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Abstract

In this paper we report on the development of an e�cient and portable implementation
of Strassen's matrix multiplication algorithm. Our implementation is designed to be used in
place of DGEMM, the Level 3 BLAS matrix multiplication routine. E�cient performance
will be obtained for all matrix sizes and shapes and the additional memory needed for tem-
porary variables has been minimized. Replacing DGEMM with our routine should provide
a signi�cant performance gain for large matrices while providing the same performance for
small matrices. We measure performance of our code on the IBM RS/6000, CRAY YMP
C90, and CRAY T3D single processor, and o�er comparisons to other codes. Our perfor-
mance data recon�rms that Strassen's algorithm is practical for realistic size matrices. The
usefulness of our implementation is demonstrated by replacing DGEMM with our routine in
a large application code.

Keywords: matrix multiplication, Strassen's algorithm, Winograd variant, Level 3 BLAS



1 Introduction

The multiplication of two matrices is one of the most basic operations of linear algebra and
scienti�c computing and has provided an important focus in the search for methods to speed
up scienti�c computation. Its central role is evidenced by its inclusion as a key primitive
operation in portable libraries, such as the Level 3 BLAS [7], where it can then be used as
a building block in the implementation of many other routines, as done in LAPACK [1].
Thus, any speedup in matrix multiplication can improve the performance of a wide variety
of numerical algorithms.

Much of the e�ort invested in speeding up practical matrix multiplication implementa-
tions has concentrated on the well-known standard algorithm, with improvements seen when
the required inner products are computed in various ways that are better-suited to a given
machine architecture. Much less e�ort has been given towards the investigation of alterna-
tive algorithms whose asymptotic complexity is less than the �(m3) operations required by
the conventional algorithm to multiply m � m matrices. One such algorithm is Strassen's
algorithm, introduced in 1969 [19], which has complexity �(mlg(7)), where lg(7) � 2:807 and
lg(x) denotes the base 2 logarithm of x.

Strassen's algorithm has long su�ered from the erroneous assumptions that it is not
e�cient for matrix sizes that are seen in practice and that it is unstable. Both of these
assumptions have been questioned in recent work. By stopping the Strassen recursions early
and performing the bottom-level multiplications using the traditional algorithm, competitive
performance is seen for matrix sizes in the hundreds in Bailey's FORTRAN implementation
on the CRAY 2 [2], Douglas, et al.'s [8] C implementation of the Winograd variant of
Strassen's algorithm on various machines, and IBM's ESSL library routine [16]. In addition,
the stability analyses of Brent [4] and then Higham [11, 12] show that Strassen's algorithm
is stable enough to be studied further and considered seriously in the development of high-
performance codes for matrix multiplication.

A useful implementation of Strassen's algorithm must �rst e�ciently handle matrices of
arbitrary size. It is well known that Strassen's algorithm can be applied in a straightforward
fashion to square matrices whose order is a power of two, but issues arise for matrices that
are non-square or those having odd dimensions. Second, establishing an appropriate cuto�
criterion for stopping the recursions early is crucial to obtaining competitive performance on
matrices of practical size. Finally, excessive amounts of memory should not be required to
store temporary results. Earlier work addressing these issues can be found in [2, 3, 4, 5, 8,
9, 10, 11, 17, 19].

In this paper we report on our development of a general, e�cient, and portable imple-
mentation of Strassen's algorithm that is usable in any program in place of calls to DGEMM,
the Level 3 BLAS matrix multiplication routine. Careful consideration has been given to all
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of the issues mentioned above. Our analysis provides an improved cuto� condition for rect-
angular matrices, a demonstration of the viability of dynamic peeling, a simple technique for
dealing with odd matrix dimensions that had previously been dismissed [8], and a reduction
in the amount of memory required for temporary variables.

We measure performance of our code on the IBM RS/6000, CRAY YMP C90, and CRAY
T3D single processor and examine the results in several ways. Comparisons with machine-
speci�c implementations of DGEMM recon�rm that Strassen's algorithm can provide an
improvement over the standard algorithm for matrices of practical size. Timings of our code
using several di�erent cuto� criteria are compared, demonstrating the bene�ts of our new
technique. Comparisons to the Strassen routine in the ESSL RS/6000 and the CRAY C90
libraries and the implementation of Douglas, et al., show that competitive performance can
be obtained in a portable code that uses the previously untried dynamic peeling method
for odd-sized matrices. This is especially signi�cant since for certain cases our memory
requirements have been reduced by 40 to more than 70 percent over these other codes.

The remainder of this paper is organized as follows. Section 2 reviews Strassen's al-
gorithm. In Section 3 we describe our implementation and address implementation issues
related to cuto�, odd dimensions, and memory usage. Performance of our implementation is
examined in Section 4, where we also report on using our Strassen code for the matrix mul-
tiplications in an eigensolver application. We o�er a summary and conclusions in Section 5.
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2 Strassen's Algorithm

Here we review Strassen's algorithm and some of its key algorithmic issues within the frame-
work of an operation count model. The interested reader is referred to [14] for more details
on this and other models, some of which also take into account memory access patterns,
possible data reuse, and di�erences in speed between di�erent arithmetic operations. In this
paper the simpler operation count model will meet our needs for discussion of the various
issues that had an e�ect on our code design.

The standard algorithm for multiplying two m�m matrices requires m3 scalar multipli-
cations and m3�m2 scalar additions, for a total arithmetic operation count of 2m3�m2. In
Strassen's now famous 1969 paper [19], he introduced an algorithm, stated there for square
matrices, which is based on a clever way of multiplying 2�2 matrices using 7 multiplications
and 18 additions/subtractions. His construction does not depend on the commutativity of
the component multiplications and hence can be applied to block matrices and then used
recursively.

