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Abstract 

NeuroDraughts is a draughts playing program which follows the approach of both 

NeuroGammon (G.Tesauro) and NeuroChess (S.Thrun). It uses an artificial neural network  

trained by the method of temporal difference learning. It achieves a high level of play simply by 

self play, with minimal search, and without any expert game analysis.  
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1. Introduction 
 

1.1 Purpose 

 

The purpose of this project was to create a good draughts player with as little expert tuning as 

possible. Most game playing programs today avail of fined-tuned feature sets, or heuristics, as 

well as incredibly efficient search algorithms. The aim of this project was to create a ‘more 

human’ opponent, more specifically, an opponent which could learn from self-play given the 

rules of the game and a few simple features. It was also the purpose of this project to show 

that this opponent could compete at an acceptable level with a minimum of search. An 

acceptable level of play in this case could be defined as being able to beat it’s creator.  

1.2 Why Draughts? 

 

Draughts was chosen over Chess because the relative simplicity of it’s rules allowed for 

greater emphasis to be put on the learning and representational issues.  Anyone doubting the 

complexity of the game should refer to Oldsbury’s great book on the game, Move-Over [1] or 

to [14].  

1.3 Why Temporal Difference Learning (TD)? 

 

The TD(lambda) family of learning procedures have been applied with astounding success in 

the last decade. Most notable among these successes is G. Tesauro’s NeuroGammon [2] 

which plays backgammon at world champion level. S. Thrun also created Neuro-Chess which 

played a relatively strong game [3]. The TD procedure is nothing new however having been 

first applied by A.L. Samuels in his famous checkers program all the way back in 1959 [4]. 

The procedure has since been formalised and convergence proven by Sutton [5].  

TD is particularly well suited to game playing because instead of forming pairs between the 

actual outcome and each state encountered in the game, instead it updates it’s prediction at 

each time step to the prediction at the next time step. This also means that a record doesn’t 

need to be kept of the game as only the current state and the previous evaluation is needed to 

calculate the error at any particular stage.  
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TD provides many advantages over traditional supervised learning methods, most important 

of which is that TD can achieve a high level of play simply from playing against itself. Because 

it requires no human intervention tournaments can set up and left running for thousands of 

games resulting in a high standard of player.  

Problems such as over training are also reduced as the non-terminal boards are decayed 

through time. This means that no intermediate boards are likely to have extreme values 

associated with them, which could lead to the network getting ‘stuck’ during training.  

 

2. Background 
 

2.1 Samuels’s Checkers Program 

 

It was Samuels’s who pioneered the idea of updating evaluations based on temporally 

successive predictions in his checkers program. The fact that his experiments where carried 

out in the early fifties on an IBM 704 makes it all the more remarkable. He also details some 

ingenious methods for saving processor time and memory space, not one CPU tick or Byte of 

RAM is wasted.  

“… we are attempting to make the score, calculated for the current board position, look like 

that calculated for the terminal board position of the chain of moves which most probably will 

occur during actual play. Of course, if one could develop a perfect system of this sort it would 

be the equivalent of always looking ahead to the end of the game.” A.L. Samuels 

His program made use of a polynomial evaluation function as opposed to an ANN as used in 

NeuroDraughts, with the coefficients of the terms being adjusted instead of weights.  

As well as devising this ingenious scheme for training he also created a very good feature set 

which has been cut down and adapted for NeuroDraughts (see Appendix A). Samuels’s 

showed in his experiments that binary combinations of features produced better results, 

making an Artificial Neural Network (ANN) a perfect platform given it’s inherent non-linearity 

due to the hidden layer.  

He also details an alternative internal board representation which is detailed in Appendix C 

that makes many calculations much simpler. Indeed it is easy to see why his Checkers 

program is, and will remain to be for quite some time, one of the most referenced works in 

Machine Learning.  
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2.2 Supervised Learning 

 

The Multi Layered Perceptron 

 

 

Figure 1: A Multi Layered Perceptron. Taken from [12]. 

  

A multi layered perceptron (MLP) consists of a layer of inputs, a layer of hidden units and a 

layer of outputs. Each input is connected to each hidden unit and each hidden unit is in turn 

connected to each output. It can be used to approximate almost any function. 

Without the hidden unit an ANN would only be able to approximate linearly separable 

functions. A linearly separable function is one such as AND or OR whose output graph, when 

plotted, has a clear line between the different value groups. This is best demonstrated by the 

XOR problem1, whose error space has no hyperplane (see Fig 2). i.e. On the third graph of 

figure 2 there is no single straight line that will place the open and filled circles in separate 

regions. 

