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Abstract. Global band selection or feature extraction methods have been applied to hyperspectral image classification to
overcome the “curse of dimension”. We applied class-based feature extraction approaches and compressed the class data
into different lower dimensional subspaces. Land cover classes in hyperspectral imagery could be roughly modelled as low-
dimensional Gaussian clusters (i.e., “Gaussian pancakes”) floating in sparse hyperspace. Each pixel was labelled
accordingly based on conventional classifiers. We evaluated and compared the class-based version of principal components
analysis (PCA), probabilistic principal components analysis (PPCA), and probabilistic factor analysis (PFA) algorithms to
find the lower dimensional class subspaces in the training stage, projected each pixel, and then assigned the class label
according to the maximum likelihood decision rule. Results from simulations and the classification of a compact airborne
spectrographic imager 2 (CASI 2) hyperspectral dataset were presented. The proposed class-based PCA (CPCA) algorithm
provided a reasonable trade-off between classification accuracy and computational efficiency for hyperspectral image
classification. It proved more efficient and provided the highest classification kappa coefficient (0.946) among all band
selection and feature extraction classifiers in our study. CPCA is recommended as a useful class-based feature extraction
method for classification of hyperspectral imagery.

Résumé. Les méthodes de sélection de bandes ou d’extraction des caractéristiques ont été appliquées à la classification
d’images hyperspectrales pour remédier au problème du fléau de la dimension. Nous avons appliqué des approches
d’extraction des caractéristiques basées sur la classe et compressé les données de classes en différents sous-espaces de
dimension plus faible. Les classes de couvert dans les images hyperspectrales peuvent être modélisées en gros comme des
regroupements gaussiens de faible dimension (c.-à-d. « Gaussian pancakes ») flottant dans l’hyperespace. Chaque pixel a été
étiqueté ainsi basé sur des classifieurs conventionnels. Nous avons évalué et comparé la version basée sur la classe des
algorithmes d’analyse en composantes principales (ACP), d’analyse en composantes principales probabiliste (ACPP) et
d’analyse factorielle probabiliste (AFP) pour trouver les sous-espaces de classes de plus petite dimension dans la phase
d’entraînement, puis projeté chaque pixel et ensuite assigné l’étiquette de classe selon la règle de décision basée sur le
maximum de vraisemblance. Les résultats des simulations et de la classification d’un ensemble de données hyperspectrales
du capteur CASI 2 (« compact airborne spectrographic imager 2 ») sont présentés. L’algorithme ACP basé sur la classe
(CPCA) constitue un compromis raisonnable entre la précision de classification et l’efficacité de calcul pour la classification
d’images hyperspectrales. Il s’est avéré plus efficace et a donné le coefficient de classification kappa le plus élevé (0,946)
parmi tous les classifieurs par sélection de bandes et d’extraction des caractéristiques dans notre étude. L’algorithme CPCA
est recommandé comme méthode d’extraction des caractéristiques basée sur la classe pour la classification des images
hyperspectrales.
[Traduit par la Rédaction]
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Introduction
Hyperspectral remote sensing, also known as imaging

spectroscopy, is a relatively new technology that has been
applied to the detection of minerals and terrestrial vegetation.
Hyperspectral remote sensing images contain large amounts of
data and generally comprise 30–200 spectral bands of relatively
narrow bandwidths (5–10 nm), whereas multispectral datasets
are usually comprised of 5–10 bands of relatively broad
bandwidths (70–400 nm). Hyperspectral data are usually
superior to broader-band multispectral data for most analyses,
as they provide more details about the spectral properties of
ground features. Although hyperspectral data allow for more
freedom to explore spectral information, the computational
burden can be overly high. Classification of hyperspectral data
requires large training sample sets to derive stable
representations of class statistical properties, which is often
referred to as “the curse of dimension” (Landgrebe et al., 2001).
Therefore, band selection and feature reduction methods are
important in hyperspectral image classification. Band selection
is the process of selecting the combination of original bands
that are the most important for classification (i.e., contain the
most unique information). Some optimum band selection
methods have been introduced (Mausel et al., 1990; Chang et
al., 1999), but they often degrade the performance of the
classifier by discarding some bands that contain valuable
information (Brunzell and Eriksson, 2000). Alternatively,
feature extraction techniques utilize all available image data
and transform them into a reduced number of dimensions. A
carefully designed feature extraction scheme can provide a
relevant set of features for a classifier, resulting in improved
performance, particularly from simple classifiers (Brunzell and
Eriksson, 2000; Webb, 2002).

