
Constructing Integers and Rational Numbers:

a good use of equivalence relations

In another handout, we saw how one could construct/create the natural numbers

N = {0, 1, 2, . . . }

using sets. The construction “worked” since what we got out satisfied the Peano Axioms. From

this, one can define addition and multiplication and get the familiar properties we all love. Once

we have N together with addition and multiplication, getting the integers Z and rational numbers

Q is a great exercise in the use of equivalence relations.

First let’s look at (look for?) the integers. What is “missing” from the natural numbers? The

answer is “additive inverses.” For example, what should one add to 7 to get the additive identity

0? If you said “negative seven,” you’re getting ahead of the game since all we have for the moment

is the natural numbers, and −7 is not one of those. In fact, addition in N is the whole raison d’etre

for Z, (and similarly multiplication in Z points to the need for Q.) Specifically, we want Z (i.e.,

negative numbers) so that everything has an additive inverse.
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Say two ordered pairs (x, y) and (n, m) of natural numbers are equivalent if x + m = y + n.

It’s important that we don’t (more simply?) say x−y = n−m. Why? Because x−y doesn’t make

sense all the time. After all, if the only thing we have to work with at present is N, then there is

no “5− 8”, for example. We need to show that this is an equivalence relation.

Since x+y = y +x by commutativity of addition in N, (x, y) is equivalent to (x, y). That’s the

reflexive property. If x+m = y+n, then by commutativity of addition in N, n+y = m+x. In other

words, if (x, y) is equivalent to (n, m), then (n, m) is equivalent to (x, y). That’s the symmetric

property. Finally, suppose (x, y) is equivalent to (n, m), which is in turn equivalent to (s, t). Then

x + m = y + n and n + t = m + s. Thus

(x + t) + m = x + (t + m)

= x + (m + t)

= (x + m) + t

= (y + n) + t

= y + (n + t)

= y + (m + s)

= y + (s + m)

= (y + s) + m.

Now since (x + t) + m = (y + s) + m, by the properties of addition in N we have x + t = y + s, i.e.,

(x, y) is equivalent to (s, t) and the transitive property is proven.
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The integers Z are then defined to be the set of equivalence classes of ordered pairs of natural

numbers. Think of the equivalence class containing (a, b) as representing a−b. We “define” addition

and multiplication as follows:

[(a, b)] + [(c, d)] = [(a + c, b + d)]

[(a, b)]× [(c, d)] = [(ac + bd, ad + bc)],

where [(a, b)] denotes the equivalence class containing (a, b). I put the quotes on “define” here

since, technically speaking, one has to verify that this makes sense. You see, these definitions

use particular elements of an equivalence class to represent the entire equivalence class, and that

could conceivably lead to difficulty. (We had the exact same issue when “defining” addition and

multiplication of congruence classes in chapter 1.)

As before, one has to check that replacing (a, b) above by (x, y) whenever (x, y) is equivalent

to (a, b) doesn’t change the sum or product. Luckily that isn’t difficult, and it turns out that Z

satisfies all of the axioms we stated on the first day of class.

What happened to N in all this? After all, the natural numbers are supposed to be a subset

of the integers, right? Actually, it isn’t hard to get around this. Given a natural number n, we

can view it as an element of Z by equating n with [(n, 0)]. In fact, we can list all of Z in a similar

manner:

. . . [(0, 3)], [(0, 2)], [(0, 1)], [(0, 0)], [(1, 0)], [(2, 0)], [(3, 0)], . . .
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Now that you’ve seen how to get Z from N, getting the rational numbers Q from Z is very

similar. We created Z in order to have “additive inverses” for all our numbers. We create Q in

order to have “multiplicative inverses” for all non-zero numbers.

Say two ordered pairs (a, b), (c, d) of integers with bd 6= 0 are equivalent if ad = bc. As with the

equivalence defined on ordered pairs of natural numbers above, this is an equivalence relation. In

fact, the same proofs we had above carry over exactly just by replacing += with ×. The rational

numbers Q are defined to be the set of equivalence classes. Addition and multiplication are defined

in the familiar way (think of [(a, b)] as a
b ):

[(a, b)] + [(c, d)] = [(ad + bc, bd)] [(a, b)]× [(c, d)] = [(ac, bd)].

Again, one must make sure this definition makes sense, i.e., doesn’t depend on the particular

element of the equivalence class used.

For an integer a ∈ Z, we view it as an element of Q by equating it with [(a, 1)]. This makes Z

a subset of Q (well, kind of).
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