 

 

Figure 2: Limitations of the single layer perceptron. Taken from [12].  

                                                      
1 For a more comprehensive treatment of this problem please see [7]. 
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Training a MLP becomes a lot more complex due to the addition of the hidden layer. The 

backpropagation algorithm is basically a generalisation of the delta rule as used in the single 

layer perceptron.  

 

Squashing Function 

 

To control the range of values coming from each hidden unit, it is necessary to apply a 

squashing function. This facilitates learning as values of each hidden unit (and the output unit) 

are always within a certain range, thus nullifying any side affects due to extreme values. 

Standard choices for this function are the sigmoid (range 0 to +1) and hyperbolic tangent 

(range -1 to +1) functions. As the hyperbolic tangent function fits the needs of NeuroDraughts 

best (-1 for loss, +1 for win), it was chosen over the more popular sigmoid.  

 

Backpropagation 

 

Again it cannot be stressed enough that for a full explanation and derivation of this algorithm 

to see the references [7],[12]. 

In order to make the weight updates it is first necessary to calculate the error signal of the 

network. This is given by: 

σk = (t k - o k) ƒ’(net k) 

where ƒ’ is the derivative of the activation function (or squashing function) ƒ. The formula to 

change the weights between the output unit, k and input unit j is: 

wjk ← wjk + ηδkoj 

where η is some relatively small constant called the learning rate, usually set to 1/n where n 

is the number of units in the layer the weight originated from. 

The error signal for the hidden unit j (or, more correctly, it’s contribution to the error) is given 

by: 

σj = ƒ’(net j) �σk wjk 

 

The weight update rule is essentially the same for the weights between input units i and 

hidden units j. 

wij ← wij + ηδjoi 
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Momentum 

 

Momentum in backpropagation tries to speed up the process of finding the correct weights by 

adding a fraction of the previous weight change to the current update. If the weights changes 

are on the right track, this process speeds things up enormously.  

 

2.3 Learning in a Dynamic Environment 

 

In order for backpropagation to work it must be presented with training pairs. These pairs 

consist of an input vector and an expected outcome. This method is very unsuitable for game 

playing where it might be impossible, or at least time consuming, to assign correct values to 

intermediate boards. Methods such as this are called supervised learning methods, and are in 

stark contrast to reinforcement learning methods which require the teacher simply to define 

the conditions for receiving a reward.  

It is in this area that reinforcement learning methods win hands down. By concentrating on 

getting the learner to ‘learn for itself’ they eliminate the need for a teacher and thus automate 

the process. The only information that is needed to perform such training is to know what is a 

good outcome or state and what is a bad one, as well as rules governing state transitions (in 

this case legal moves). Given this information it is entirely feasible that the system can learn 

simply by exploring the state space using the transition rules given, as well as applying the 

appropriate rewards.  

A system created by Michael Gherrity, SAL[13], is just such a system. It can theoretically learn 

to play any game based on a board. The user simply provides the system with the game 

structure and a list of rules governing play. Through self play it then develops above average 

levels of play.  

2.4 Reinforcement Learning & Temporal Difference Learning 

 

In reinforcement learning the learner is rewarded for performing well (in this case winning) and 

given negative reinforcement for performing badly (i.e. losing). In between the starting board 

and the final board when no specific reward is available the TD mechanism tries to update the 

prediction for the current state to that of the next state. For all the non-terminal boards states 

the program forms a training pair between the current board state and the prediction of a win 

for the next state.  
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TD can be basically viewed as an extension to backpropagation2 and gives the following 

weights change formula: 

                         
 

where Alpha is the learning rate. Lambda in this equation controls how much the final reward 

trickles back to the starting states, this is generally referred to as the eligibility trace. If set to 

zero this is eliminated and we have the special case TD(0) in which each state is trained 

simply to it’s successor.  

An important part of TD is that it doesn’t have to wait until the final outcome to train. This 

means that only one state (e.g. board state) must be kept in memory. Thus time is saved as 

the actual learning is occurring throughout the game. This would be particularly beneficial if 

multi processor machines were available. One thread could be working out the next move 

whereas the other could be training for the current move.  

The famous example of why TD is superior to ordinary supervised learning approach’s is the 

following game playing example as given in [5]. See Figure 3. 

Supposing you land in the novel state (which you have previously never encountered) and 

subsequently end up in the bad position but still win the game. What value is then associated 

with the novel state?  

