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Abstract. This paper gives an overview of Petri net theory from an
algorithmic viewpoint. We survey a number of analytical techniques as
well as decidability/complexity results for various Petri net problems.

1 Introduction

Petri nets, introduced by C. A Petri in 1962 [54], provide an elegant and useful
mathematical formalism for modelling concurrent systems and their behaviors.
In many applications, however, modelling by itself is of limited practical use if
one cannot analyze the modelled system. As a means of gaining a better under-
standing of the Petri net model, the decidability and computational complexity
of typical automata theoretic problems concerning Petri nets have been exten-
sively investigated in the literature in the past four decades.

In this paper, we first give an overview of a number of analytical techniques
known to be useful for reasoning about either structural or behavioral proper-
ties of Petri nets. However, due to the intricate nature of Petri nets, none of
the available analytical techniques is a panacea. To understand the limitations
and capabilities of analyzing Petri nets from an algorithmic viewpoint, we also
summarize a variety of decidability/complexity results reported in the literature
for various Petri net problems including boundedness, reachability, containment,
equivalence, and more. Among them, Lipton [40] and Rackoff [56] have shown
exponential space lower and upper bounds, respectively, for the boundedness
problem. As for the containment and the equivalence problems, Rabin [2] and
Hack [19], respectively, have shown these two problems to be undecidable. In
spite of the efforts made by many researchers over the years, many analytical
questions concerning Petri nets remain unanswered.

The quest for solving the general reachability problem for Petri nets has
constituted perhaps the most important and challenging line of research in the
Petri net community in the past. Knowing that the problem requires exponential
space [40], the decidability issue of the problem was left unsolved for a long pe-
riod of time until Mayr [42, 43] finally provided an answer in the affirmative (see
also [38]). Before Mayr’s proof, a number of attempts were made to investigate
the problem for restricted classes of PNs, in hope of gaining more insights and
developing new tools in order to conquer the general PN reachability problem
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(see, e.g., [16, 21, 39, 41, 48, 61]). A common feature of those attempts is that
decidability of reachabiltiy for those restricted classes of Petri nets was built
upon their reachability sets being semilinear. As semilinear sets precisely corre-
spond to the those characterized by Presburger Arithmetic (a decidable theory),
decidability of the reachability problem follows immediately. In view of the im-
portance of the role played by the concept of semilinearity in Petri net theory,
we devote a section in this paper to surveying analytical techniques and com-
plexity results for subclasses of Petri nets exhibiting semilinear reachability sets.
As for the general reachability problem, the only known algorithm is nonprimi-
tive recursive (see [38, 42, 43]). The exact complexity of the reachability problem
remains the most challenging open problem in Petri net theory.

It is well-known that the computational power of Petri nets is strictly weaker
than that of Turing machines, making them inadequate for modelling certain
real-world systems such as prioritized systems [1]. To overcome this shortcoming,
a number of extended Petri nets have been introduced to enhance the expressive
capabilities of Petri nets. Among them are colored Petri nets, Petri nets with
inhibitor arcs, timed Petri nets, prioritized Petri nets, and more. With the above
extended Petri nets powerful enough to simulate Turing machines, all nontrivial
problems for such Petri nets become undecidable. A natural and interesting
question to ask is: are there Petri nets whose powers lie between conventional
Petri nets and Turing machines? It turns out that the so-called reset nets and
transfer nets are two such witnesses. The quest for such ‘weaker’ extensions has
attracted considerable attentions in recent years.

This paper gives an overview of basic analytical techniques and decidabil-
ity/complexity results for various Petri net problems. Our survey is by no means
comprehensive; the interested reader is refer to [12, 33, 49] for other survey arti-
cles concerning the decidability and complexity issues of Petri nets. See also [7,
53, 58] for more about Petri nets and their related problems.

The rest of this paper is organized as follows. Section 2 gives the basic no-
tations and terminologies of Petri nets and their equivalent models. Section 3
is devoted to the definitions of various Petri net problems that are of interest
in the Petri net community. An overview of analytical techniques known to be
useful for reasoning about Petri net behaviors is presented in Section 4. Decid-
ability and complexity results concerning various Petri net problems for general
Petri nets and for subclasses of Petri nets are given in Section 5 and Section 6,
respectively. Finally, in Section 7 we briefly discuss the computational power of
various extended Petri nets.

2 Preliminaries

Let Z (N) denote the set of (nonnegative) integers, and Zk (Nk) the set of
vectors of k (nonnegative) integers. For a k-dimensional vector v, let v(i), 1 ≤
i ≤ k, denote the ith component of v. For a k × m matrix A, let A(i, j), 1
≤ i ≤ k, 1 ≤ j ≤ m, denote the element in the ith row and the jth column of
A. We let |S| be the number of elements in set S. Given a vector x, we let xT



denote the transpose of x. Given an alphabet (i.e., a finite set of symbols) Σ, we
write Σ∗ to denote the set of all finite-length strings (including the empty string
λ) using symbols from Σ.

2.1 Petri nets

A Petri net (PN, for short) is a 3-tuple (P, T, ϕ), where P is a finite set of places,
T is a finite set of transitions, and ϕ is a flow function ϕ : (P ×T ) ∪ (T ×P ) →
N . A marking is a mapping µ : P → N . (µ assigns tokens to each place of the
net.) Pictorially, a PN is a directed, bipartite graph consisting of two kinds of
nodes: places (represented by circles within which each small black dot denotes
a token) and transitions (represented by bars or boxes), where each arc is either
from a place to a transition or vice versa. In addition, each arc is annotated
by either ϕ(p, t) or ϕ(t, p), where p and t are the two endpoints of the arc. See
Figure 1 for an example, in which all the arc labels are one and are therefore
omitted.

A transition t ∈ T is enabled at a marking µ iff ∀p ∈ P , ϕ(p, t) ≤ µ(p).
If a transition t is enabled, it may fire by removing ϕ(p, t) tokens from each
input place p and putting ϕ(t, p′) tokens in each output place p′. We then write
µ

t7−→ µ′, where µ′(p) = µ(p)− ϕ(p, t) + ϕ(t, p), ∀p ∈ P .

Example 1. Figure 1 depicts a PN (P, T, ϕ) with P = {p1, p2, p3, p4, p5} and
T = {t1, t2, t3, t4}, modelling a simple producer-consumer system. We can view
a marking µ as a 5-dimensional column vector in which the ith component
is µ(pi). In Figure 1, transition t2 is enabled at marking µ = (1, 0, 0, 1, 0)
since the only input place of t2 (i.e., p1) satisfies ϕ(p1, t2) ≤ µ(p1). After fir-
ing the transition t2, the PN reaches a new marking µ′ = (0, 1, 1, 1, 0), i.e.,
(1, 0, 0, 1, 0) t17−→ (0, 1, 1, 1, 0). ut

t1 t2 t3 t4
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p2

p3

p4

p5

Producer Consumer

Fig. 1. A Petri net.



A sequence of transitions σ = t1...tn is a firing sequence from µ0 iff µ0
t17−→

µ1
t27−→ · · · tn7−→ µn for some markings µ1,...,µn. (We also write ‘µ0

σ7−→ µn’.)
We write ‘µ0

σ7−→’ to denote that σ is enabled and can be fired from µ0, i.e.,
µ0

σ7−→ iff there exists a marking µ such that µ0
σ7−→ µ. The notation µ0

∗7−→ µ
is used to denote the existence of a σ such that µ0

σ7−→ µ. A marked PN is a
pair ((P, T, ϕ), µ0), where (P, T, ϕ) is a PN, and µ0 is called the initial marking.
Throughout the rest of this paper, the word ‘marked’ will be omitted if it is clear
from the context.