There are many feature extraction methods, each with a
different set of criteria. Principal components analysis (PCA) is
based on the covariance or correlation matrix of the full set of
image data but contributes little to separability of input bands.
PCA works well for remote sensing data because classes are
frequently distributed in the direction of maximum data scatter
(Richards and Jia, 1999). Since PCA does not correspond to a
probability density function, two other feature extraction
methods, probabilistic principal components analysis (PPCA)
and probabilistic factor analysis (PFA), have been proposed to
solve the Gaussian mixture model (Bartholomew, 1987;
Tipping and Bishop, 1999b). A common failure of feature
extraction methods for classification is that, once the
hyperspectral data are projected into a low-dimensional
subspace, some distinguishable features are often blurred by
global transforms. Given this limitation, linear discriminant
analysis (LDA) may be a better choice because it utilizes
Fisher’s criterion to calculate a transform that maximizes
between-class separability and minimizes within-class variability
(Yu et al., 1999; Webb, 2002). Furthermore, Richards and Jia
(1999) proposed the segmented principal components
transformation (SPCT) to select features with high separability.
Jimenez and Landgrebe (1999) proposed a projection pursuit

method to bypass the limitation of small training sample sizes
by making the computations in a lower dimensional space and
optimizing the projection index. Kumar et al. (2001) proposed
the best-bases feature extraction algorithms by combining the
subsets of adjacent bands into a smaller number of features.
The objective of the aforementioned methods is to transform a
high-dimension data space to a common low-dimension data
space and then apply a single classifier to distinguish the
classes simultaneously.

To explore the unique class characteristics of individual land
cover types, we propose an alternative paradigm inspired by the
strategy of “divide and conquer” — to divide the dataset into
several class-based clusters and conduct feature extraction
within each class. Based on this principle, pixels are projected
into class-based feature spaces and labelled according to the
maximum likelihood rule. This philosophy can be traced back to
the nonlinear extensions of PCA (Kambhatla and Leen, 1997)
and mixture models (Tipping and Bishop, 1999a). It is assumed
that globally high-dimensional data cannot remain high
dimensional if viewed locally (Marchette and Poston, 1999).

We propose and compare class-based PCA, PPCA, and PFA
for conducting supervised classification of compact airborne
spectrographic imager 2 (CASI 2; manufactured by Itres
Research Ltd. in Canada) hyperspectral data, with the goal of
mapping a problematic invasive weed called yellow starthistle
(Centaurea solstitialis L.) in California. We assume that each
land cover class in a hyperspectral image can be roughly
modelled as a high-dimensional Gaussian “pancake-shaped”
cluster floating in hyperspace (Jimenez and Landgrebe, 1998;
Landgrebe, 2002). Two significant properties of high-dimensional
images are as follows: (i) for hyperspectral images, in which
classes have relatively strong contrast and not much spatial
mixing, the hyperspace is mostly empty, which implies that in
this case multivariate data are usually in a lower dimensional
structure (manifold); and (ii) when high-dimensional data are
linearly projected onto a low-dimensional space, there is a
tendency for the data to have a normal distribution, or a
combination of normal distributions. The first property implies
that each land cover class in a hyperspectral image is mainly
concentrated in a lower dimensional subspace. The second
property suggests that it is reasonable to utilize Gaussian
maximum likelihood classifiers (MLCs), which assume a
normal data distribution, and thus supervised classification can
be conducted using class-based feature extraction methods.
Class-based feature extraction classifiers retain class separability
without sacrificing computational efficiency when compared
with global feature extraction classifiers, which have relatively
low separability and do not require large training samples.

The remainder of this paper is organized as follows. PCA,
PPCA, and PFA algorithms are compared, and then class-based
PCA (CPCA), class-based PPCA (CPPCA), and class-based
PFA (CPFA) algorithms are proposed for supervised
classification. To evaluate and compare the performance of
these algorithms, simulations are made on two-dimensional
(2D) datasets, and a CASI 2 hyperspectral image is tested.
Lastly, a general discussion and conclusions are presented.
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Global feature reduction algorithms
Principle component analysis (PCA)

PCA is an optimum linear transform to project high-
dimensional data to a low-dimensional subspace with
minimum variance loss (Jolliffe 1986). Letting {Yn} =1n

q be data
vectors, the goal is to find column vectors �q so that the
projections of the data on these vectors have maximum
variance. Assume S is the sample covariance matrix, then �q is
the q eigenvectors of S. Let λ be the corresponding eigenvalues
and indexed in the order of decreasing magnitude, and then �
corresponds to the first p eigenvectors, and p < q. The
projection process is described as follows:

� (X = y�Τ − µ) (1)

where µ is the mean of observations y.

Probabilistic factor analysis (PFA)

The goal of the PFA is to find a latent p-dimensional standard
Gaussian random variable vector X (factors) to model the
observation vector Y (q-dimensional), where p < q. According
to the latent variable2 model formulation, Y is expressed as a
regression (Bartholomew, 1987):

Y X W= + +µ � (2)

where X has a marginal Gaussian distribution X ~ N(0, I) with
zero mean and an identity covariance matrix I (N represents a
Normal (Gaussian) distribution), W is distributed as W ~ N(0,
�) and independent of X, and � is a diagonal covariance
matrix. The conditional distribution of Y is again a Gaussian
Y ~ N(µ + �X, �). Equation (2) also implies that Y can be
explained by a small number of latent factors X and W
represents the Gaussian noise of the observed variable Y. The
conditional mean of X is

E y( ) = ( + T TX I| ) ( )y � � � � �− − − −1 1 1 µ (3)

The maximum likelihood approach estimates the parameters
of the probabilistic factor analysis model (Rubin and Thayer,
1982). Although it is impossible to identify any particular
latent variables (Cooper, 1983; Basilevsky, 1994), we are
interested in the subspace spanned by latent variables, not any
particular latent variable. Since there is no closed-form
solution for the parameters � and �, the iterative expectation–
maximization (EM) algorithm is used in this paper (Rubin and
Thayer, 1982; Hastie et al., 2001). Once the EM algorithm
converges, the low-dimensional latent subspaces can be
established from Equation (3).