        
 

Figure 3: A game-playing example showing the inefficiency of supervised learning 

methods. 

                                                      
2 For a more detailed description of TD please see [2],[5]. 
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A supervised leaning method would associate the novel state with a win which is obviously 

wrong as we have found from experience that it has a high chance of resulting in a loss. The 

TD method, however, would form a pair between the novel and bad state which immediately 

followed it. Assuming that the evaluation of the bad state is correct then we have correctly 

evaluated the novel state. TD will consider a state good if the most likely state following it is 

good and vice versa, thus after playing several games one can expect the TD trained network 

to be a very accurate prediction of winning/losing.  

3. NeuroDraughts  - Explained 
 

3.1 Architecture 

 

At the heart of NeuroDraughts are two, meticulously designed, C++ classes. These classes 

are EvalNet, which implements the ANN and TD aspects of the project and DirectNet, which 

itself creates and manipulates EvalNet objects. DirectNet’s sole purpose is to mirror the 

functionality of EvalNet whilst providing additional functions necessary to allow board states to 

be passed as parameters. It supports several input representations as detailed in section 3.3.  

The EvalNet class was designed so as to be easily re-usable in any ANN/TD project and this 

was demonstrated by it’s successful use in solving the Gridworld puzzle, without any 

modification. As it’s name suggests EvalNet was designed with only a single output in mind. 

This meant a large saving in complexity with little loss of generality.  
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Figure 4: How a board is evaluated. Mapping a board to the input vector is handled 

by DirectNet which then passes this to EvalNet which evaluates the position. 

 

The evaluation network and the temporal difference procedures are incorporated into the 

EvalNet class. The mapping of the board to the inputs is handled by the DirectNet class which 

sits above EvalNet.  

Two types of internal board structures were used, an ordinary board (1-32) and an extended 

board (1-35) (see appendix C) which makes a lot of computations much simpler. Both boards 

are implemented in a simple C fashion to increase performance. A library of functions was 

written to manipulate the boards. 

Another aspect of the project was of course the feature mapping. This is provided again by a 

simple library of functions, each of which accepts the board structure and returns either true or 

false. These functions were designed to be completely independent of one another to allow for 

full flexibility, albeit at the cost of performance.  

 

3.2 The Evaluation Network 

 

At the base of NeuroDraughts is a neural network. The network consists of a layer of inputs, 

hidden and a single output unit. The network is trained using back propagation with 

momentum [6] [7]. This net is trained to evaluate boards after the player in question has 

moved.  
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3.3 Representation of Board  

 

How the board is fed to the evaluation network was a major issue for NeuroDraughts. 

Although as little domain specific knowledge as possible was the aim, in practice this was 

impossible. In order to learn to play at an acceptable level some sort of feature mapping was 

required. If just the raw input is used, small changes in the board can produce drastically 

different evaluations which goes against the smooth nature of the game. By mapping the 

board to a set of features (adapted from those provided by Samuels [4]) we increase the 

ability of the Evaluation network to generalise and thereby glean more information from each 

game.  

As part of the purpose of NeuroDraughts was to show the advantages (or plain necessity) of 

feature mapping several different strategies were tried. These were as follows: 

• NET_BINARYMAP -  Each board square is represented by 3 inputs. Each set either to 1 

 or -1 depending on what piece occupies it. 

• NET_DIRECTMAP -  Each board square is represented by a single input which is set to 

 0 for empty, 0.25 for black man, 0.5 for red man, 0.75 for black 

 king and 1 for red king.  

• NET_FEATUREMAP -  The board is now represented by a given number of features. A 

 full description of all features can be found in Appendix A.  

 

3.4 Automatic Feature Generation 

 

Due to time constraints this area has not been explored. Originally it was planned to 

incorporate some form of feature optimisation into NeuroDraughts. Much work has been done 

on automatic feature generation but without very much success [9],[10],[11]. One promising 

way forward however is hybrid systems which are described in detail by Martin Schmidt[8].The 

features would be represented by a Genetic Algorithm and mating selection process would 

consist of a tournament of an arbitrary number of games.  

Working on the success or failure of this approach it was then planned to see if any inroads 

could be made into automatic feature generation as opposed to simple optimisation.  
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4. Developing NeuroDraughts 
 

NeuroDraughts was developed in several stages. I did a lot of research before starting coding 

to make sure that the project was feasible.  This involved reading many journal papers and 

consulting with both Gerald Tesauro and Sebastian Thrun, who are probably the world’s 

leading authorities on the use of TD methods in game playing. Several papers exist which 

share some similar elements to NeuroDraughts, namely [13], [15], [17], [18], [19], [20], [21] 

and [22]. 