If one level of Strassen's algorithm is applied to 2�2 matrices whose elements are m=2�
m=2 blocks and the standard algorithm is used for the seven block matrix multiplications,
the total operation count is 7(2(m=2)3 � (m=2)2) + 18(m=2)2 = (7=4)m3 + (11=4)m2. The
ratio of this operation count to that required by the standard algorithm alone is seen to be

7m3 + 11m2

8m3 � 4m2
; (1)

which approaches 7/8 asm gets large, implying that for su�ciently large matrices one level of
Strassen's construction produces a 12.5% improvement over regular matrix multiplication.
Applying Strassen's construction recursively leads to the complexity result stated in the
introduction [6]. We remark that the asymptotic complexity does not depend on the number
of additions/subtractions; however, reducing the number of additions/subtractions can have
practical signi�cance.

Winograd's variant of Strassen's algorithm (credited to M. Paterson) uses 7 multiplica-
tions and 15 additions/subtractions [10]. The algorithm partitions input matrices A and B
into 2� 2 blocks and computes C = AB as 

C11 C12

C21 C22

!
=

 
A11 A12

A21 A22

! 
B11 B12

B21 B22

!
:

Stages (1) and (2) of the algorithm compute

S1 = A21 + A22; T1 = B12 � B11;
S2 = S1 � A11; T2 = B22 � T1;
S3 = A11 � A21; T3 = B22 � B12;
S4 = A12 � S2; T4 = B21 � T2;
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and stages (3) and (4) compute, respectively, the seven products and seven sums

P1 = A11B11; P5 = S3T3; U1 = P1 + P2; U5 = U3 + P3;
P2 = A12B21; P6 = S4B22; U2 = P1 + P4; U6 = U2 + P3;
P3 = S1T1; P7 = A22T4; U3 = U2 + P5; U7 = U6 + P6:
P4 = S2T2; U4 = U3 + P7;

It is easy to verify that C11 = U1, C12 = U7, C21 = U4, and C22 = U5. Further reduction
in the number of multiplications and additions/subtractions of any Strassen-like algorithm
based on 2 � 2 matrices is not possible [13, 18]. In the remainder of this paper, unless
otherwise speci�ed, we will mean the Winograd variant described above when referring to
Strassen's algorithm.

To apply Strassen's algorithm to arbitrary matrices, �rst note that one level of recursion
can easily be applied to rectangular matrices, provided that all of the matrix dimensions are
even. Next, observe that we do not have to carry the recursions all the way to the scalar
level; as noted in the introduction, one key element for obtaining an e�cient implementation
of Strassen's algorithm is to in fact stop the recursions early, switching to the standard
algorithm when Strassen's construction no longer leads to an improvement. The test used to
determine whether or not to apply another level of recursion is called the cuto� criterion.

Let G(m;n) be the cost of adding or subtracting two m� n matrices and let M(m; k; n)
be the cost of multiplying an m � k matrix by a k � n matrix using the standard matrix
multiplication algorithm. Then, assuming m, k, and n are even, the cost of Strassen's
algorithm, W (m; k; n), to multiply an m � k matrix A by a k � n matrix B satis�es the
following recurrence relation

W (m; k; n) =

(
M(m; k; n); when (m; k; n) satis�es the cuto� criterion

7W
�
m

2
; k
2
; n
2

�
+ 4G

�
m

2
; k
2

�
+ 4G

�
k

2
; n
2

�
+ 7G

�
m

2
; n
2

�
; otherwise:

(2)

Throughout the remainder of this section we will model costs by operation counts, implying
that M(m; k; n) = 2mkn�mn and G(m;n) = mn.

If A and B are of size 2dm0� 2dk0 and 2dk0� 2dn0, respectively, then Strassen's algorithm
can be used recursively d times. If we choose to stop recursion after these d applications of
Strassen's algorithm, so that the standard algorithm is used to multiply the resulting m0�k0

and k0 � n0 matrices, then

W (2dm0; 2dk0; 2dn0) = 7d(2m0k0n0 �m0n0) + (3)

(7d � 4d)(4m0k0 + 4k0n0 + 7m0n0)=3:

For the square matrix case (m0 = k0 = n0), (3) simpli�es to

W (2dm0) � W (2dm0; 2dm0; 2dm0) = 7d(2(m0)
3
� (m0)

2
) + 5(m0)

2
(7d � 4d): (4)
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If Strassen's original version of the algorithm had been used in the above development, (4)
would become

S(2dm0) = 7d(2(m0)
3
� (m0)

2
) + 6(m0)

2
(7d � 4d): (5)

In order to establish the proper cuto� point for both the square and rectangular case,
we need to characterize the set of positive (m; k; n) such that using the standard algorithm
alone is less costly than applying one level of Strassen's recursion followed by the standard
method. This is equivalent to �nding the solutions to the inequality

M (m; k; n) � 7M

 
m

2
;
k

2
;
n

2

!
+ 4G

 
m

2
;
k

2

!
+ 4G

 
k

2
;
n

2

!
+ 7G

�
m

2
;
n

2

�
: (6)

Using operation counts this becomes

mkn � 4(mk + kn+mn); (7)

which is equivalent to
1 � 4(1=n+ 1=m+ 1=k): (8)

It is easy to completely characterize the positive integer solutions to (7) and (8). In the
square (m = k = n) case we obtain m � 12. Thus, we should switch to regular matrix
multiplication whenever the remaining matrix multiplications involve matrices whose order
is 12 or less.