By establishing an ordering on the elements of P and T (i.e., P = {p1, ..., pk}
and T = {t1, ..., tm}), we define the k ×m incidence matrix [T ] of (P, T, ϕ) so
that [T ](i, j) = ϕ(tj , pi)−ϕ(pi, tj). Note that ϕ(tj , pi), ϕ(pi, tj), and [T ](i, j), re-
spectively, represent the number of tokens removed, added, and changed in place
i when transition j fires once. Thus, if we view a marking µ as a k-dimensional
column vector in which the ith component is µ(pi), each column of [T ] is then
a k-dimensional vector such that if µ0

σ7−→ µ, then the following state equation
holds:

µ0 + [T ] ·#σ = µ,

where #σ is an m-dimensional vector with its jth entry denoting the number of
times transition tj occurs in σ.

Example 2. Consider the PN in Figure 1. As marking µ = (0, 1, 2, 1, 0) is reach-
able from the initial marking µ0 = (1, 0, 0, 1, 0) through the firing sequence
σ = t2t1t2, it is easy to verify (as the following equation shows) that the state
equation µ0 + [T ] ·#σ = µ holds.
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0
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1 −1 0 0
−1 1 0 0

0 1 −1 0
0 0 −1 1
0 0 1 −1
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0
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1
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1
0




ut
As the following example shows, the existence of a solution for the state

equation of a PN is necessary but not sufficient to guarantee reachability.

Example 3. Consider a PN P=(P, T, ϕ) with P = {p1, p2, p3}, T = {t1, t2} and
ϕ(p1, t1) = −1, ϕ(t1, p2) = 1, ϕ(p2, t2) = −1, ϕ(t2, p1) = 1, and ϕ(t2, p3) = 1. Let
the initial marking be (0, 0, 0) and the final marking be (0, 0, 1). The associated
state equation is 
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0
0


 +



−1 1

1 −1
0 1




(
x1

x2

)
=




0
0
1




Clearly (1,1) is a solution to the above equation although (0, 0, 1) is not
reachable from (0, 0, 0).

ut



For ease of expression, the following notations will be used extensively through-
out the rest of this paper. (Let σ, σ′ be transition sequences, p be a place, and t
be a transition.)

– #σ(t) represents the number of occurrences of t in σ. (For convenience, we
sometimes treat #σ as an m-dimensional vector assuming that an ordering
on T is established (|T | = m).)

– ∆(σ) = [T ] · #σ defines the displacement of σ. (Notice that if µ0
σ7−→ µ,

then ∆(σ) = µ − µ0.) For a place p ∈ P , we write ∆(σ)(p) to denote the
component of ∆(σ) corresponding to place p.

– Tr(σ) = {t|t ∈ T, #σ(t) > 0}, denoting the set of transitions used in σ.
– p•={t|ϕ(p, t) ≥ 1, t ∈ T} is the set of output transitions of p;

t•={p|ϕ(t, p) ≥ 1, p ∈ P} is the set of output places of t.

– •p={t|ϕ(t, p) ≥ 1, t ∈ T} is the set of input transitions of p;
•t={p|ϕ(p, t) ≥ 1, p ∈ P} is the set of input places of t.

Given µ0
σ7−→ µ, a sequence σ′ is said to be a rearrangement of σ if #σ = #σ′

and µ0
σ′7−→ µ.

Let P = ((P, T, ϕ), µ0) be a marked PN. The reachability set of P is R(P, µ0)
= {µ | ∃σ ∈ T ∗, µ0

σ7−→ µ}.

2.2 Vector addition systems (with states), vector replacement
systems

Vector addition systems (VAS) were introduced by Karp and Miller [36], and
were later shown by Hack [18] to be equivalent to PNs. An n-dimensional VAS
is a pair G = (x, W ), where x ∈ Nn is called the start point (or start vector) and
W is a finite set of vectors (called addition vectors) in Zn. The reachability set
of the VAS G is the set R(G) = {z | for some j, z = x + v1 + ... + vj , where, for
all 1 ≤ i ≤ j, each vi ∈ W and x + v1 + ... + vi ≥ 0}.

An n-dimensional vector addition system with states (VASS) [21] is a VAS
(x,W ) together with a finite set T of transitions of the form p → (q, v), where
q and p are states and v is in W . The meaning is that such a transition can be
applied at point y in state p and yields the point y + v in state q, provided that
y + v ≥ 0. The VASS is specified by G = (x,W, T, p0), where p0 is the starting
state.

Example 4. For the PN shown in Figure 1, the corresponding VAS 〈x,W 〉 is:

– x = (1, 0, 0, 1, 0),
– W = {(1,−1, 0, 0, 0), (−1, 1, 1, 0, 0), (0, 0,−1,−1, 1), (0, 0, 0, 1,−1)}.

Such a VAS can also be regarded as a VASS with a single state. ut



A k ×m vector replacement system (VRS) [37] is a triple (w0, U,W ), where
w0 ∈ Nk (start vector), U ∈ Nk×m (check matrix), and W ∈ Zk×m (addition
matrix) such that, for any i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ k, we have Ui(j) +
Wi(j) ≥ 0. Here Ui (respectively, Wi) is the i-th column vector of U (respectively,
W ). A vector Wi ∈ W is said to be enabled in a vector x ∈ Nk if and only if
x ≥ Ui; as Ui + Wi ≥ 0, adding Wi to x yields x + Wi ∈ Nk. For a VRS
G = (w0, U,W ), R(G) denotes the set of vectors from Nk that can be reached
from w0 by iteratively adding vectors from W enabled in the vector computed
so far.

It is known that Petri net, VAS, VASS, and VRS are computationally equiv-
alent. In fact, given an n-dimensional VASS G, we can effectively construct an
(n + 3)-dimensional VAS G′ that simulates G [21].

3 Petri net problems

What follows are problems that are of particular importance and interest in the
study of PNs.

– The reachability problem: given a PN P (with initial marking µ0) and a
marking µ, deciding whether µ ∈ R(P, µ0).

– The boundedness problem: given a PN P (with initial marking µ0), deciding
whether |R(P, µ0)| is finite or not.

– The covering problem: given a PN P (with initial marking µ0) and a marking
µ, deciding whether there exists a µ′ ∈ R(P, µ0) such that µ′ ≥ µ.

– The equivalence problem: given two PNs P1 (with initial marking µ1) and
P2 (with initial marking µ2), deciding whether R(P1, µ1) = R(P2, µ2).

– The containment problem: given two PNs P1 (with initial marking µ1) and
P2 (with initial marking µ2), deciding whether R(P1, µ1) ⊆ R(P2, µ2).

– The model checking problem: given a PN P (with initial marking µ0) and
a temporal formula φ (expressed in some temporal logic), deciding whether
P, µ0 |= φ (i.e., (P, µ0) satisfies φ).

– The liveness problem: given a PN P (with initial marking µ0), deciding
whether for every t ∈ T, µ ∈ R(P, µ0), there exists a sequence of transitions
σ such that µ

σ·t7−→, i.e., t is enabled after firing σ from µ.

– Others include home-state, reversibility, self-stabilization, fairness, regularity,
synchronic distance, controllability ... and more.



Example 5. Consider the two PNs shown in Figure 2. Clearly, Figure 2(a) is
bounded with respect to the given initial marking. However, if the upper-leftmost
place contains two tokens, then the PN becomes unbounded. That is, being
boundedness or not depends on the initial marking for the PN in Figure 2(a).
The PN in Figure 2(b), on the other hand, remains bounded no matter what
the initial marking of the PN is. Such a PN is called structurally bounded.

ut

(a) Bounded but not 
structurally bounded

22

(b) Structurally bounded

Fig. 2. Structural vs. behavioral boundedness.