4.1 Design Strategy 

 

The first priority in the design of NeuroDraughts was to create and test an MLP. The TD 

elements would then be incorporated and the board mapping functions added. It was an 

important design consideration that the evaluation network be as independent as possible, 

with no specific references to draughts. The results of this was a highly re-usable class which 

can be implemented in a variety of programs. This is demonstrated by how easily it slotted into 

the Grid World problem with no modification. Lastly the User Interface (UI) had to be created 

in order to allow human opponents to compete against the computer. 

4.2 Developing the MLP 

 

Developing the MLP was a fairly simple process as a wealth of documentation and sample 

source code was available. Once the code was written it was tested on the XOR problem, 

already described. The results achieved were in line with those reported by others. Once this 

was working, momentum was added and significant improvements noted. One problem to 

note here is that the momentum term was implemented straight. i.e. no checks were made to 

see if the momentum term was in fact going in the same direction as the current weight 

update. It was found however, that performance increased when a check was added, but at 

the expense of more CPU time. This is discussed further in section 5.1.  
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4.3 TD and Gridworld 

 

When coding began a lot of difficulties arose and there was a lot of uncertainty as to whether 

or not the TD mechanism was working as it should. It was decided to try a simple problem 

with which we could clearly see whether or not all was well. The problem selected was the grid 

world puzzle, in which the network tries to learn the fastest path to the exit or goal state. The 

original implementation of this puzzle uses a network with four outputs and at any step the 

network must select the direction. Because we were more interested in evaluating positions 

we restructured the problem so that it would consider each neighbouring square and select to 

move to the one with the highest evaluation. Solving the problem in this way meant it was now 

analogous to selecting good moves in draughts.  

 

 

Figure 5: The Gridworld Puzzle. 

 

The GridWorld puzzle consists of a 5*5 world. Upon reaching the goal (in the optimal time) it 

receives a reward of +1 whereas getting stuck (not reaching the goal in 10 moves - the extra 

leeway giving it a chance to reach the goal in sub-optimum time) gets it a reward or -1.0.  The 

program is continually started at random positions in the world and ‘let wander’. The program 

selects it’s moves by evaluating all possible moves, up, down, left or right,  and choosing the 

one with highest evaluation.  
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It was found that training time decreased considerably when the starting point’s distance from 

the goal was gradually increased over time, allowing the net to learn the squares close to the 

goal first. This lesson proved very valuable in teaching NeuroDraughts how to play.  

As the GridWorld puzzle used the same evaluation network class and TD procedures, it was 

safe to assume after this experiment that all was in order with TD.  

 

4.4 Results of Gridworld 

 

The following results show how the reinforcement given at a particular stage affects the 

learning. Success refers to the reward given after success arrival at the goal, failure when 

after 10 moves the goal still hasn’t been reached and Side is the reinforcement given when a 

side square is moved into. Result is the number of random starts required for the optimal 

solution to be found, the number in brackets reflecting how many where not learned in the 

case of failure. 

Lambda = 0.1 Gamma = 0.9 

SUCCESS FAILURE SIDE MOVES RESULT 

+1 0 0 1050 All Learned 

+1 -0.2 0 900 All Learned 

+1 0 -0.1 1500 1 Failed 

+1 -0.2 -0.1 1500 1 Failed 

+1 -0.2 -0.2 1500 18 Failed 

+1 -1 0 1050 All Learned 
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5. Important Elements 
 

This is a brief discussion on some of the elements which were pivotal in Neuro Draughts 

development. They include such additions as momentum with test and adding Direct Links. 

 

5.1 Momentum 

 

As a result of choosing the hyperbolic tangent activation function it was necessary to employ a 

direction check when applying momentum. If a weight update was in the opposite direction to 

the previous weight update, then both could cancel one another out. This resulted in the 

network sometimes getting stuck in extreme values, as it would take quite a while to reverse 

the direction of the changes, especially if a high momentum term was being used. This 

necessitated the implementation of a check when applying the momentum term. So if the 

momentum term is in the same direction it is applied, otherwise it is not.  