Utilizing equations (4) and (5) we can now begin to see the improvement possible using
cuto�s and using Winograd's variant instead of Strassen's original algorithm. First, observe
that (4) is an improvement over (5) for all recursion depths d and allm0, since their di�erence
is (m0)2(7d � 4d). The limit as d goes to in�nity of the ratio of equation (5) to equation (4)
is (5+2m0)=(4+2m0). Thus, for large square matrices, improvement of (4) over (5) is 14.3%
when full recursion is used (m0 = 1), and between 5.26% and 3.45% as m0 ranges between
7 and 12. These are the values of m0 that would occur when the optimal cuto� value of 12
for square matrices is employed. To see how valuable the use of cuto�s can be, we can also
compute, using equation (4), the ratio of the operation counts for Winograd's variant on
square matrices without cuto� to that with cuto� 12. For matrices of order 256 this means
we compute the ratio (4) with d = 8; m0 = 1 to (4) with d = 5; m0 = 8, obtaining a 38.2%
improvement using cuto�s.

Returning to establishing the cuto� criteria, the situation is more complicated for rect-
angular matrices. For more details see [14]; here we illustrate with an example. If m =
6; k = 14; n = 86, (7) is not satis�ed; thus recursion should be used when multiplying 6� 14
and 14 � 86 matrices. This shows that there are situations where it is bene�cial to apply
Strassen's algorithm even though one of the matrix dimensions is smaller than the optimal
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cuto� of 12 for square matrices. Therefore, at least theoretically, when considering rect-
angular matrices, the cuto� criterion (7) should be used instead of the simpler condition,
m � 12 or k � 12 or n � 12, which has been used by others [3, 8]. Alternatively, instead
of using the operation count model to predict the proper cuto� condition, one can empiri-
cally determine the appropriate cuto� in a manner very similar to the theoretical analysis.
This will require a more complicated set of experiments for rectangular matrices than for
square. A discussion of empirical results of this type can be found in Section 3.4; the actual
measurements will be done in Section 4.2.

Finally, for matrices with odd dimensions, some technique must be applied to make
the dimensions even, apply Strassen's algorithm to the altered matrix, and then correct
the results. Originally, Strassen suggested padding the input matrices with extra rows and
columns of zeros, so that the dimensions of all the matrices encountered during the recursive
calls are even. After the product has been computed, the extra rows and columns are
removed to obtain the desired result. We call this approach static padding, since padding
occurs before any recursive calls to Strassen's algorithm. Alternatively, each time Strassen's
algorithm is called recursively, an extra row of zeros can be added to each input with an
odd row-dimension and an extra column of zeros can be added for each input with an odd
column-dimension. This approach to padding is called dynamic padding since padding
occurs throughout the execution of Strassen's algorithm. A version of dynamic padding is
used in [8].

Another approach, called dynamic peeling, deals with odd dimensions by stripping o�
the extra row and/or column as needed, and adding their contributions to the �nal result in
a later round of �xup work. More speci�cally, let A be an m � k matrix and B be a k � n
matrix. Assuming that m, k, and n are all odd, A and B are partitioned into the block
matrices

A =

0
BBB@ A11 a12

a21 a22

1
CCCA and B =

0
BBB@ B11 b12

b21 b22

1
CCCA ;

where A11 is an (m � 1) � (k � 1) matrix, a12 is a (m � 1)� 1 matrix, a21 is a 1� (k � 1)
matrix, a22 is a 1 � 1 matrix and B11 is an (k � 1) � (n � 1) matrix, b12 is a (k � 1) � 1
matrix, b21 is a 1� (n� 1) matrix, b22 is a 1� 1 matrix. The product C = AB is computed
as 0

BBB@ C11 c12

c21 c22

1
CCCA =

0
BBB@ A11B11 + a12b21 A11b12 + a12b22

a21B11 + a22b21 a21b12 + a22b22

1
CCCA ; (9)

where A11B11 is computed using Strassen's algorithm, and the other computations constitute
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the �xup work. To our knowledge, the dynamic peeling method had not been previously
tested through actual implementation, and in fact its usefulness had been questioned [8].
However, our operation count analysis in [14] showed it to be superior to dynamic padding.
This indicated that it could be competitive in practice with other approaches, and that
further study was needed. Thus, we chose to use this technique in our implementation of
Strassen's algorithm. In Section 3.3 we will discuss how we actually coded these computa-
tions.
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3 Implementation Issues

In this section we discuss DGEFMM, our implementation of Strassen's algorithm. Section 3.1
describes the interface to DGEFMM, and Section 3.2 shows how the equations in the four
stages of Strassen's algorithm are implemented. The latter section also discusses the amount
of memory needed for temporary storage. Section 3.3 discusses our treatment of odd matrix
dimensions. Finally, in Section 3.4, a method for determining the appropriate cuto� criterion
for a particular machine is presented.

3.1 Interface

Since our implementation of Strassen's algorithm is intended to be used in place of the Level 3
BLAS matrix multiplication routine DGEMM, we adopt the input and output speci�cations
of DGEMM. DGEMM computes C  � � op(A) � op(B) + � �C; where � and � are scalars,
op(A) is an m� k matrix, op(B) is an k � n matrix, C is an m� n matrix, and op(X) can
either be X or XT (transpose of X).

All code was written in C utilizing the BLAS, except for some kernel operations on some
machines where we found the FORTRAN implementation to be superior. Matrices are stored
in column-major order, as in FORTRAN, to facilitate the interface with the BLAS.