To capture the essence of a transition being ‘live’ in various application areas,
a hierarchy of liveness notions was defined in the literature (see [49]). Transition
t in a PN (P, µ0) is said to be:

1. Dead (L0-live) if t can never be fired in any firing sequence from µ0;
2. L1-live (potentially firable) if t can be fired at least once in some firing

sequence from µ0;
3. L2-live if, given any positive integer k, t can be fired at least k times in some

firing sequence from µ0;
4. L3-live if t appears infinitely often in some firing sequence from µ0;
5. L4-live or live if t is L1-live for every marking µ in R(P, µ0);

A PN is said to be L0, L1, L2, L3, and L4-live if each of its transitions is L0,
L1, L2, L3, and L4-live, respectively.

Example 6. Consider the PN shown in Figure 3. For any k ∈ N , (1, 0, 0)
(t1)

kt2(t3)
k

7−→ ;
hence, t3 is L2-live. However, it is reasonably easy to see that t3 is not L3-live
as there is no computation along which t3 is fired infinitely many times. In fact,
the following implications hold: L4-liveness (the strongest) =⇒ L3-liveness =⇒
L2-liveness =⇒ L1-liveness. ut



t1

t2

t3

p1

p2

p3

Fig. 3. L2 vs. L3 liveness.

4 Analytical techniques

In this section, we summarize various techniques useful for analyzing PN prop-
erties. Our focus is on algebraic techniques, structural analysis, and state-space
analysis. Other techniques such as simulation and synthesis/reduction are beyond
the scope of our discussion. Structural analysis is mainly designed for reasoning
about properties of PNs that are independent of the initial markings. State-
space analysis, on the other hand, allows us to infer properties of PNs that are
sensitive to the initial markings.

4.1 Algebraic techniques

In the framework of using algebraic techniques for reasoning about PNs, solving
a PN problem is reduced to finding a solution for an algebraic (in)equation
associated with the PN. Due to the nature of this technique, the method is in
general efficient (in most cases, polynomial in the size of the PN). Unfortunately,
this technique generally provides only necessary or sufficient information for
either inferring desired properties or ruling out dangerous conditions.

State equation: Figure 4 highlights the idea behind the technique based on
state equations. If µ is reachable from µ0 through transition sequence σ, then #σ

corresponds to an integer solution to the state equation µ0 +[T ] ·#σ = µ, where
[T ] is the incidence matrix of the PN. The technique relies on relating the PN
reachability analysis to integer linear programming, which is a well-established
formalism. Unfortunately, a direct application of the state equation technique to
general PN problems is normally not feasible, as the existence of a solution to a
state equation is necessary but not sufficient for witnessing reachability. There
are, however, various subclasses of PNs for which an extended state equation is
sufficient and necessary to capture reachability of the underlying PN. More will
be said about this in our subsequent discussion.
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0

State Equation: 0 + M x =  

Fig. 4. State equation.

Place invariant: A place invariant of PN P = (P, T, ϕ) is a mapping InvP :
P → Z (i.e., assigning weights to places) such that ∀µ, µ′ and t ∈ T , if µ

t7−→
µ′, then

∑
p∈P InvP (p)µ(p) =

∑
p∈P InvP (p)µ′(p). In words, the firing of any

transition does not change the weighted sum of tokens in the PN. Consider the
PN shown in Figure 5. It is reasonably easy to observe that (1, 2, 1) is a P-
invariant. Other P-invariants include (1, 1, 0), (2, 5, 3), (−2, 1, 3). Note that any
linear combination of P-invariants is a P-invariant. Any solution of the equation
X · [T ] = 0 is a P-invariant, where X is a row vector. For instance,

(
1, 2, 1

)


−1 1

1 −1
−1 1


 =

(
0
0

)
,

as (1,2,1) is a P-invariant. Using the so-called Farkas Algorithm, the minimal
P-invariants (i.e., bases) of a PN can be calculated. Nevertheless, in the worst
case the number of minimal P-invariants is exponential in the size of the PN,
indicating that Farkas Algorithm may require exponential worst-case time.

Suppose µ is a reachable marking (from the initial marking µ0) through a
firing sequence σ. Clearly, µ0 + [T ]#σ = µ. (Here µ0 and µ are column vectors.)
Let X be a P-invariant. Then
X · µ = X · (µ0 + [T ] ·#σ) = X · µ0 + X · [T ] ·#σ = X · µ0.
Recall that in the example in Figure 5, (1, 1, 0) is a P-invariant. For every reach-
able marking µ, we have µ(p1)+µ(p2) = µ0(p1)+µ0(p2), meaning that the total
number of tokens in p1 and p2 together remain unchanged during the course of
the PN computation. Hence, if the PN starts from the initial marking (1, 0, 1),
then the property of mutual exclusion for places p1 and p2 can be asserted as
µ(p1)+µ(p2) = µ0(p1)+µ0(p2) = 1 for all reachable marking µ. It is easy to see
that if there exists a P-invariant X with X(p) > 0, for all p ∈ P , then the PN is



p1

p2

p3

t1 t2

Fig. 5. A PN with a P-invariant (1,2,1).

guaranteed to be structurally bounded. Hence, place invariants can be used for
reasoning about structural boundedness.

Transition invariant: A transition invariant of PN P = (P, T, ϕ) is a mapping
InvT : T → N (i.e., assigning nonnegative weights to transitions) such that
Σt∈T InvT (t)(∆(t)) = 0. In words, firing each transition the number of times
specified in the T-invariant brings the PN back to its starting marking. Again
consider the PN shown in Figure 5 in which (2, 2) (i.e., InvT (t1) = InvT (t2) = 2)
is clearly a T-invariant, so is (n, n), for arbitrary n ≥ 0. Like P-invariants, any
linear combination of T-invariants is a T-invariant. It is easy to see that T-
invariants correspond to the solutions of the following equation: [T ] · XT = 0
(where X is a row vector representing a T-invariant). The existence of a T-
invariant is a necessary condition for a bounded PN to be live. To see this,
suppose P = ((P, T, ϕ), µ0) is a live and bounded PN. Clearly due to P being
live, there exists an infinite path µ0

σ17−→ µ1
σ27−→ · · ·µi

σi+17−→ µi+1 · · · such that
Tr(σi) = T for all i ≥ 1 (i.e., σi uses all the transitions in T ). Since P is also
bounded, there exist h > j ≥ 0 such that µj = µh; hence, #(σj+1···σh) constitutes
a T-invariant.

4.2 Structural analysis

Given a PN P = (P, T, ϕ), a subset of places S ⊆ P is called a trap (resp.,
siphon) if S• ⊆ •S (resp., •S ⊆ S•). (Here •S and S• denote the sets of input
and output transitions of S, respectively.) Intuitively, a trap S represents a set
of places in which every transition consuming a token from S must also deposit
a token back into S. In contrast, if a transition is going to deposit a token to a
place in a siphon S, the transition must also remove a token from S.

Suppose S is a siphon in a live PN without isolated places (i.e., places without
input/output transitions), then S must be marked in the initial marking µ0 (i.e.,
µ0(p) > 0, for some place p ∈ S). Otherwise, none of the transitions in •S or S•

is fireable – violating the assumption that the PN being live.



The concept of a siphon plays an important role in the liveness analysis for
the class of free-choice PNs. A PN P = (P, T, ϕ) is called a free-choice PN if
the following conditions hold: (1) ∀t ∈ T, p ∈ P, ϕ(p, t) ≤ 1 and ϕ(t, p) ≤ 1, (2)
∀t1, t2 ∈ T, (•t1∩ •t2 6= ∅ =⇒ •t1 = •t2). In words, if two transitions share some
input places, then they share all their input places. Known as Commoner’s The-
orem (see, e.g., [7]), a free-choice PN is live iff every nonempty siphon contains
an initially marked trap. The reader is referred to [7] for more about free-choice
PNs.

