = t1 � t2 � � � tn are
complementary. Then the elementss1 � s2 � � � sk _ t1 � t2 � � � tn�k for 1 � k < n form
an antichain that is bounded above byz = x _ y. Hence the lattice#z has width at
leastn� 1. Now letM be width-bounded such that the lattices#z have width at mostn � 2. Then, as we just saw, at most one of two complementary elements ofM has
length at leastn. LetMn denote the finite set of elements ofM of length at mostn.
Forx 2M nMn, the domain ofrx is therefore contained inMn and, sincerx is length-
preserving, so is its image. Hence there are only finitely many residuum functionsrx
for x 2 M nMn. SinceMn is finite,M therefore has only finitely many residuum
functions.

Any rational monoid is a Kleene monoid by [25, Theorem 4.1]. For the remaining
implication assume by contradictionM not to be width-bounded. Then, by Lemma 12,
there arex; y 2M nf1g such thatx�y = y �x andx k y. Hence the mapping(0; 1) 7! x
and(1; 0) 7! y can be extended to a monoid embedding from(N � N ;+) intoM . The
image off(n; n) j n 2 Ng in M under this embedding is a rational set which is not
recognizable. Thus,M is not a Kleene-monoid. ut
6 Open questions

There are several open questions that call for a treatment: Is the lower bound for the
complexity of the word problem given in Corollary 9 optimal?We did not consider
the nonuniform word problem, i.e. the complexity of an algorithm that takes as input a

3 It is not known whether this class is a proper subclass of all divisibility monoids.
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presentation as described in Theorem 4 and two words and outputs whether these two
words denote the same monoid element. Furthermore, we stilldo not know whether
there exist divisibility monoids with infinitely many residuum functions.
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