3.2 Temporary Allocation and Memory Usage

Intermediate results required by Strassen's algorithm need to be stored in temporary loca-
tions. Strassen's algorithm as stated in Section 2 uses four temporary variables in stage (1),
four temporary variables in stage (2), seven temporary variables in stage (3), and seven tem-
porary variables in stage (4). The temporary variables in stage (1) hold m=2�k=2 matrices,
those in stage (2) hold k=2� n=2 matrices, and those in stages (3) and (4) hold m=2� n=2
matrices. A straightforward implementation of one level of recursion of Strassen's algo-
rithm thus requires mk + kn+ (14=4)mn temporary memory space in addition to the input
and output variables. If all recursive calls in Strassen's algorithm use this same approach,
then the total amount of extra storage is bounded by (4mk + 4kn + 14mn)

P
1

i=1 1=4
i =

(4mk + 4kn+ 14mn)=3:
Clearly this can be greatly reduced if temporary memory space is e�ectively reused.

Using Strassen's original algorithm, Bailey, et al. [3] devised a straightforward scheme that
reduces the total memory requirements to (mk+kn+mn)=3: Since Winograd's variant nests
the additions/subtractions in stage (4) it is not clear that a similar reduction is possible.
Below we discuss two computation schemes, both of which are used in our implementation.
The �rst will demonstrate that an even lower memory requirement is attainable for the
case where the input parameter � = 0. This scheme is similar to the one used in the

8



implementation of Winograd's variant, DGEMMW, reported in Douglas, et al., [8], where
additional storage requirements when � = 0 are slightly more than (mmax(k; n) + kn)=3.
Our technique requires (mmax(k; n) + kn)=3 in this case. For the general case, i.e., � 6= 0,
the temporary storage requirement in the Douglas, et al., implementation is approximately
mn + (mk + kn)=3. Using our second computation scheme allows us to reduce this to the
lower amount attained for the simpler case by Bailey, et al., namely (mk+ kn+mn)=3. We
will see later that the key to obtaining this memory reduction is the recursive use of the
multiply-accumulate operation that DGEFMM supports.

Our �rst scheme for performing Strassen's algorithm, STRASSEN1, is a straightforward
schedule for performing the computations as described in Section 2, and is similar to that
used in [8]. See [14] for a detailed description. In the general case, we require space for
six temporary variables, R1 through R6, with total size mmax(k; n)=4 +mn + kn=4: If the
seven products are computed recursively using the same algorithm, then the total additional
memory is bounded by (4mn + mmax(k; n) + kn)=3. Note that if m = k = n, then the
required space is 2m2. Also when � = 0, the computation order, designed in fact to this
purpose, allows use of the memory space allocated for matrix C to hold the temporary
variables R3; R4; R5, and R6. Thus, only two temporary variables are required, and the
bound for extra space is reduced to (mmax(k; n)+ kn)=3: For the square case (m = k = n),
this becomes 2m2=3.

Our alternate computation scheme, STRASSEN2, is presented in Figure 1. With each
computation step indicated, we show the temporary variable stored to, as well as the re-
lationship to the variables used in the description of the algorithm in Section 2. Although
STRASSEN2 performs some additional arithmetic, multiplication by � and �, and some
accumulation operations, our analysis [14] and empirical results (Section 4) suggest that no
time penalty is paid for these additional operations. By allowing the multiply-accumulate
operation, such as C11  C11 + �A12B21, we can rearrange the computations in Strassen's
algorithm so as to essentially use C's memory space for intermediate results even when � 6= 0.
We can thus complete the computations using only three temporaries, R1, R2, and R3, the
minimum number possible [14]. Notice that R1 only holds subblocks of A, R2 only holds
subblocks of B, and R3 only holds subblocks of C, so that their sizes are mk=4, nk=4, and
mn=4, respectively. The total memory requirement for STRASSEN2 is thus bounded by
(mn + km+ kn)=3. When m = k = n, this gives m2.

In Table 1 we show the memory requirements for multiplying orderm matrices for various
implementations of Winograd's Strassen variant. We can also see from Table 1 that the
best use of our two computation schemes might be to use STRASSEN1 when � = 0, and
STRASSEN2 otherwise. This is reected in the �nal entry of the table, where we see that
our memory requirement of 2m2=3 in the case � = 0 equals the lowest requirement seen
for the other implementations (DGEMMW), which is a 48 to 71 percent reduction over the
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STRASSEN2(A;B; �; �;C)

Implementation of Winograd's variant of Strassen's matrix multiplication algorithm.
Inputs: A is an m� k matrix and B is a k � n matrix, where m, k, and n are even. � and
� are scalars.
Output : C = �AB + �C is an m� n matrix.
Temporary Variables: R1 (size mk=4), R2 (size kn=4), and R3 (size mn=4).

Store to : Computation Algorithmic Variables

R1  �(A21 + A22); �S1

R2  B12 � B11; T1
R3  R1R2; �P3

C12  �C12 +R3; �C12 + �P3

C22  �C22 +R3; �C22 + �P3

R1  R1 � �A11; �S2

R2  B22 �R2; T2
R3  �A11B11; �P1

C11  �C11 +R3; �C11 + �P1

R3  R3 +R1R2; �U2

C11  C11 + �A12B21; �C11 + �P2

R1  �A12 �R1; �S4

R2  �(B21 � R2); �T4
C12  C12 +R1B22; �C12 + �P6

C12  C12 +R3; �C12 + �U2

C21  �C21 + A22R2; �C21 + �P7

R1  �(A11 � A21); �S3

R2  B22 � B12; T3
R3  R3 +R1R2; �U3

C21  C21 +R3; �C21 + �U3

C22  C22 +R3; �C22 + �U3

Figure 1: STRASSEN2
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Implementation � = 0 � 6= 0

CRAY SGEMMS 7m2=3 7m2=3

IBM ESSL DGEMMS 1:40m2 not directly supported

DGEMMW ([8]) 2m2=3 5m2=3

STRASSEN1 2m2=3 2m2

STRASSEN2 m2 m2

DGEFMM 2m2=3 m2

Table 1: Memory Requirements for Strassen codes on order m matrices

other two. In the case � 6= 0, our requirement of m2 is lower than the others that can handle
this case, representing a reduction of 40 and 57 percent, respectively, over that required by
DGEMMW and CRAY SGEMMS.