Example 7. Consider the free-choice PN shown in Figure 6. It is easy to see that
{p1, p2, p5, p6, p7} is a siphon which does not contain any initially marked trap.
Hence, the PN is not live due to Commoner’s Theorem. In fact, (1, 0, 0, 0, 0, 0, 0) t17−→
(0, 0, 0, 0, 0, 1, 1) t27−→ (0, 1, 0, 0, 0, 0, 1) t57−→ (0, 1, 0, 0, 1, 0, 0) reaches a dead mark-
ing. ut

s6 s7

s2 s3 s4 s5

s1

t1

t2 t3 t4 t5

t6t7

Fig. 6. A free-choice PN which is bounded but not live.

4.3 State space analysis

Reachability graph analysis: The so-called reachability graph analysis is per-
haps the simplest and the most straightforward approach for analyzing the be-
havior of a PN. As its name suggests, such a technique relies on exhaustively
generating all the reachable markings from a given initial marking, in hope of
deducing PN properties by examining the structure of the reachability graph.
Figure 7 displays a portion of the reachability graph associated with the PN in
Figure 1.

In spite of its simplicity, the applicability of the technique of reachability
graph analysis is rather limited; it can only be applied to bounded (i.e., finite)



(0,1,1,1,0)

(1,0,1,1,0)      (0,1,0,0,1)

(0,1,2,1,0)      (1,0,0,0,1)

t2

t1

t2

t3

t3 t1

Initial
marking

(1,0,0,1,0)

Reachable markings

Fig. 7. Portion of the reachability graph of the Petri net in Figure 1.

PNs with small reachability sets. Even for bounded PNs which exhibit finite
reachbility graphs, the technique is ‘expensive’ in the sense that it suffers from
the state explosion phenomenon as the sizes of the reachability sets grow beyond
any primitive recursive function even for bounded PNs in the worst case. More
will be said about this later.

Coverability graph analysis: Coverability graph analysis offers an alternative
to the technique of reachability graph analysis by abstracting out certain details
to make the graph finite. To understand the intuition behind coverability graphs,
consider Figure 7 which shows (part of) the reachability graph of the PN in Fig-
ure 1. Consider the path (1, 0, 0, 1, 0) t27−→ (0, 1, 1, 1, 0) t17−→ (1, 0, 1, 1, 0) along
which the third coordinate gains an extra token in the end (i.e., (1, 0, 1, 1, 0) >
(1, 0, 0, 1, 0)). Clearly the third coordinate can be made arbitrarily large by re-
peating t2t1 for a sufficient number of times, as (1, 0, 0, 1, 0) t2t17−→ (1, 0, 1, 1, 0) t2t17−→
(1, 0, 2, 1, 0) t2t17−→ · · · t2t17−→ (1, 0, n, 1, 0) t2t17−→ · · · , for arbitrary n. In order to cap-
ture the notion of a place being unbounded, we short-circuit the above infinite
sequence of computation as (1, 0, 0, 1, 0) t27−→ (0, 1, 1, 1, 0) t17−→ (1, 0, ω, 1, 0), where
ω is a symbol denoting something being arbitrarily large. One can regard ω as
“infinity” having the property that ω > n for any integer n, ω + n = n + ω = ω,
ω−n = ω and ω ≥ ω. A coverability graph relates each node to a general mark-
ing (∈ (N ∪ {ω})|P |) of the original PN. The corresponding coverability graph
of the PN in Figure 1 is depicted in Figure 8.

The algorithm for generating the coverability graph of a PN is shown below
(see [36]):

Coverability graph aglorithm
Input: A Petri net P = (P, T, ϕ) with the initial marking µ0

Output: The coverability graph GP(µ0) of PN (P, µ0)
(1) Create a node µinit such that µinit = µ0, and mark it as “new”
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Fig. 8. Coverability graph of the Petri net in Figure 1.

(2) while there contains some new node µ do
(3) for each transition t enabled at µ do
(4) case (i) there is a node µ′ = µ + ∆t in GP(µ0)
(5) add an edge µ

t→ µ′ to GP(µ0)
(6) case (ii) there is a node µ′′ from µinit to µ such that µ′′ < µ + ∆t
(7) add an “new” node x with
(8) x(p) = ω if µ′′(p) < (µ + ∆t)(p)
(9) x(p) = µ′′(p), otherwise
(10) add an edge µ

t→ x
(11) case (iii) otherwise
(12) add an “new” node x with x = µ + ∆t and an edge µ

t→ x
(13) end for
(14) mark µ with “old”
(15) end while
end algorithm

As it turns out, the coverability graph of a PN is always finite ([36]). In addition,
a PN is unbounded iff an ω occurs in the corresponding coverability graph, which,
in turn, yields a decision procedure for deciding the boundedness property. It
should be noted that such a technique does not answer the reachability problem
as ω abstracts out the exact number of tokens that a place can accumulate,
should the place be potentially unbounded.

A reachability graph (possibly of infinite size) captures the exact information
about the set of reachable markings of a PN, whereas a coverability graph (always
of finite size) provides an over-approximation of the reachability set, should it
be infinite. Again the coverability graph analysis suffers from state explosion.



5 Complexity analysis of various Petri net problems

5.1 Boundedness and covering

The boundedness problem was first considered by Karp and Miller in [36], where
it was shown to be decidable using the technique of coverability graph anal-
ysis. The algorithm presented there was basically an unbounded search and
consequently no complexity analysis was shown. Subsequently, a lower bound
of O(2c×m) space was shown by Lipton in [40], where m represents the dimen-
sion of the problem instance and c is some constant. Finally, an upper bound
of O(2c×n×logn) space was given by Rackoff in [56]. Here, however, n represents
the size or number of bits in the problem instance and c is a constant.

Lipton’s exponential space lower bound was established by constructing a
VAS to maintain and store a number, whose value ranges between 0 and 22k

.
This number could then be incremented by 1 (as long as the current value
was below the upper limit), decremented by 1 (as long as the current value
exceeded 0), and tested for zero. The zero-test was the hard part in Lipton’s
construction. See [59] for a refinement of Lipton’s lower bound in the framework
of multiparameter analysis.

Rackoff’s exponential space upper bound was established using induction
(on the dimension of the VAS instance). Such a technique has found additional
applications in [14, 17, 59]. In particular, Rosier and Yen [59] refined Rackoff’s
strategy to derive a multiparameter analysis of the boundedness problem for
VASSs, yielding an upper bound of O(2c×k×logk(l + logn)) space, where k is the
dimension, n is the number of states, and l is the length of the binary repre-
sentation of the largest number mentioned in the VASS. A direct consequence
of the above is that when the dimension of a VASS (VAS, or PN) is a fixed
constant, then the boundedness problem is solvable in polynomial space. As the
strategy behind Rackoff’s proof is interesting and important in its own right (as
was witnessed by its additional applications in [14, 17, 59]), in what follows we
briefly describe the key steps of the proof.

Let (v, A) be a VAS of size n. It is well known that (v, A) is unbounded iff
there is a computation v

∗7−→ v′ ∗7−→ v′′ such that v′′ > v′. Rackoff’s strategy
relies on showing that if such a path exhibiting unboundedness exists, then there
is ‘short’ witness.