 

5.2 Direct Links 

 

Again this was a major error in my judgement. Because evaluating a draughts board is in most 

implementations a linear function it only made sense that correctly evaluating a draughts 

board was indeed at least a partly linear function. It was found by Samuels, whose original 

evaluation function was a simple linear polynomial that after the addition of some binary 

connective terms, performance significantly improved. This clearly shows that some elements 

of draughts cannot be approximated by linear means alone, thus making a network with both 

linear and non-linear (via hidden units) capabilities the ideal choice. This assumption proved 

true after initial training provided a player that, using only 2 ply look ahead, could beat most 

human opponent of moderate skill level.  
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5.3 Modular Networks 

 

After reading some impressive results in [16][19] it was decided to try incorporate modular 

networks into NeuroDraughts. The approach taken was that three networks would be used, 

one for attacking play (a piece advantage), one for defending (a piece disadvantage) and one 

for mid-game play. It was found however, through analysing what was being trained, that the 

mid-game was getting well over half of the training time. The idea was left out of the current 

version of NeuroDraughts, but with more thought and consideration on how better to utilise it, 

it could prove invaluable.  

 

6. Training NeuroDraughts 
 

6.1 How NeuroDraughts was trained 

 

At first it was attempted to train NeuroDraughts using expert games. However this approach 

failed as the number of games available was small (about 200), as well as the fact that expert 

games tend to terminate with seven or more pieces still on the board. In the end a self-play 

regime of learning was finalised upon. Several different strategies were tried before finally 

settling on the current one. I will now describe some of them and why they failed. 

 

6.2 Straight Play 

 

This method simply let two opponents play against each other, both learning for a set number 

of games. Because no benchmarks are available at any stage of the training, it is impossible 

to know if the nets are improving. One net might hit a slump and then the other network can’t 

be judged as being good because it is beating a weak opponent.  

 

6.3 Cloning 

 

Using this method, a set number of games was played with only one network training. If the 

training network succeeded in winning a set percentage of games, usually 80-90%, then the 

non-training network copied it’s weights. Using this method meant that the standard of play 

was forced to increase. There was however one flaw with this approach.  
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Using the results of, say 50 games, is not reliable because even if the training net loses the 

last 5 games after winning the first 45, he will be cloned. This means that although it was 

good, it has since degraded, and a much poorer network is in fact being cloned. The solution 

to this was to play 10 games training, after which two games are played, one as black, one as 

red. If both of these games are successful then the network is cloned. This technique quickly 

showed much promise, outdoing previous networks. This is demonstrated in Figure 6.There 

was however still one flaw in the process which is dealt with in the next, and final, method. 

 

 

Figure 6 - How the Training/Cloning Process Works 

 

6.4 Cloning with Look Ahead 

 

One of the problems with the features used is that none of them could be very accurate at a 

given time step. In order to get a better evaluation, a slight amount of look ahead was 

required. All previous attempt failed because, although the networks realised the value of 

pressuring the opponent and eliminating his pieces, it also saw sacrificing pieces as good at 

times, not realising that this was only good in certain circumstances. To eliminate the difficulty 

in evaluating exchanges a 1 move (2 ply) look ahead was added to the training. By doing so 

we narrowed the search space of the problem significantly and thus increased the 

performance dramatically. The results with this method have been the best so far with the 

network performing to above average standard after only 500 training games.  
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6.5 What gets Trained? 

 

There are three distinct areas to discuss here. Training on expert play, self play and against a 

human opponent.  

 

Expert Play 

 

Before training from expert play the expert games are converted into an easily digestible 

format. This involves swapping all red boards around and grouping the boards into red and 

black boards. Black boards being those when black had just played and vice versa. The 

games are then read in and the net trained as if they were just happening. The major problem, 

as mentioned earlier, is that expert games never tend to go down to the wire. They always 

finish with six or more pieces left. Because many of the strategic nuances seen in expert play 

rarely make much impact on an ordinary game it is very difficult to learn them. This coupled 

with the fact that the games terminate very early makes learning from the masters a poor 

choice for NeuroDraughts.  

 

Self Play 

 

During self play there is only ever one network being trained as is the nature of the cloning 

mechanism adopted. This means that when the training network is red all boards must be 

swapped before being used. Self play is probably the best method of training as it is fully 

automated and should consistently improve from generation to generation. This said it is also 

true to say that play can degenerate under circumstances, especially when no look ahead is 

used when playing. This is particularly true of draughts, were many moves are forced and a 

simple one move look ahead can reveal a lot.  