Probabilistic principle component analysis (PPCA)

PPCA was used by Tipping and Bishop (1999a; 1999b) to
solve the problem that PCA could not provide an explicit
probabilistic model. Assume the observed data Y are still a
linear regression of latent variable X:

Y X W= + +µ � (4)

where p-dimensional X has a marginal Gaussian distribution X ~
N(0, I); and W ~ N(0, σ2I) (where σ is any positive value). Then
the q-dimensional variables Y (q > p) are normally distributed
Y ~ N(µ, σ2I + WWT). PPCA is a special case of PFA with only a
homoscedastic assumption on W (Stone, 1995). However, this
simplified assumption results in the following closed-form
solution:

� � �ML
1/ 2( )= −p σ2I (5)

where the column vectors in � are the principal eigenvectors of
the covariance matrix, and the diagonal matrix �p contains the
first p eigenvalues in the order of decreasing magnitude. The
maximum likelihood estimation of σ is

σ λΜL
2

1

1=
− = +

∑
q p

j
j p

q

(6)

which is the averaged projection error. The dimensionality
reduction process can be expressed as (Tipping and Bishop,
1999a; 1999b)

� ( ) ( ( )X I= )ML
T 1/ 2 T� � �y yp− = − −µ σ µ2 (7)

Comparing PCA, PPCA, and PFA

From the previous discussion, it is clear that PPCA and PFA
are both latent variable models. The formulation is the same;
the difference is in their assumptions about projection errors.
PPCA assumes that W is homogeneous, whereas PFA assumes
it is heterogeneous. In this sense, PFA is more plausible
because its assumption is not as strict as that of PPCA, and we
expect that PFA can provide better performance. However, PFA
is a complex model with q – 1 more parameters. According to
the model selection theory (Burnham and Anderson, 2002), the
variance of PFA tends to increase and the overall classification
accuracy decreases with an increase in dimension q.

Furthermore, comparing Equation (1) with Equation (7), we
find that PPCA bases share the same directions as PCA bases,
although the norms are different. This suggests that the bases of
PPCA and PCA span the same space. PPCA can be viewed as a
reduced version of PCA, since it further transforms the
projected data into a standard Gaussian hypersphere in the p-
dimensional subspace Rp.
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Figure 1 shows a pictorial example of a raw dataset in three
dimensions transformed to a 2D feature space using PCA,
PPCA, and PFA.

Class-based feature extraction algorithms
Global feature reduction algorithms provide a feasible

approach for projecting high-dimensional data into a lower
dimensional subspace. However, class separability can be
reduced during this process. In Figure 2a, for example, when

classes 1 and 2 are projected onto the global principal axis by
PCA, they cannot be distinguished from one another.
Alternatively, if we project classes 1 and 2 onto their own
subprincipal axes as in Figure 2b, they can be classified as
different clusters. This is the basic principle behind class-based
feature reduction algorithms.

The class-based version of PCA, PPCA, and PFA (CPCA,
CPPCA, and CPFA, respectively) for the classification of
hyperspectral imagery is conducted in a two-stage procedure
including training and classification as follows (Figure 3):
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Figure 1. Relationship between raw data distribution and the data transformed to a lower dimensional space using
PCA, PPCA, and PFA. Raw dataset in three dimensions (a) are transformed to a two-dimensional feature space using
PCA (b), PPCA (c), and PFA (d). The translucent ellipsoid in (a) and ellipses in (b) and (c) represent the 1.96
standard deviations.



(1) Collect the training data for n classes C1, �, Cn. For each
class, feature reduction algorithms PCA, PPCA, and PFA
are used to calculate the latent subspace. As a result, n
low-dimensional Gaussian clusters are found in the
hyperspace, and their distribution parameters are estimated.
Generally speaking, an n low-dimensional Gaussian
distribution can be acquired from the linear projection
operators: X1 = T1(Y1), �, Xn = Tn(Yn), where Tn is the
transformation formula, i.e., Equations (1), (3), or (7).

(2) Classification is conducted on a pixel to pixel basis. The
spectrum vector of each pixel y in hyperspectral imagery
is projected into n latent subspaces through T1–Tn,
respectively, and then the likelihoods of each projected

vector y belonging to each subspace (p1, p2, �, pn) are
calculated according to the normal density function. The
decision criteria is

y ∈ = =Ci
j

, { , , }i p j njarg max 1 � (8)

The class-based feature reduction algorithm borrows the
decision rule from the maximum likelihood algorithm and
constrains the feature reduction within each class. Therefore, it
decreases the computational burden without seriously
compromising the class separability. Actually, the computational
complexity for a covariance matrix in a maximum likelihood
classifier is O(Nq2), where N represents the total number of
training samples (Richards and Jia, 1999). The computational
complexity in class-based feature reduction algorithms
decreases to O(nN′p2), where n is the class number, and N′ is
the sample number of each class. Since p is usually far less than
q, and nN′ is approximately equal to N, the computational
burden drops to a reasonable level.