A w ∈ Zk is called i-bounded (resp., i-r bounded) if 0 ≤ w(j), ∀1 ≤ j ≤ i
(resp. 0 ≤ w(j) ≤ r, ∀1 ≤ j ≤ i). Let p = w1w2 · · ·wm be a sequence of vectors
in Zk. Sequence p is said to be

– i-bounded (resp., i-r bounded) if every member of p is i-bounded (resp., i-r
bounded).

– self-covering if there is a 1 ≤ j ≤ m such that wm > wj .
– an i-loop if wm(j) = w1(j), ∀1 ≤ j ≤ i.

Let m(i, v) be the length of the shortest i-bounded self-covering path in (v, A);
=0 if no such path exists. Also let g(i) = max{m(i, v) : v ∈ Zk}. Note that
g(i) represents the length of the longest i-bounded self-covering path from any



starting vector in Zk. The key in Rackoff’s proof relies on finding a bound for
g(i) inductively, where i = 1, 2, ..., k.

To derive g(i), it was shown in [56] that if there is an i − r bounded self-
covering path in (v, A), then there is a ‘short witness’ of length bounded by rnc

,
where c is a constant independent of (v,A). The proof of this result relies on
rearranging as well as chopping off unnecessary i-loops along an i − r bounded
self-covering path, using a result in [3] concerning bounds of integer solutions of
linear (in)equations. Using the above result, it could be shown that g(0) ≤ 2nc

and g(i + 1) ≤ (2ng(i))nc

, 0 ≤ i ≤ k − 1. To see this, let p : v1 · · · vm be any
(i + 1)-bounded self-covering path. Consider two cases:

– Case 1: Path p is (i + 1) − (2ng(i))-bounded. Then the length of p is ≤
(2ng(i))nc

, which follows immediately from the earlier result concerning short
witnessing paths.

– Case 2: Otherwise, let vh be the first vector along p that is not (2ng(i))
bounded. By removing (i + 1)-loops, the prefix v1...vh can be shortened (if
necessary) to make the length ≤ (2ng(i))i+1. With no loss of generality,
we assume the (i + 1)st position to be the coordinate whose value exceeds
2ng(i) at vh. Recalling the definition of g(i), there is a self-covering path,
say l, of length ≤ g(i) from vh. By appending l to v1...vh (i.e., replacing the
original suffix path vh...vm by l), the new path is an (i + 1)-bounded self-
covering path, because the value of the (i+1)st coordinate exceeds 2ng(i)
and the path l (of length bounded by ≤ g(i)) can at most subtract (2ng(i))
from coordinate i + 1. (Note that the application of an addition vector can
subtract at most 2n from a given coordinate.)

By solving the recurrence relation g(0) ≤ 2nc

and g(i + 1) ≤ (2ng(i))nc

,
0 ≤ i ≤ k − 1, the length of the shortest path witnessing unboudedness is
≤ 22c×n×logn

. A nondeterministic search immediately yields a O(2c×n×logn) space
complexity for the boundedness problem.

The complexity (both upper and lower bounds) of the covering problem can
be derived along a similar line of that of the boundedness problem. See [56] for
details.

5.2 Reachability

Of various problems of interest in the study of PNs, the reachability problem
is perhaps the one that has attracted the most attention in the PN community
in the past four decades. One reason is that the problem has many real-world
applications; furthermore, it is the key to the solutions of several other PN
problems (such as liveness).

Before the decidability question of the reachability problem for general PNs
was answered in the affirmative by Mayr [42, 43] in the early 1980’s (see also
[38]), a number of attempts were made to investigate the problem for restricted
classes of PNs, in hope of gaining more insights and developing new tools in order
to conquer the general PN reachability problem. Before Mayr’s proof, Sacerdote



and Tenney [60] claimed the reachability problem to be decidable; yet they failed
to provide a convincing proof. What follows are notable milestones along this
line of research.

In 1974, van Leeuwen [61] first showed the reachability problem to be de-
cidable for 3-dimensional PNs. Hopcroft and Pansiot [21] later extended van
Leeuwen’s finding to 5-dimensional PNs in 1979. About the same time Landwe-
ber and Robertson [39] as well as Grabowski [16], Mayr [41] and Muller [48] con-
sidered PNs on which either structural or behavioral constraints are imposed,
and showed the reachability problem to be decidable for the classes of conflict-
free and persistent PNs. A important common feature of the above attempts is
that the decidability result was built upon showing the reachability set to be
semilinear. As it turns out, semilinearity is also preserved for the so-called nor-
mal [62], sinkless [62], and communication-free PNs (also known as BPP nets)
[28, 10].

Although the reachability problem for general PNs is known to be decidable,
no complexity analysis was given in [42, 43], (nor in [38]). The best known lower
bound for the problem is exponential space hard, which is identical to that of
the boundedness problem. (In fact, Lipton’s lower bound proof works for both
the reachability and the boundedness problems.) In view of the importance of
the reachability problem, finding the exact complexity of the problem remains
one of the most important open problems in Petri net theory.

5.3 Containment and equivalence

In the late 1960’s, Rabin first showed the containment problem for PNs to be
undecidable. Even though the original work of Rabin was never published, a new
proof was presented at a talk at MIT in 1972 [2]. In 1975, Hack [19] extended
Rabin’s result by showing the equivalence problem of PNs to be undecidable as
well. Both undecidability proofs were based on Hilbert’s Tenth Problem [6], a
famous undecidable problem.

Hilbert’s Tenth Problem is the problem of, given a polynomial P (x1, ..., xn)
over n variables with integer coefficients, deciding whether P (x1, ..., xn) = 0
has integer solutions. Reducing from Hilbert’s Tenth Problem, it is not hard to
see that the so-called polynomial graph inclusion problem, i.e., given two poly-
nomials P and Q, deciding whether {(x1, ..., xn, y) | y ≤ P (x1, ..., xn), with
x1, ..., xn, y ∈ N} ⊆ {(x1, ..., xn, y) | y ≤ Q(x1, ..., xn), with x1, ..., xn, y ∈ N},
is undecidable. The key behind Rabin’s and Hack’s proofs relies on showing PNs
to be capable of weakly computing polynomials. By weakly computing a polyno-
mial P (x1, ..., xn), we mean a PN P with n designated places p1, ..., pn (holding
the n input values of P ) and a designated ‘output’ place q can be constructed in
such a way that for arbitrary input values v1, ..., vn ∈ N , starting from v1, ..., vn

tokens in places p1, ..., pn, respectively, P has the ability to deposit y tokens in
place q for some y ≤ P (v1, ..., vn) when halting. With such capabilities of weakly
computing polynomials, two PNs P and Q can be constructed from two given
polynomials P and Q such that R(P) ⊆ R(Q) (or R(P) = R(Q)) iff the answer



to the polynomial graph inclusion problem regarding polynomials P and Q is
positive.

It turns out that the equivalence problem remains undecidable with respect to
several other notions of equivalence, including trace equivalence, language equiv-
alence as well as bisimulation equivalence [32] for labelled PNs. In fact, it follows
from [27] that all the equivalences under the interleaving semantics are undecid-
able.

5.4 Liveness

In [18], several variants of the reachability problem (including the general one)
were shown to be recursively equivalent. Among them is the single-place zero
reachability problem, i.e., the problem of determining whether a marking with
no tokens in a designated place can be reached. Hack [18] also showed the single-
place zero reachability problem to be recursively equivalent to the liveness prob-
lem. As a result, deciding whether a PN is live or not is decidable. Like the
general reachability problem, the exact computational complexity of the live-
ness problem remains open.

5.5 Model checking

For some time, temporal logic has been considered a useful formalism for reason-
ing about systems of concurrent programs. A typical problem involving temporal
logic is the model checking problem, i.e., the problem of determining whether a
given structure defines a model of a correctness specification expressed in the
temporal logic.