3.3 Odd-sized Matrices

As we saw in Section 2, our implementation uses dynamic padding when odd dimensions are
encountered. This approach has been dismissed by others [8] because of the ine�ciency of
some of the required �xup operations. Our implementation partially deals with this concern
by combining the required operations in (9) and computing them with BLAS routines. After
combining operations, there are potentially three �xup steps:

C11 = � (a12b21) + C11;

c12 = �
�
A11 a12

� b12
b22

!
+ �c12;

�
c21 c22

�
= �

�
a21 a22

� B11 b12
b21 b22

!
+ �

�
c21 c22

�
:

The �rst step can be computed with the BLAS routine DGER (rank-one update), and the
second and third steps can be computed by calling the BLAS routine DGEMV (matrix-vector
product).

Further justi�cation for our decision to use dynamic padding comes, as mentioned in
Section 2, from our theoretical analysis in [14], as well as what we believe is a simpli�ed
code structure, where no special cases are embedded in the routine that applies Strassen's
algorithm, and no additional memory is needed when odd dimensions are encountered.
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3.4 Setting Cuto� Criteria

In Section 2 we determined the optimal cuto� criterion using operation count as a cost
function. In practice operation count is not an accurate enough predictor of performance
to be used to tune actual code. The interested reader is referred to [14] for a discussion
of the limitations of operation count and development of other performance models that
can more accurately predict performance parameters. In addition, performance of our code
varies from machine to machine, so an e�ective cuto� criterion must be adaptable. In this
section we describe a parameterized cuto� criterion whose parameters are set from empirical
performance measurements.

A parameterized criterion for square matrices can be determined in a manner similar
to the way the theoretical condition in Section 2 was obtained. The time for DGEMM is
compared to the time required by applying Strassen's algorithm with one level of recursion.
The cuto� is obtained from the crossover, the matrix order � , where Strassen's algorithm
becomes faster than DGEMM. This leads to the condition

m � �; (10)

where � is the empirically determined parameter.
Obtaining a general condition for rectangular matrices is much more di�cult since the

boundary between the regions where DGEMM is faster and Strassen's algorithm is faster is
most likely no longer described by a simple equation and will certainly require many more
computer experiments to determine. This forces us to compromise, both in the amount of
experiments that are performed and the model used to describe the boundary, when choosing
the cuto� criterion for rectangular matrices. Also it is important that the square condition
be preserved since it is essential that the performance of DGEFMM on square matrices is
not sacri�ced.

There are two natural ways to create a rectangular criterion from the condition for square
matrices:

m � � or k � � or n � �; (11)

and
mkn � �(nk +mn +mk)=3: (12)

Condition (11), used in [8], prevents Strassen's algorithm from being applied in certain
situations where it would be bene�cial. One situation where this can occur, as was illustrated
in Section 2, is when one of the matrix dimensions is below the square cuto� and one of the
other dimensions is large. Condition (12), proposed by Higham in [11], scales the theoretical
condition (7) by (4=3)� , so that it reduces to the square condition (10) when m = k = n.
This condition su�ers from two drawbacks: (1) it assumes that the performance of DGEMM
for general rectangular matrices is determined by the performance on square matrices, and
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(2) it assumes that the performance of DGEMM is symmetric in the matrix dimensions.
Our empirical investigations, which will be presented in Section 4.2, indicate that these
assumptions are not generally valid.

We propose a model for the boundary that takes into account both square and rectangular
matrices and allows for asymmetry in the performance of DGEMM. First, condition (7)
is extended by including three parameters to take into account this asymmetry. Second,
this extended condition is combined with the square condition (11) to preserve square-case
behavior. The parameterized rectangular condition is

mkn � �mnk + �kmn+ �nmk; (13)

which is equivalent to
1 � �m=m + �k=k + �n=n: (14)

The parameters, �m, �k, �n, are computed empirically from three separate experiments,
where two of the dimensions are �xed at a large value and the third varies. On the face of
it, we must solve a system of three linear equations; however, (14) suggests an alternative
approach. In each of the three experiments, as in the square case, we search for the point at
which one application of Strassen's algorithm becomes faster than DGEMM. When k and
n are large, their contribution in (14) is negligible, so that the parameter �m can be set to
the crossover point determined from the experiment where k and n are �xed. The other two
parameters are set in the same way.

If alternative values ofm, k, and n are used to compute �m, �k, and �n, di�erent values for
the parameters may be obtained. This is possible since it is unlikely that the entire boundary
can be described by an equation of the form (13). In particular, since long thin matrices are
used to determine the parameters �m, �k, and �n, it is likely that �m+ �k+ �n 6= � , as would
be required if the new condition were to reduce to (10) when m = k = n. Our compromise
is to use the hybrid condition

( (mkn � �mnk + �kmn + �nmk) and (m � � or k � � or n � �) ) (15)

or

(m � � and k � � and n � �);

which inherently allows recursion, via condition (11), when all three dimensions are greater
than � , and stops recursion, via the last condition, when all three dimensions are less than
or equal to � . In other regions of the positive octant condition (13) rules in order to allow an
extra application of Strassen's algorithm where it may be bene�cial. Actual tests to establish
� , �m, �k, and �n for various machines will be done in Section 4.2.
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4 Performance

This section discusses the results of running our implementation of Strassen's matrix multi-
plication algorithm on a variety of computers. We �rst describe the machines used and how
the results were obtained. Next, empirical measurements are used to set the cuto� condi-
tions for both square and rectangular inputs, and our new criterion is compared to other
methods. We then examine the performance of our new routine, including comparisons to
other available routines for performing Strassen's matrix multiplication. Finally, we use our
routine to perform the matrix multiplications in a large application code.