Experiments
We conducted two simulation experiments to study the

characteristics of PPCA, PFA, and the class-based feature
extraction algorithms. We then applied class-based feature
extraction classifiers to a CASI 2 hyperspectral image to detect
and map yellow starthistle in our study area. The results are
evaluated and compared with conventional hyperspectral
classifiers.

Simulation 1: PPCA and PFA

A series of numerical experiments were simulated in
MATLAB® to compare the performance of PPCA3 and PFA
under controlled circumstances. First, we generated a random
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Figure 2. Basic principle of class-based feature extraction: (a) global PCA; (b) class-based
feature reduction classification.

Figure 3. Class-based feature extraction classification process.
C, classifier; P, probability; T, transformation.

3 PCA and PPCA principle axes have the same projection directions, so we only use PPCA to compare with PFA.



variable with a one-dimensional (1D) Gaussian distribution: X ~
N(0, 1). Second, we rotated this dataset 45° in the extended 2D
space. Third, two random noise variables with a 1D Gaussian
distribution n1 ~ N(0, Ψ1), n2 ~ N(0, Ψ2) along the y1 and y2
directions were added to X. In the first dataset, Ψ1 = Ψ2 = 0.01,
and in the second dataset, Ψ1 = 0.25 and Ψ2 = 0.01. As a result,
two new random variables Y1 and Y2 were generated in R2. We
acquired their principal axes while running the PPCA and PFA
algorithms to reduce the 2D data to 1D. In dataset 1, the PPCA
principal axis and PFA principal axis (the first column vector of
transform matrix �) were both close to the 45° line (Figure 4a).
Furthermore, the variances of n1 and n2 were very close to the
true values. Results are summarized in Table 1. In Figure 4b,
the principle component axis of PPCA is oriented in a direction
that explains most of the variance in the data, but it deviates
from the original latent data axis. PFA provided a better
estimation. The results are summarized in Table 2.

Despite the better estimate, there are two important factors to
consider with PFA. First, different combinations of initial input
parameters produce different results, so it is difficult to
interpret results by identifying latent variables. From our
experience, it is a good choice to input PPCA results as the
initial condition so that EM can converge quickly. The second
is simply computational, as PFA always runs much longer than
PPCA because the EM is an iterative algorithm.

Simulation 2: class-based feature extraction classification

In the second simulation, three 2D training classes were
generated from a 1D standard Gaussian distribution. The
rotation angles and Gaussian noise variances are summarized in
Table 3. CPCA, CPPCA, and CPFA were then applied to
extract the subspace statistical parameters. In Figure 5, the
solid lines represent the true rotation directions, the dash–dot
lines are the principle axes of CPCA (or CPPCA), and the
dash–dash lines are the CPFA axes. Three hundred test samples
were generated for each class using the same set of parameters

listed in Table 3. CPCA, CPPCA, and CPFA classifiers were
applied to this test dataset. From Figures 6b–6d, we find that
all three class-based feature extraction algorithms provided
satisfactory classification results.

These simulations show that the class-based feature
extraction algorithms are suitable for low-dimensional datasets.
However, some class 3 test samples are misclassified as class 1
(see lower right corners of the plots shown in Figures 6b–6d),
although samples are far away from the centroid of class 1. We
define this misclassification as shuttle phenomenon (i.e., these
samples from different classes being misclassified in the same
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Figure 4. A comparison between PPCA and PFA: (a) dataset 1 results; (b) dataset 2 results.

Principal axis vector Error structure W

PPCA [0.7054 0.7088]T 0.0102 0

0 0.0102











PFA [0.7092 0.7126]T 0.0116 0

0 0.0117











Table 1. PPCA and PFA results for dataset 1.

Principal axis vector Error structure W

PPCA [ . ]− −0.7557 T0 6549
0.1176 0

0 0.1176











PFA [ . ]− −1.0717 T0 9636
0.1614 0

0 0.0835











Table 2. PPCA and PFA results for dataset 2.

Class
No. of
samples

Rotation
angle (°)

y1
variance

y2
variance

1 300 60 0.09 0.36
2 300 5 0.04 0.36
3 300 120 0.36 0.04

Table 3. Training sample parameters (see Figure 5).



class when using class-based feature extraction methods).
Shuttle phenomenon is not surprising, since the probabilities of
those samples in class 1 are larger than those in class 3 after
projection. Generally speaking, distances measured in high-
dimensional space are invalid after projecting in lower
dimensional subspaces. If the principle axes of two classes are
parallel, and the straight line through their centroids is
perpendicular to the principle axes, the shuttle phenomenon
will be rather obvious. However, this restriction should not
seriously undermine the class-based feature extraction
algorithms, since these conditions are not critical, especially in
the hyperspectral space. We can avoid the shuttle phenomenon
by increasing the dimensions of the class subspaces.