Before getting into the study of model checking for PNs, we require the
following basic definitions of linear-time temporal logic (LTL) and a branching-
time temporal logic called computation tree logic (CTL).

An LTL well-formed formula is defined as

F | ¬f | f ∧ g | © f | f U g

where F is a predicate, and f and g are well-formed formulas. For convenience,
we also write f ∨ g ≡ ¬(¬f ∧ ¬g), 3f ≡ true U f and 2f ≡ ¬3¬f . Intuitively,
©, U , 3, and 2 are temporal operators denoting next-time, until, eventually,
and always, respectively. LTL formulas are interpreted on computation paths.
With respect to a computation path s0 → s1 → · · · , the intuitive meanings of
the the above formulas are:

1. F : the atomic predicate F holds at s0,
2. ¬f : formula f does not hold at s0,
3. f ∧ g : both f and g hold at s0,
4. © f : f holds at s1 (i.e., the immediate successor of s0),
5. f U g : there exists an i ≥ 0 such that f holds at s0, ..., si−1 and g holds at

si.



A CTL formula is defined as

F | ¬f | f ∧ g | ∃ © f | ∀ © f | ∃(f U g) | ∀(f U g)

where F is a predicate, f and g are CTL formulas, and ∃ and ∀ are path quan-
tifiers denoting ‘there exists a path’ and ‘for all paths’, respectively. Among
others, useful abbreviations include: ∃3f ≡ ∃(true Uf); ∀3f ≡ ∀(true Uf);
∀2f ≡ ¬∃3(¬f); ∃2f ≡ ¬∀3(¬f).

CTL formulas are interpreted on computation trees. With respect to a tree
rooted at s0, the intuitive meanings of the formulas mentioned above are:

1. F , ¬f and f ∧ g are the same as those in the LTL case,
2. ∃© f : there exists a child s of s0 such that f holds at s,
3. ∀© f : for every child s of s0, f holds at s,
4. ∃(f U g): there exists a computation path l from s0 such that f U g holds

with respect to l,
5. ∀(f U g): for every computation path l emanating from s0, f U g holds with

respect to l.

The model checking problem for PNs is the problem of, given a PN P (with
initial marking µ0) and a temporal formula φ (expressed in some temporal logic),
deciding whether the computation of P from µ0 satisfies φ.

Model checking Petri nets was first investigated by Howell, Rosier, and Yen
in [24, 25]. As was shown in [24], the model checking problem for a fairly simple
temporal logic is undecidable, even for the class of conflict-free PNs. Following a
number of subsequent work on the study of model checking for PNs (see, e.g., [31,
44, 11, 17]) from a decidability/complexity viewpoint, we now have a reasonably
clear picture. Consider two types of atomic predicates: state-based and action-
based predicates. As their names suggest, a state-based predicate applies to the
‘markings’ of a PN computation, whereas the value of an action-based predicate
depends only the ‘actions’ taken along the computation.

With respect to state-based predicates, the model checking problem is un-
decidable for both linear-time and branching-time temporal logics. The unde-
cidability result holds for branching-time, action-based temporal logics as well.
Interestingly, however, model checking for linear-time, action-based temporal
logics turns out to be decidable [17].

To show the model checking problem for linear-time, state-based temporal
logic to be undecidable, we reduce from the containment problem of PNs. Given
two PNs N1 and N2, we construct a PN N shown in Figure 9, in which r1 and
r2 serve as ‘control’ places for controlling the firings of transitions in N1 and N2,
respectively. For each place pi in N1, let p′i be the corresponding place in N2. A
transition ti is introduced to remove an equal amount of tokens from pi and p′i.
It is not hard to see that

R(N1) ⊆ R(N2)

iff

2( ((r1 = 1 ∧ r2 = 0) ∧©(r1 = 0 ∧ r2 = 1)) ⇒ 3(
∧

i

(pi = 0 ∧ p′i = 0)) )
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Fig. 9. Undecidability proof.

Note that ((r1 = 1 ∧ r2 = 0) ∧©(r1 = 0 ∧ r2 = 1)) holds only at a marking at
which transition a fires. Using a similar construction, the undecidability result for
either state-based or action-based branching-time temporal logic can be shown.

The idea behind model checking an action-based linear-time temporal for-
mula φ for PN P is the following. (See [17] for details.) Construct a Buchi
automaton M¬φ to capture all the computations satisfying the negation of φ.
Then it can be shown that P satisfies φ iff the intersection between the sets of
computations of P and M¬φ is empty. By using a VASS to capture the ‘Cartesian
product’ of P (equivalently, a VAS) and M¬φ (a finite automaton), the model
checking problem is then reduced to finding certain infinite computations in a
VASS, which turns out to be decidable.

5.6 Self-stabilization

Before the end of this section, let us elaborate a bit about the self-stabilization
issue of PNs. The notion of self-stabilization was introduced by Dijkstra [8] to
describe a system having the behavior that regardless of its starting configura-
tion, the system would return to a ‘legitimate’ configuration eventually. (By a
legitimate configuration, we mean a configuration which is reachable from the
initial configuration of the system.) The motivation behind self-stabilization is
that a self-stabilizing system has the ability to ‘correct’ itself even in the presence
of certain unpredictable errors that force the system to reach an ‘illegitimate’
configuration during the course of its operations. In this sense, self-stabilizing
systems exhibit fault-tolerant behaviors to a certain degree.

Let S be a (finite or infinite) system with c0 as its initial configuration. Also
let R(S, c0) (={c | c0

∗→ c}) denote the set of reachable configurations from c0.
A computation σ from configuration c1 is said to be non-self-stabilizing iff one
of the following holds:

1. σ is finite (σ : c1
t1→ c2

t2→ · · · cm−1
tm−1→ cm, for some m) such that cm is a

dead configuration and cm 6∈ R(S, c0), or



2. σ is infinite (σ : c1
t1→ c2

t2→ · · · ci
ti→ ci+1 · · · ) such that ∀i ≥ 1, ci 6∈ R(S, c0).

See Figure 10. A system is said to be self-stabilizing if for each configuration c,
none of the computations emanating from c is non-self-stabilizing. The self-
stabilization problem is to determine, for a given (finite or infinite) system,
whether the system is self-stabilizing.

The self-stabilization problem has only been scarcely studied in the Petri net
community. It is known [4] that for bounded ordinary PNs (i.e. PNs without
multiple arcs), the problem is PTIME-complete, whereas for bounded general
PNs (i.e. PNs with multiple arcs), the problem becomes PSPACE-complete. For
general unbounded PNs, the analysis of the self-stabilization problem remains
open.

infinite non-ss computation

configuration
dead

the set of 

reachable configurations

computation leading to 
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initial configuration

. . . 
0R(S,c  )

0c

Fig. 10. Non-self-stabilizing computations.

6 Petri nets with semilinear reachability sets

The concept of semilinearity plays a key role not only in conventional automata
theory and formal languages (see, e.g., [29]), but also in the analysis of PNs. A
subset L of Nk is a linear set if there exist vectors v0, v1, . . . , vt in Nk such that
L = {v | v = v0 + m1v1 + · · · + mtvt, mi ∈ N}. The vectors v0 (referred to as
the constant vector) and v1, v2, . . . , vt (referred to as the periods) are called the
generators of the linear set L. For convenience, such a linear set is written as
L(v0; v1, . . . , vt). A set SL ⊆ Nk is semilinear [15] if it is a finite union of linear



sets, i.e., SL =
⋃

1≤i≤m Li, where Li (⊆ Nk) is a linear set. The empty set is
a trivial semilinear set. Every finite subset of Nk is semilinear – it is a finite
union of linear sets whose generators are constant vectors. Figure 11 shows an
example of a semilinear set, which consists of three linear sets L1, L2 and L3.
Clearly semilinear sets are closed under (finite) union. It is also known that they
are closed under complementation and intersection. It is worthy of noting that
semilinear sets are exactly those that can be expressed by Presburger Arithmetic
(i.e., first order theory over natural numbers with addition) [55], which is a
decidable theory.
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1
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L1

L2

L3

L1 = L ( (3,8); (0,3) )

L2 = L ( (5,6); (3,1),  (1,2) )

L3 = L ( (6,3); (4,0), (4,1), (2,6) )

Fig. 11. A semilinear set.