4.1 Machines and Testing

Though our code is portable and has been run on many machines, this paper will focus on
the IBM RS/6000 (AIX 3.25), with some results for the Cray YMP C90 (UNICOS 9.0.1.2)
and Cray T3D (single processor/UNICOS MAX 1.3.0.0). It is important to note that we are
presenting only serial results. Furthermore, we limited ourselves to sizes of matrices where
the entire problem �ts into the machine's memory without using virtual memory.

Wherever possible and bene�cial, we utilized optimized versions of core routines. The
IBM-supplied BLAS library, libblas.a (Version 2.2), was used for all computational kernels,
except for IBM's implementation of Strassen's algorithm, DGEMMS, which is contained
in their Engineering Scienti�c Subroutine Library (ESSL - Version 2.2) . Unlike all other
Strassen implementations we have seen, IBM's DGEMMS only performs the multiplication
portion of DGEMM, C = op(A) � op(B): The update of C and scaling by � and � must
be done separately by the calling routine whenever � 6= 1:0 or � 6= 0:0. On the C90 and
T3D, Cray's BLAS, contained in their scienti�c routines library, scilib.a (Version 2.0), was
utilized. All results presented in this paper are for 64-bit values. This is double precision on
the RS/6000, but single precision for the routines on the Cray machines.

Timing was accomplished by starting a clock just before the call to the matrix multipli-
cation routine of interest and stopping the clock right after the call, with the exception of
the call to IBM's DGEMMS, which contained an extra loop for the scaling and update of C
as described above. The times reported here are CPU times on non-dedicated machines.

All routines were tested with the same initial matrices, and the correctness of the results
was veri�ed. All of our routines, including our Strassen library and test codes used in this
paper, are available on the Web at http://www.mcs.anl.gov/Projects/PRISM/lib/.

4.2 Measuring the Cuto�

In this section we report on the empirical testing needed to determine the actual cuto�
criteria used on all three of our test machines. This is done �rst for square matrices and
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Figure 2: Experimentally determined cuto� for RS/6000 with � = 1 and � = 0.

then for rectangular matrices.
Recall from Section 3.4 that determining the square cuto� is simply a matter of �nding

where calling DGEMM is faster than applying Strassen's algorithm with one level of recur-
sion. Figure 2 shows the ratio of DGEMM to our DGEFMM code with one level of recursion
as a function of the square matrix order m for the RS/6000. When this ratio is greater than
1, using Strassen is more e�cient. Strassen becomes better at m = 176 and is always more
e�cient if m � 214. The range is caused by the fact that the costs in our Strassen code
are not monotonic, and the varying requirements for �xup work on odd-sized inputs create
the saw-toothed look of the graph. However, the range is fairly small, and the performance
di�erence between Strassen and DGEMM is small. Thus, it is reasonable and acceptable to
chose any of the points in the range. We opted to choose the cuto� to be � = 199, i.e., use
DGEMM if m � 199, since Strassen is almost always better than DGEMM for larger values,
and when it is slower it is so by a very small amount. Table 2 shows the results of performing
this experiment for our test machines. The cuto�s in Table 2 show the size at which our
Strassen implementation becomes more e�cient for square matrices. The modest size of
the cuto�s show that using our Strassen code instead of standard matrix multiplication is
advantageous in many applications. These results, along with those of others, shows that
Strassen's algorithm is of practical interest.

As was discussed in Sections 2 and 3.4, determining the condition for rectangular matrices
is much more complicated. The bene�t of enhancing the cuto� criteria for rectangular
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Machine Empirical Square Cuto� �
RS/6000 199

C90 129
T3D 325

Table 2: Experimentally determined square cuto�s on various machines.

Machine �m �k �n �m + �k + �n
RS/6000 75 125 95 295

C90 80 45 20 145
T3D 125 75 109 309

Table 3: Experimentally determined rectangular cuto� parameters, when � = 1 and � = 0.

matrices can be seen by noting that use of criterion (11) on the RS/6000 prevents Strassen's
algorithm from being applied when m = 160, n = 957, and k = 1957. However, applying an
extra level of Strassen's algorithm gives an 8.6 percent reduction in computing time.

Table 3 summarizes, for each machine, the values obtained for the parameters �m, �k, and
�n, which describe the rectangular condition (13). These were computed using the method
described in Section 3.4. On the CRAY C90 and the RS/6000, the two �xed variables in
each of the experiments were set to 2000, whereas on the CRAY T3D a value of 1500 was
used to reduce the time to run the tests. Finally, we remark that the experiments were run
using � = 1 and � = 0 in the calls to DGEFMM, and that the values of �m, �k, and �n may
change for the general case. Our code allows user testing and speci�cation of two sets of
parameters to handle both cases.

The data in Table 3 shows that the performance of DGEMM is not symmetric in the
matrix dimensions. Moreover, the asymmetry varies from machine to machine. Also observe
that on the RS/6000 the sum �m + �k + �n is signi�cantly di�erent from the corresponding
square cuto� � . This illustrates that the performance of DGEMM on long thin matrices can
be very di�erent from its performance on square matrices.