CASI 2 land cover supervised classification

The CASI 2 is a charge-coupled device (CCD) push-broom
imager designed for the acquisition of visible and near-infrared
hyperspectral imagery. It has 48 channels covering the
wavelengths ranging from 0.43 to 0.97 µm (blue to near-
infrared). The CASI 2 image used in this paper was acquired
over Bear Creek, Yolo County, California, on 30 June 2002
with a spatial resolution of 2 m. The CASI 2 image was
georegistered to a digital orthophoto quarter quadrangles (1 m
US Geological Survey DOQQ) base map using the first-order
polynomial method. The average root-mean-squared error

(RMSerror) of the georegistration was around 2 m when using 10
ground-control points (GCPs). The brightness value of the
rectified image was resampled using a nearest-neighbor
algorithm. A 400 × 400 pixel image was cropped from the
whole scene and used in this study (Figure 7). Since only a
single date of hyperspectral image was used for classification
and the training data were not extended through space and (or)
time, we did not perform atmosphere correction (Song et al.,
2001). Yellow starthistle (YST), which was recognized as the
worst invasive weed in California (DiTomaso, 2000), is mainly
distributed between the creek and Highway 16 (Miao et al.,
2006). It blossoms yellow flowers during the summer and
shows as a light yellow hue in the false color image (Figure 7).
The riparian plant salt cedar is found mainly along the creek.
Five other land cover classes seen in the CASI image (Figure 7)
are water, highway, native trees (oak), mountain area, and bare
ground. A field trip was conducted in July 2002 to verify the
sample pixels selected for supervised classification. The spectral
signatures of these seven classes are shown in Figure 8. Digital
numbers (DN) were not converted to the reflectance through
radiometric correction. The CASI 2 image was used to
illustrate the performances of class-based feature extraction
algorithms for hyperspectral classification. The results are also
compared with other common hyperspectral classifiers.
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Figure 5. Three graphs of 2D training samples. Dash–dot lines represent true rotation
directions, solid lines are the principal axes of CPCA–CPPCA, and dash–dash lines are the
CPFA principal axes. CPFA principal axes almost overlap the CPCA–CPPCA principal axes.
+, group 1 training samples; ×, group 2 training samples; �, group 3 training samples.



The kappa coefficient, k, is an index of classification
accuracy derived from the following error matrix:

k

N x x x

N x x

kk k k
kk

k k
k

=
−

−

+ +

+ +

∑∑
∑2

(9)

where xij represents the elements of the error matrix (Richards
and Jia, 1999). The kappa coefficient is commonly used in
remote sensing analysis as a measure of map accuracy, since it
indirectly incorporates the omission and commission errors of
an error matrix (Congalton, 1991). One of the advantages of
using the kappa coefficient is that it allows the statistical
comparison between two classified maps. Therefore, we used
the kappa coefficient to estimate and compare the classification
accuracies of all classifiers in this research: class-based feature
extraction; a band selection scheme based on maximum

Bhattacharyya distance; and three global feature extraction
approaches, namely PCA, LDA, and SPCT.

We selected 4, 6, 8, 10, 12, and 48 bands based on maximum
Bhattacharyya distance criteria and input them to a maximum
likelihood classifier (MLC) (Richards and Jia 1999).
Bhattacharyya distance (B distance) is a pairwise measure of
class separability (Kailath 1967):

Bij
i j

i j=
− +







 −

−
( )

( )
m m

m m
T

8 2

1
� �i j

+
+















ln
( )/ 2� �

� �

i j

i j

1
2

1
2

2 (10)

where �i is the class covariance matrix, and mi is the class mean
vector. The average value of all possible class pairs was used to
select the bands with maximum between-class separability.
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Figure 6. Comparing CPCA, CPPCA, and CPFA classification performance (+, class 1; ×, class 2; �, class 3): (a) test samples; (b) CPCA;
(c) CPPCA; (d) CPFA.
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Figure 7. CASI 2 false color image used in this study (red = 850.0 ± 5.9 nm; green = 653.7 ±
5.9 nm; blue = 551.0 ± 5.8 nm).

Figure 8. Spectral signatures of seven land classes derived from the CASI 2 image. Digital
numbers (DN) were not converted to the reflectance, since only a single date of hyperspectral
image was used for classification. YST, yellow starthistle.



Equal priors were assumed for MLC. Although it is a simple
band selection scheme, it is a good starting point to establish a
baseline to compare other feature extraction classifiers. The
first three, five, seven, and nine features with maximum
eigenvalues, which represented the maximum data variance
when projecting the hyperspectral data on the corresponding
principal axes, were selected from each class from CPCA,
CPPCA, and CPFA classifiers, respectively. Similarly, the first
three, five, seven, and nine features were also selected from the
global PCA classifier. The first two, four, and six discriminant
variables (features) were selected from the LDA classifier. As
for the SPCT classifier, principal components 1, 2, and 3 (PC1,
PC2, and PC3) were selected from subgroup 1 (bands 1–26,
0.43–0.70 µm) and subgroup 2 (bands 27–48, 0.71–0.97 µm).