It is known [21] that for PNs of dimension 6 (equivalently, 6-dimensional
vector addition systems, or 3-dimensional vector addition systems with states)
or beyond, their reachability sets may not be semilinear in general.

For subclasses of PNs with semilinear reachability sets, a natural question
to ask is: What is the size of its semilinear representation? An answer to the
above question is key to the complexity analysis of various PN problems. In what
follows, we survey several notable examples along the line of research of analyzing
the sizes of semilinear representations for PNs with semilinear reachability sets.

Finite PNs: The reachability sets of finite (i.e., bounded) PNs are trivially
semilinear. Mayr and Meyer [45] showed that the containment and equivalence
problems for finite VASs are not primitive recursive. Subsequently, McAloon [46]
showed that the problems are primitive recursive in the Ackermann function,
and Clote [5], using Ramsey theory, showed the finite containment problem to
be DTIME (Ackermann) complete. Using a different approach, Howell, Huynh,
Rosier and Yen [22] showed an improvement of two levels in the primitive re-
cursive hierarchy over results previously obtained by McAloon, thus answering
a question posed by Clote.



2-dimensional VASS or 5-dimensional VAS (PN): It was first known
by Hopcroft and Pansiot [21] that PNs of dimension 5 always have semilinear
reachability sets. However, Hopcroft-Pnasiot algorithm does not reveal any upper
bound on the size of the semilinear set representation, nor does it tell how quickly
the set can be generated. In a subsequent study, Howell, Huynh, Rosier and Yen
[22] gave a detailed analysis of the semilinear reachability sets of 2-dimensional
VASSs, yielding the following result:

Given a 2-dimensional, n-state VASS V in which the largest integer mentioned
can be expressed in l bits, we can construct in DTIME(22c×l×n

) (for some
constant c) a semilinear reachability set representation SL =

⋃
1≤i≤k Li(xi;Pi)

such that, for some constants d1, d2, d3,

1. k = O(22d1×l×n

),
2. ∀1 ≤ i ≤ k, ||xi|| = O(22d2×l×n

)
3. ∀1 ≤ i ≤ k, |Pi| = O(2n)
4. ∀v ∈ Pi, ∀1 ≤ i ≤ k, ||v|| = O(2d3×l×n)

(Note that ||x|| denotes the 1-norm of vector x.)
Using the above result, the reachability, containment and equivalence prob-

lems for such VASSs were shown to be solvable in DTIME(22d×l×n

), for some
constant d [22]. A matching lower bound was also established in [22].

Conflict-free, normal, sinkless, communication-free PNs: In this section,
we employ a decompositional approach to serve as a unified framework for an-
alyzing a wide variety of subclasses of PNs. Under this framework, answering
the reachability question is equated with solving an instance of integer linear
programming, which is relatively well-studied. To a certain extent, the decom-
positional approach can be thought of as a generalization of the state equation
approach mentioned in our earlier discussion.

Before going into the details, the definitions of those subclasses of PNs for
which the decompositional approach works are given first.

A circuit of a PN is simply a closed path (i.e., a cycle) in the PN graph.
The presence of complex circuits is troublesome in PN analysis. In fact, strong
evidence has suggested that circuits constitute the major stumbling block in the
analysis of PNs. To get a feel for why this is the case, recall that in a PN P
with initial marking µ0, a marking µ is reachable (from µ0) in P only if there
exists a column vector x ∈ Nk satisfying the state equation µ0 + [T ] · x = µ.
The converse, however, does not necessarily hold. In fact, lacking a necessary
and sufficient condition for reachability in general has been blamed for the high
degree of complexity in the analysis of PNs. (Otherwise, one could have tied
the reachability analysis of PNs to the integer linear programming problem,
which is relatively well understood.) There are restricted classes of PNs for which
necessary and sufficient conditions for reachability are available. Most notable,
of course, is the class of circuit-free PNs (i.e., PNs without circuits) for which
the equation µ0 + [A] · x = µ is sufficient and necessary to capture reachability.



A slight relaxation of the circuit-freedom constraint yields the same necessary
and sufficient condition for the class of PNs without token-free circuits in every
reachable marking [62].

Formally, a circuit c of a PN is a sequence p1t1p2t2 · · · pntnp1 (pi ∈ P , ti ∈ T ,
pi ∈ •ti, ti ∈ •pi+1), such that pi 6= pj , ∀i 6= j (i.e., all nodes except the first
and the last are distinct along the closed path). We write Pc = {p1, p2, · · · , pn}
(resp., Tc = {t1, t2, · · · , tn}) to denote the set of places (resp., transitions) in
c, and tr(c) to represent the sequence t1t2 · · · tn. We define the token count of
circuit c in marking µ to be µ(c) =

∑
p∈Pc

µ(p). A circuit c is said to be token-
free in µ iff µ(c) = 0. Given two circuits c and c′, c is said to be included (resp.,
properly included) in c′ iff Pc ⊆ Pc′ (resp., Pc ⊂ Pc′). We say c is minimal iff it
does not properly include any other circuit. Circuit c is said to be a

– ⊕-circuit iff ∀i, 1 ≤ i ≤ n, •ti = {pi} (i.e., ti has pi as its unique input place),
or

– ¯-circuit iff ∀t ∈ T,
∑

p∈Pc
(ϕ(t, p)− ϕ(p, t)) ≥ 0 (i.e., no transition can de-

crease the token count of c).

In this section, we elaborate on a useful technique, called decomposition, using
which the reachability relation for various subclasses of PNs is linked with integer
linear programming [26, 50, 63, 64]. Among those for which our decompositional
approach is applicable include:

– Conflict-free Petri nets: A PN P = (P, T, ϕ) is conflict-free [39] iff for every
place p, either
1. |p•| ≤ 1, or
2. ∀t ∈ p•, t and p are on a self-loop.

In words, a PN is conflict-free if every place which is an input of more than
one transition is on a self-loop with each such transition.

– Normal Petri nets: A PN P = (P, T, ϕ) is normal [62] iff for every minimal
circuit c and transition tj ∈ T ,

∑

pi∈Pc

ai,j ≥ 0. Intuitively, a PN is normal

iff no transition can decrease the token count of a minimal circuit by firing
at any marking, Alternatively, every minimal circuit of a normal PN is a
¯-circuit.

– Sinkless Petri nets: A PN P = (P, T, ϕ) is sinkless [62] iff each minimal
circuit of P is sinkless.

– BPP nets: A PN P = (P, T, ϕ) is a BPP net [10, 28] iff ∀ t ∈T, |•t| = 1, i.e.,
every transition has exactly one input place, implying that every circuit of
a BPP net is a ⊕-circuit. BPP nets are also known as communication-free
PNs.

– Trap-circuit Petri nets: A PN P = (P, T, ϕ) is a trap-circuit PN [30] iff for
every circuit c in P, Pc is a trap.

– Extended trap-circuit Petri nets: A PN P = (P, T, ϕ) is an extended trap-
circuit PN [63] iff for every circuit c in P, either Pc is a trap or c is a
⊕-circuit.
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Fig. 12. Containment relationships among various Petri net classes.