Table 4 summarizes a series of experiments comparing the various rectangular cuto� cri-
teria described in Section 3.4. For each comparison a set of random problems was generated
on which the two criteria being compared would make di�erent cuto� decisions. To do this
we randomly selected the input dimensions m, k, and n, and then tested for those on which
the two criteria would make opposite determinations on whether to apply recursion at the
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Random
Machine Comparison Sample Range Quartiles Average

Ratio Size

RS/6000 (15)/(11) 100 0.9128{1.0169 0.9403;0.9566;0.9634 0.9529
(15)/(12) 1000 0.9083{1.1286 0.9863;1.0038;1.0217 1.0017
(15)/(12), 100 0.9126{1.0462 0.9688;0.9938;1.0052 0.9888

two dims large
C90 (15)/(11) 100 0.8275{1.0294 0.9137;0.9488;0.9682 0.9375

(15)/(12) 1000 0.7803{1.1095 0.9198;0.9457;0.9769 0.9428
(15)/(12), 100 0.7908{0.9859 0.9024;0.9189;0.9454 0.9098

two dims large
T3D (15)/(11) 100 0.7957{1.1026 0.9335;0.9508;0.9667 0.9518

(15)/(12) 1000 0.6868{1.1393 0.9528;0.9792;0.9996 0.9777
(15)/(12), 100 0.9120{1.0328 0.9200;0.9262;0.9474 0.9340

two dims large

Table 4: Comparison of Cuto� Criteria for � = 1 and � = 0. (11) = Simple Criterion from
Square Cuto�, (12) = Theoretically Scaled Criterion, (15) = New Rectangular Criterion.

top level. The range of dimensions for the generated problems ran from the smaller of �=3
and �m, �k, or �n for m, k, and n, respectively, to 2050 on the RS/6000 and CRAY C90 and
1550 on the T3D. A sample size of 100 was used when the design of our new criterion clearly
implied an expected outcome for the experiment; a larger sample size of 1000 was used for
the case where the outcome was less clear. We note that it is su�cient to compare each
pair of criteria on only their set of such problems; for on other problems, where they would
make identical decisions on when to apply recursion, they would have inherently identical
performance. Thus, any criterion that shows better performance on these test problems in
fact enjoys better overall performance.

Entries in Table 4 are given as ratios of DGEFMM timings using our new criterion (15)
to those obtained using other criteria. We show the range, average, and quartiles, values
that mark the quarter, half (or median), and three-quarter points in the data. For each
machine, we compare (15) to (11), (15) to (12) on general input sizes, and (15) to (12) on
problems where two of the three matrix dimensions are large. We de�ne large to be at least
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Matrix
Order:
Number RS/6000 C90 T3D

of DGEMM DGEFMM DGEMM DGEFMM DGEMM DGEFMM
Recur-
sions

� + 1 : 1 .150 .150 .0060 .0055 .694 .669
2� + 2 : 2 1.14 1.05 .0431 .0410 5.40 4.91
4� + 4 : 3 9.06 7.59 .332 .312 42.6 33.3
8� + 8 : 4 72.2 54.1 2.54 2.10
16� + 16 : 5 20.1 13.3

Table 5: Times for DGEMM and DGEFMM for di�erent numbers of recursions on all three
machines with � = 1=3 and � = 1=4. � is the square cuto� value given in Table 2 for each
machine.

1800 for the RS/6000 and CRAY C90 and 1350 for the CRAY T3D.
The results in Table 4 demonstrate that in some cases signi�cant performance improve-

ments can be obtained through careful re�nement of the cuto� criterion used. We see that
our new criterion nearly meets or in general exceeds the performance of other cuto� criteria
that have been used or proposed. For matrices with large aspect ratios, performance is al-
ways improved. We also note that, as indicated in Section 3.4, the values for �m, �k, and �n
could be even more �nely tuned, for instance to use in application areas where performance
on matrices with large aspect ratios is critical.

4.3 Performance Comparisons

Table 5 shows the times for DGEMM and DGEFMM on all three machines for the
smallest matrix order that does a given number of recursions in DGEFMM. The scaling of
DGEFMM with matrix order is very close to the theoretical factor of 7 for each doubling in
matrix size. All are within 10% of this scaling, with the C90 showing the largest variance.
The table also shows that Strassen can be substantially faster than conventional matrix
multiplication. For the largest size matrix given for each machine in Table 5, the time for
DGEFMM is between 0.66 and 0.78 the time for DGEMM. Note that the matrix sizes needed
for savings are well within the range of matrices of interest in real applications.

Figure 3 shows the ratio of DGEFMM to the IBM Strassen routine DGEMMS for square
matrices. The plot shows that on average the IBM routine is faster than DGEFMM. The
average ratio is 1.052. These results are for the case where � = 1 and � = 0. In the general

18



200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0.95

1

1.05

1.1

Matrix Dimension

Ti
m

e 
D

G
EF

M
M

 / 
Ti

m
e 

D
G

EM
M

S

Figure 3: Ratio of DGEFMM to IBM DGEMMS as a function of matrix order on RS/6000
for � = 1 and � = 0.

case (where � 6= 1:0 and � 6= 0:0), which the IBM routine does not directly support, the
average drops to 1.028. This supports our design of including the general case directly in
our code.

Figure 4 shows the ratio of DGEFMM to the Cray Strassen routine, SGEMMS, on the
C90. As with the IBM results, our performance is slightly worse than the vendor-supplied
routine. The average ratio is 1.066. As with the RS/6000, we do better for general � and �,
where the average drops to 1.052.

Considering that we did not tune our code to either the RS/6000 or C90, we think our
relative performance is very good. We have observed that one can optimize the primitives
and methods to typically get a several percent gain. To keep our code general, we have not
included these machine-speci�c techniques in our code.