The critical decision in class-based feature extraction
algorithms is determining how many axes to choose when
projecting the hyperspectral image into subspaces. More
features augments class separability but requires more training
samples and hampers computational efficiency (Burnham and
Anderson, 2002). In addition, by keeping more features, the
classifiers will be more complex and classification accuracy
will decrease, given the limited training sample size (Burnham
and Anderson, 2002). Analysis of eigenvalues was used to
explore data dimensionality and the number of features to
select. Although each class could be defined by a different
number of features, they were assumed to be the same in this
research to illustrate the effect of the increasing number of
features on classifiers. Eigenvalues were calculated for each
class, ranked in decreasing order (Figure 9). The accumulated

ratios of the first three eigenvalues to the total variance for each
class are summarized in Table 4, which indicates that the first
three eigenvectors can explain the majority of the variance for
each class. This fact confirmed that most of the data variance
was stored in a latent subspace, and the minimal dimension of
the subspace was three.

We ran every algorithm 20 times. During each round of
classification, we randomly selected 150 training samples from
the class sample pool without replacement. The remaining
samples were used to estimate the classification accuracy. The
number of samples used in the classification experiments is
summarized in Table 5. This Monte-Carlo approach to
classification produces a more robust estimate of the kappa
coefficient and thus a better evaluation of the true performance
of each classification algorithm.

The kappa coefficients for all classifiers are illustrated by
box plots in Figure 10. Each box and whisker plot provides a
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Figure 9. Logarithm of eigenvalues of each class.

Class Eigenvalue (%)

Water (W) 97.64
Yellow starthistle (YST) 98.10
Highway (HW) 90.86
Salt cedar (SC) 98.56
Native tree (NT) 97.61
Mountain area (MT) 99.05
Bare ground (BG) 98.53

Table 4. Accumulated ratios of the first three
eigenvalues (%).



five-number summary (the smallest observation, lower
quartile, median, upper quartile, and largest observation) of the
20 kappa coefficients for each classifier. To show the changing
trend as a function of the number of bands or features used in
the classification, we connected the median kappa coefficient
for each classification. The kappa accuracies of the band
selection classifier (BS in Figure 10) reached a peak of about
0.925 when retaining eight bands, and the CPCA classifier
requires only the first seven features to reach a peak of 0.946.
Although CPPCA and CPFA were more appealing
theoretically, their classification performances were not
satisfactory, and their highest kappa coefficients were only

about 0.896 and 0.836, respectively. The global PCA classifier
with five and seven features worked well, and the kappa
coefficient was as high as 0.923, better than the LDA
approaches, which peaked at 0.905 with six features. SPCT
with six features had a good performance with a kappa
coefficient of 0.931.

In summary, CPCA had the best performance for supervised
classification of CASI hyperspectral data in this study.
Although CPPCA and CPFA performed well using the
simulated data, they did not provide satisfactory results for
classification of the hyperspectral data due primarily to the
limited number of training samples. As the CPCA method
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Class
No. of training
samples

No. of test
samples Total

Yellow star-thistle (YST) 150 301 451
Bare ground (BG) 150 250 400
Salt cedar (SC) 150 256 406
Native tree (NT) 150 177 327
Mountain area (MT) 150 269 419
Highway (HW) 150 177 327
Water (W) 150 118 268
Total 1050 1548 2598

Note: Training and test samples were randomly selected from the class
sample pool, which was visually selected in Figure 7 and verified by
ground reference data.

Table 5. Number of samples for the seven classes.

Figure 10. Box plots of kappa coefficients for each classification algorithm. From left to right:
CPCA with 3, 5, 7, and 9 features; CPPCA with 3, 5, 7, and 9 features; CPFA with 3, 5, 7, and
9 features; Bhattacharyya band selection (BS) with 4, 6, 8, 10, 12, and 48 bands; PCA with 3,
5, and 7 features; LDA with first 3, 4, 5, and 6 discriminant features; and SPCT with 6
features. Each plot gives the smallest observation, lower quartile, median, upper quartile, and
largest observation.

Reference class

Map class YST BG SC NT MT HW W Total

YST 281 15 0 0 17 0 0 313
BG 20 235 0 0 2 0 0 257
SC 0 0 249 4 0 0 1 254
NT 0 0 7 173 3 0 1 184
MT 0 0 0 0 247 1 0 248
HW 0 0 0 0 0 176 0 176
W 0 0 0 0 0 0 116 116
Total 301 250 256 177 269 177 118 1548

Note: Class abbreviations as in Tables 4 and 5.

Table 6. Error matrix of the CPCA classification with seven
features (k = 0.946, overall accuracy = 95.4%).



resulted in the “best” classification, the error matrix of the
CPCA classifier with seven features is illustrated in Table 6.
The left column represents the thematic map classes, and the
top row represents the ground truth or reference classes. The
CPCA-classified map derived using the first seven features is
shown in Figure 11.