The containment relationship among the above subclasses of PNs is depicted in
Figure 12.

The idea behind the decompositional technique relies on the ability to de-
compose a PN P=(P, T, ϕ) (possibly in a nondeterministic fashion) into sub-
PNs Pi = (P, Ti, ϕi) (1 ≤ i ≤ n, Ti ⊆ T , and ϕi is the restriction of ϕ

to (P × Ti) ∪ (Ti × P )) such that for an arbitrary computation µ0
σ7−→ µ of

PN P, σ can be rearranged into a canonical form σ1σ2 · · ·σn with µ0
σ17−→

µ1
σ27−→ µ2 · · ·µn−1

σn7−→ µn = µ, and for each i, a system of linear inequali-
ties ILPi(x, y, z) can be set up (based upon sub-PN Pi, where x, y, z are vector
variables) in such a way that ILPi(µi−1, µi, z) has a solution for z iff there exists
a σi in T ∗i such that µi−1

σi7−→ µi and z = #σi . See Figure 13.

00 …… nn nn

Subnet P1 Subnet P2

Fig. 13. Decompositional approach.



Each of the subclasses of PNs depicted in Figure 12 enjoys the merit of having
a ‘nice’ decomposition. In what follows, we elaborate on two notable examples,
namely, the classes of normal and sinkless PNs. For other subclsses of PNs, the
reader is referred to [50, 63, 64].

Let µ0
σ17−→ µ1

σ27−→ µ2 · · ·µn−1
σn7−→ µn = µ be a computation in a normal (or

sinkless) PN P reaching µ. The rearrangement σ1σ2 · · ·σn of σ is such that if σ =
t1σ

′
1t2σ

′
2 · · · tnσ′n where t1, t2, ..., tn mark the first occurrences of the respective

transitions in σ (i.e., ti, 1 < i ≤ n, is not in the prefix t1σ
′
1 · · · ti−1σ

′
i−1) then σi

is a permutation of tiσ
′
i. (In words, the appearance of a new transition triggers

the beginning of a new segment.) Furthermore, by letting

– T0 = Ø,
– ∀1 ≤ i ≤ n, Ti = Ti−1 ∪ {ti}, for some ti 6∈ Ti−1 enabled at µi−1, and
– ϕi is the restriction of ϕ to (P × Ti) ∪ (Ti × P ),

it can be shown [26] that reachability in sub-PN Pi can be captured by an in-
stance ILPi(µi−1, µi, zi). That is, marking µi is reachable from µi−1 in sub-PN
Pi iff there is a solution with respect to variable zi in ILPi(µi−1, µi, zi). As
a result, if µ is reachable, then (1) there must exist a canonical computation
reaching µ such that the computation can be decomposed into a sequence of
sub-computations, say σ1, σ2, · · · , σn, each coincides with the respective mem-
ber in the PN P decomposition; namely P1,P2, · · · ,Pn, and (2) checking the
reachability of PN P is equivalent to solving the a collection of systems of linear
equalities made up of ILPi(µi−1, µi, zi), for 1 ≤ i ≤ n. See [26] for more details.

Based on the decompositional approach, the reachability problem for each
of the subclasses of PNs depicted in Figure 12 is solvable in NP. (In fact, the
problem is NP-complete as the NP-hardness lower bound is easy to show.)

In addition to the aforementioned subclasses of PNs, single-path PNs are
another class whose semilinear reachability sets have been characterized in detail.
See [23] for more.

7 Extended Petri nets

As mentioned in our earlier discussion, the power of conventional PNs is strictly
weaker than that of Turing machines. Those using PNs to model real-world
systems have often found the expressive power of PNs to be too simple and
limited. In many real-time applications, it is often desirable to give certain jobs
higher priorities over others, so that critical actions can be finished within their
time constraints. One way to do so, for example, is to assign each transition
of a process a priority which indicates the degree of importance or urgency. As
[1] indicates, the conventional PN model is unable to model prioritized systems.
From a theoretical viewpoint, the limitation of PNs is precisely due to the lack of
abilities to test potentially unbounded places for zero and then act accordingly.
With zero-testing capabilities, it is fairly easy to show the ‘extended’ PNs to be
equivalent to two-counter machines (which are Turing equivalent).



To remedy the weakness in expressive power, a number of extended PN
models have been proposed in the literature. Among them include colored PNs
[34], timed PNs [47, 57], PNs with inhibitor arcs [51], Prioritized PNs [20], PNs
under the maximal firing strategy ... and more. Each of the above extensions
allows the PN to faithfully simulate test-for-zero, rendering the above extended
PNs Turing-equivalent. In what follows, we consider the so-called PNs under
the maximal firing strategy, which are of interest due to their close connection
with the model of P systems [52], a model abstracting from the way living cells
process their chemical compounds in their compartmental structures.

Under the maximal firing strategy, all the fireable rules are applied in a
nondeterministic and maximally parallel fashion at any point in time. Now we
show how PNs operating under this new semantics are capable of simulating
two-counter machines, which are finite automata augmented with two counters
on which the following operations can be applied to each counter: (1) add one to
a counter, (2) subtract one from a counter, provided that the counter is not zero,
and (3) test a counter for zero and then move accordingly. It is well-known that
two-counter machines and Turing machines are computationally equivalent.

The simulations of types (1) and (2) operations of a two-counter machine are
straightforward. Now we see how (3) can be faithfully simulated by a PN operat-
ing under the maximal firing mode. Consider the PN structure shown in Figure
14, in which place C simulates one of the two counters, and the current state
of the two-counter machine is recorded by placing a token in the corresponding
place, for example, p1. Consider the following two cases, depending on whether
C is empty or not:

1. (C = 0): the computation involves (p1 = 1) t17−→ (p2 = p3 = 1) t37−→ (p3 =
p4 = 1) t47−→ (p = 1)

2. (C = k > 0): the computation involves (p1 = 1; C = k) t17−→ (p2 = p3 =

1; C = k)
{t3,t2}7−→ (p4 = p5 = 1; C = k − 1) t57−→ (p′ = 1; C = k − 1)

It is then reasonably easy to see that a token is deposited into p provided that
the counter is zero to begin with; otherwise, a token is moved into p′ while C is
being decremented by one.

With the above extended PNs powerful enough to simulate Turing machines,
all nontrivial problems for such PNs become undecidable. A natural and interest-
ing question to ask is: are there PNs whose powers lie between conventional PNs
and Turing machines? As it turns out, the quest for such ‘weaker’ extensions has
attracted considerable attentions in recent years. Such PN extensions include
reset nets [9], and transfer nets [13]. A reset net is a PN (P, T, ϕ) equipped with
a set FR (⊆ T × P ) of reset arcs. When a transition t with (t, p) ∈ FR is fired,
place p is reset to zero. In a transfer net, a set FT (⊆ P ×T ×P ) of transfer arcs
is associated with a PN (P, T, ϕ) such that when t is fired with (p, t, q) ∈ FT ,
then the following actions are taken in the given order: (1) removing the enabling
tokens, (2) transferring all tokens from p to q, and (3) adding the usual output
tokens.
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Fig. 14. Simulating test-for-zero of a two-counter machine.

Interestingly and somewhat surprisingly, the boundedness problem is decid-
able for transfer nets but undecidable for reset nets. The termination problem
is decidable for both classes, whereas structural termination turns out to be
undecidable for both. The interested reader is referred to [9, 13] for more about
reset and transfer nets. It is of interest to seek additional decidability/complexity
results for problems related to such PN extensions as well as characterizing addi-
tional PN extensions which are weaker than Turing machines but more powerful
than conventional PNs.
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