Next, we compare to a public domain implementation fromDouglas, et al. [8], DGEMMW.
We see in Figure 5 that, for general � and � on square matrices, there are matrix sizes where
each code does better. The average ratio is 0.991, which shows that we are slightly better.
In the case where � = 1 and � = 0 the average is 1.0089. This shows that our STRASSEN2
construction (general �; �) not only saves temporary memory but yields a code that has
higher performance both absolutely and relative to STRASSEN1. This is due to better
locality of memory usage. It should be noted that DGEMMW also provides routines for
multiplying complex matrices, a feature not contained in our package.
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Figure 4: Ratio of DGEFMM to Cray SGEMMS as a function of matrix order on C90 for
� = 1 and � = 0.
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Figure 5: Ratio of DGEFMM to DGEMMW as a function of matrix order on IBM RS/6000
for general � and �.
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Figure 6: Ratio of DGEFMM to DGEMMW for random rectangular matrices on RS/6000
with general � and �.

We now turn our attention to rectangular matrices. We tested randomly-generated
rectangular matrices and computed the ratio of our routine, DGEFMM, to the routine
DGEMMW on the RS/6000 as shown in Figure 6, where Log(x) denotes the logarithm base
10 of x. By randomly-generated, we mean randomly selecting the input dimensions m, k,
and n in the range from �m = 75, �k = 125, or �n = 95, respectively, to 2050. The average
ratio has decreased to 0.974 compared to 0.991 for square matrices. This could be due to
the fact that DGEMMW uses the simpli�ed cuto� test given by (11). The average ratio for
� = 1 and � = 0 is 0.999, which is also an improvement over the square case. The average
improvement over random rectangular matrices is smaller than that seen in Section 4.2, since
we do not gain an extra level of recursion in many cases.

Overall, these results show that our DGEFMM code performs very well compared to
other implementations. This is especially signi�cant considering we use less memory in many
cases. This also shows the dynamic peeling technique using rank-one updates is indeed a
viable alternative. The reader is referred to [14], where our enhanced models are given that
quantitatively describe the behavior seen here. They can also be used to further examine
these and other implementations of Strassen's algorithm.
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Using DGEMM Using DGEFMM
Total Time (secs) 1168 974
MM Time (secs) 1030 812

Table 6: Eigensolver timings for 1000� 1000 matrix on IBM RS/6000.

4.4 Sample Application: Eigensolver

In order to measure the e�ciency of our implementation of Strassen's algorithm, we have in-
corporated it into a divide-and-conquer-based symmetric eigensolver, whose kernel operation
is matrix multiplication. This eigensolver is based on the Invariant Subspace Decomposition
Algorithm (ISDA) [15] and is part of the PRISM project. The ISDA uses matrix multipli-
cation to apply a polynomial function to a matrix until a certain convergence criterion is
met. At that point, the range and null space of the converged matrix is computed, which
provides the subspaces necessary for dividing the original matrix into two subproblems. Both
of these operations depend heavily on matrix multiplication. The algorithm is repeated until
all subproblems have been solved.

Incorporating Strassen's algorithm into this eigensolver was accomplished easily by re-
naming all calls to DGEMM as calls to DGEFMM. Table 6 provides the resulting per-
formance gain for �nding all the eigenvalues and eigenvectors of a randomly-generated
1000 � 1000 test matrix on a RS/6000 using both DGEMM and DGEFMM. Note that in
this application the running time for random matrices is typically the same as that seen for
other matrices of the same size. Thus, it is su�cient to test on a randomly-generated input
matrix. We see that there is an approximate 20% savings in the matrix multiplication time
by using DGEFMM. This shows that real applications can easily realize the performance
gain from our new Strassen implementation.
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5 Summary and Conclusions

In this paper we have described our implementation of Strassen's algorithm for matrix mul-
tiplication and reported on running our code on the IBM RS/6000, CRAY YMP C90, and
CRAY T3D single processor. Our empirical data shows that Strassen's algorithm provides
improved performance over the standard algorithm for matrix sizes that occur in practice.
Moreover, our implementation, DGEFMM, is designed to replace DGEMM, the Level 3
BLAS matrix multiplication routine, thus providing enhanced performance in existing ap-
plication codes. This was exhibited by the use of DGEFMM for the matrix multiplications
required in an eigensolver code.

Our implementation is written in C and uses the BLAS for important kernel routines.
A cuto� criterion is used to determine whether to apply Strassen's algorithm or to use
DGEMM. The cuto� criterion uses parameters which can be set based on empirical perfor-
mance measurements, allowing our code to be tuned to di�erent machines.

Previous implementations of Strassen's algorithm [2, 3, 8] o�er similar functionality and
performance characteristics, though our study and analysis is more thorough. Aspects of
our work that are unique to our implementation are the following. To deal with odd matrix
dimensions, we use dynamic peeling with rank-one updates, a technique whose usefulness had
previously been in question and had not so far been demonstrated. Also, we have carefully
analyzed cuto� criteria for rectangular matrices and have developed a new technique that
leads to a performance improvement. In addition, for certain cases, we have reduced the
amount of memory needed for temporary computations by 40 to more than 70 percent
compared to other implementations. Performance of our implementation is competitive
with all other similar codes known to us. This is especially signi�cant in view of our reduced
memory requirements.

In addition to the work presented in this paper we have developed several models whose
goal is to predict and compare the performance of various alternatives that arise in the
implementation of Strassen's algorithm. A description of the models and their use in pre-
dicting performance and comparing design alternatives can be found in [14]. Future work
could make use of these models to further re�ne our criteria for stopping recursions, inves-
tigate alternate peeling techniques, extend our implementation to use virtual memory and
parallelism, and/or extend our models to account for these new architectural features.
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