Discussion and conclusion
Hyperspectral remote sensing images due to extremely high

spectral resolution have strong correlations between various
band ranges. This property results in flat class clusters (i.e.,
“Gaussian pancakes”) in hyperspectral space (Brunzell and
Eriksson, 2000). In addition, Jimenez and Landgrebe (1998)
pointed out that hyperspace is almost empty for highly
correlated hyperspectral data, and low-dimensional linear
projections of high-dimensional datasets tend to be normally
distributed or a combination of normal distributions. The first
observation results in the concentration of most of the
hyperspectral data in specific latent subspaces, and the second
observation supports the Gaussian distribution assumption
required by the maximum likelihood classification algorithm
used in this paper. Therefore, class-based subspaces can be
modelled as “Gaussian pancakes floating in sparse hyperspace.”

This paper evaluated and compared three class-based feature
extraction algorithms for classification of hyperspectral imagery.
Each land cover class was projected onto a low-dimensional
subspace using class-based principal components analysis
(CPCA), class-based probabilistic principal components analysis

(CPPCA), and class-based probabilistic factor analysis
(CPFA). Supervised classification (maximum likelihood
classifier or MLC) of several land classes was conducted in a
two-stage process: the training data were used to determine the
low-dimensional latent subspace for each class, and then every
pixel of the hyperspectral image was projected onto the latent
spaces and its class membership was determined with an MLC.
Although a normal data distribution is a requirement of the
MLC, many researchers have found that MLC performs well
even on data that are not normally distributed. Hastie et al.
(2001) found that the most likely reason was that the data could
only support simple decision boundaries defined by linear or
quadratic functions, and the estimates provided by the Gaussian
models were stable. Thus the assumption of a normal
distribution for MLC was relaxed in this paper.

Two problems remain for class-based feature extraction
classifiers. The first is an appropriate method for selecting the
suitable number of features. In Figure 10, we find that every
algorithm (except LCA and SPCT) has a peak kappa
coefficient, which represents the optimal number of features
given a limited training sample size known as the Hughes
phenomenon (Landgrebe, 2002). We recommend choosing the
feature number around the peak kappa value to achieve
maximum classification accuracy. However, it is still
problematic to derive a criterion to determine the optimum
number of features for each class without conducting laborious
experiments. The second problem is the shuttle phenomenon
described in simulation 2. It is a shortcoming of class-based
feature extraction classifiers, especially for a low-dimensional
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Figure 11. Class-based PCA classification map.



dataset. This phenomenon can be avoided by increasing the
number of features. For example, the shuttle phenomenon
would not occur if two features remained in each 2D class
cluster in Figures 6b–6d. On the other hand, increasing the
number of features may lead to the Hughes phenomenon.
Therefore, the proper number of features should be selected to
balance this trade-off. In this study, based on eigen-analysis,
we increased the number of features starting from three.

The CPFA is a plausible choice theoretically for data
reduction or feature extraction. The simulation experiments
verified its effectiveness for the classification of 2D data.
However, the CASI 2 experiment demonstrated that the CPFA
feature extraction did not provide accurate classification of land
classes on hyperspectral imagery because the increasing
complexity of the classifier cannot be supported by a limited
amount of training samples. Furthermore, CPFA ran much
slower than other class-based feature extraction algorithms,
since it uses the iterative EM algorithm. Although CPPCA and
CPCA shared the same latent subspaces, the CPCA feature
extraction resulted in a number of features that resulted in a
more accurate land classification. We believe the reasons for
this are as follows: (i) CPCA is more robust for datasets that are
not normally distributed compared with CPPCA, which requires
strict assumptions of normality; and (ii) CPPCA results in
lower separability between classes, since it reduced the cluster
distribution (Figure 1). In conclusion, CPCA is recommended
as the best class-based feature extraction method for hyperspectral
image classification.

CPCA is a flexible and effective feature extraction method
for producing a set of features that produce a reasonable trade-
off between classification accuracy and computation efficiency
for hyperspectral image classification. However, a few problems
remain. First of all, since the features that result from this
transformation are a linear mixture of all hyperspectral input
bands, interpretability is sacrificed when conducting CPCA.
Another problem concerns the separability of classes. If the
separability of two classes depends only on a few spectral
bands, and the variances of these diagnostic bands are relatively
small, as in some mineral remote sensing applications, CPCA
would likely ignore the difference between the two classes. Our
future work will involve the incorporation of conventional
feature extraction or classification methods such as segmented
principal components transformation (SPCT) and spectral
angle mapper (SAM) into the class-based framework to
circumvent these difficulties.

References
Bartholomew, D.J. 1987. Latent variable models and factor analysis. Oxford

University Press, New York.

Basilevsky, A. 1994. Statistical factor analysis and related methods: theory
and applications. Wiley, New York.

Brunzell, H., and Eriksson, J. 2000. Feature reduction for classification of
multidimensional data. Pattern Recognition, Vol. 33, pp. 1741–1748.

Burnham, K.P., and Anderson, D.R. 2002. Model selection and multimodel
inference: a practical information–theoretic approach. Springer, New
York.

Chang, C.I., Du, Q., Sun, T.L., and Althouse, M.L.G. 1999. A joint band
prioritization and band-decorrelation approach to band selection for
hyperspectral image classification. IEEE Transactions on Geoscience and
Remote Sensing, Vol. 37, pp. 2631–2641.

Congalton, R.G. 1991. A review of assessing the accuracy of classifications of
remotely sensed data. Remote Sensing of Environment, Vol. 37, pp. 35–46.

Cooper, J.C.B. 1983. Factor-analysis — an overview. American Statistician,
Vol. 37, pp. 141–147.

DiTomaso, J.M. 2000. Invasive weeds in rangelands: species, impacts, and
management. Weed Science, Vol. 48, pp. 255–265.

Hastie, T., Tibshirani, R., and Friedman, J.H. 2001. The elements of statistical
learning: data mining, inference, and prediction. Springer, New York.

Jia, X., and Richards, J.A. 1999. Segmented principal components transformation
for efficient hyperspectral remote-sensing image display and classification.
IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, pp. 538–542.

Jimenez, L.O., and Landgrebe, D.A. 1998. Supervised classification in high-
dimensional space: geometrical, statistical, and asymptotical properties of
multivariate data. IEEE Transactions on Systems, Man, and Cybernetics:
Part C — Applications and Reviews, Vol. 28, pp. 39–54.

Jimenez, L.O., and Landgrebe, D.A. 1999. Hyperspectral data analysis and
supervised feature reduction via projection pursuit. IEEE Transactions on
Geoscience and Remote Sensing, Vol. 37, pp. 2653–2667.

Jolliffe, I.T. 1986. Principal component analysis. Springer-Verlag, New York.

Kailath, T. 1967. Divergence and Bhattacharyya distance measures in signal
selection. IEEE Transactions on Communication Technology, Vol. 15,
No. 1, pp. 52–60.

Kambhatla, N., and Leen, T.K. 1997. Dimension reduction by local principal
component analysis. Neural Computation, Vol. 9, pp. 1493–1516.

Kumar, S., Ghosh, J., and Crawford, M.M. 2001. Best-bases feature extraction
algorithms for classification of hyperspectral data. IEEE Transactions on
Geoscience and Remote Sensing, Vol. 39, pp. 1368–1379.

Landgrebe, D. 2002. Hyperspectral image data analysis. IEEE Signal
Processing Magazine, Vol. 19, pp. 17–28.

Landgrebe, D.A., Serpico, S.B., Crawford, M.M., and Singhroy, V. 2001.
Introduction to the special issue on analysis of hyperspectral image data. IEEE
Transactions on Geoscience and Remote Sensing, Vol. 39, pp. 1343–1345.

Marchette, D.J., and Poston, W.L. 1999. Local dimensionality reduction.
Computational Statistics, Vol. 14, pp. 469–489.

Mausel, P.W., Kramber, W.J., and Lee, J.K. 1990. Optimum band selection for
supervised classification of multispectral data. Photogrammetric Engineering
and Remote Sensing, Vol. 56, pp. 55–60.

Miao, X., Gong, P., Swope, S., Pu, R., Carruthers, R., Anderson, G.L., Heaton,
J.S., and Tracy, C.R. 2006. Estimation of yellow starthistle abundance
through CASI-2 hyperspectral imagery using linear spectral mixture
models. Remote Sensing of Environment, Vol. 101, pp. 329–341.

Richards, J.A., and Jia, X. 1999. Remote sensing digital image analysis: an
introduction. 3rd ed. Springer-Verlag, New York.

Rubin, D.B., and Thayer, D.T. 1982. Em algorithms for ML factor-analysis.
Psychometrika, Vol. 47, pp. 69–76.

174 © 2007 CASI

Vol. 33, No. 3, June/juin 2007



Song, C., Woodcock, C.E., Soto, K.C., Lenney, M.P., and Macomber, S.A.
2001. Classification and change detection using Landsat TM data: when
and how to correct atmospheric effects? Remote Sensing of Environment,
Vol. 75, pp. 230–244.

Stone, C.J. 1995. A course in probability and statistics. Duxbury Press, Pacific
Grove, Calif.

Tipping, M.E., and Bishop, C.M. 1999a. Mixtures of probabilistic principal
component analyzers. Neural Computation, Vol. 11, pp. 443–482.

Tipping, M.E., and Bishop, C.M. 1999b. Probabilistic principal component
analysis. Journal of the Royal Statistical Society, Series B — Statistical
Methodology, Vol. 61, pp. 611–622.

Webb, A. 2002. Statistical pattern recognition. John Wiley & Sons, West
Sussex, UK.

Yu, B., Ostland, I.M., Gong, P., and Pu, R.L. 1999. Penalized discriminant
analysis of in situ hyperspectral data for conifer species recognition. IEEE
Transactions on Geoscience and Remote Sensing, Vol. 37, pp. 2569–2577.

List of abbreviations
CPCA class-based principal components analysis

CPFA class-based probabilistic factor analysis

CPPCA class-based probabilistic principal components
analysis

LDA linear discriminant analysis

PCA principal components analysis

PFA probabilistic factor analysis

PPCA probabilistic principal components analysis

SPCT segmented principal components transformation
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