 

Human Play 

 

It has yet to be seen what, if any, improvement can be gained from training when playing 

against a human opponent. If the player is of a high standard then it would be beneficial to 

learn from and it is possible (v. likely) that the network would evolve to a more capable match 

for the human. On the other hand performance would undoubtedly degrade if playing against 

a poor human opponent. I’m afraid it will have to be up to the individual whether or not to turn 

learning on when playing.  
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7. Final Training Sequence Results 
 

In order to see how different values of Lambda affected the training, 5 networks were created 

with exactly the same seed and parameters. The only thing that was varied was Lambda. 100 

sequences of 10 games were played with a test after each one. A league was then played 

between the last clone of each network (most reached 5th generation).  

 

Lambda 0.0 0.1 0.2 0.3 0.4 Total 

0.0 x 2 2 2 4 10 

0.1 2 x 1 4 1 8 

0.2 2 3 x 2 2 9 

0.3 2 0 2 x 2 6 

0.4 0 3 2 2 x 7 

 

The following shows the graphs of Average Pieces plotted for both the best (Lambda 0.0) and 

worst (Lambda 0.3) cases. Only the first 40 games are shown, after which point most of the 

networks oscillated, only one or two actually cloning again in the later stages. The gaps 

indicate cloning took place. 
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Figure 7 - Lambda 0.0 Results 
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Lambda 0.3
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Figure 8 - Lambda 0.3 Results 

 

Another interesting graph to see is the correlation between Average Pieces and Moves Taken 

as demonstrated here. Note: Lambda = 0.1 
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Figure 9: Performance Graph of Training 

 

In this graph the Blue (higher of the two) line represents the average moves taken and the 

pink line the average number of pieces left (for the net being trained). It can be clearly seen 

from this graph how for each segment of games, play steadily (with only some jitters) 

improves until cloning. If one looks at the larger picture you can see that number of pieces is 

going down and moves is going up as the network is continually finding it harder to beat it’s 

clones.  
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8. Walk-Through 
 

This section hopes to provide an overview of what goes on when NeuroDraughts is learning 

through self play. It can be split into the following sections: Tournament & Test, Move 

Selection & Evaluation and Final Reward.  

 

8.1 Tournament & Test 

 

At the basis of self play is the idea of a tournament. This basically means a set number of 

games during which training is occurring followed by two games, the test, which show whether 

or not the level of play has improved enough to beat it’s clone. The only differing condition 

between the players, is that one is being trained during the initial ten games whereas the other 

(clone) is not. Each opponent receives an equal number of starts (ie. black starts) and both 

use the same search techniques, if any. At the end of these ten games, two games are played 

(one as black, one as red), with training turned off, so both players remain static making any 

further games pointless. If the opponent that we are training completes both successfully then 

his weights are copied to the non-training opponent (he’s cloned) and the process is started 

again.  

 

8.2 Move Selection & Evaluation 

 

Move Selection is made in much the same way as an ordinary heuristic approach, the rules 

simply replaced by a neural net. Each possible board is generated from the current position 

and then evaluated. If the player is red then the boards must first be swapped before being 

evaluated. If search is on then each moves game tree is first searched as well, to the depth 

specified. Once complete the move with the highest evaluation is passed back the tournament 

which then executes the move for the player in question.  

 

8.3 Final Reward 

 

At the end of the game depending on who has won, a reward is given to the network being 

trained. This is the most important element of the training as it here were the behaviour is 

either positively or negatively reinforced.  
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9. Setting up NeuroDraughts 
 

There are several programs included with NeuroDraughts to allow anyone to create neural 

nets to their specifications and also to train them in various ways. I will now outline the basic 

file structures used by the different programs and then detail how to use the programs. 

 

9.1 File Structures 

 

When specifying a NeuroDraughts network, one can either specify a Creation File or a Pre 

Created Network.  

 

Creation File 

NumInputs:       37 -1 = BinaryMap, 0 = DirectMap 

NumHidden:  12 How many hidden units 

DirectLinks: 1 Use Direct In-Out Links 

NetworkSeed: 210476 Seed for Random numbers 

LowRange: -0.2 Low Range of Random Numbers 

HighRange: +0.2 High Range of Random Numbers 

NetworkName: FeatureNetwork Give your Network a Name 

 

Pre Created Network 

SuperFeatureNetwork Name 

37 12 1  Inputs, Hidden, DirectLinks 

In - Hid Weights  All the Input - Hidden Weights 

Hid - Out Weights  All the Hidden - Output Weights 

In - Out Weights  All the Direct In - Out Weights (if applicable) 

 

When specifying the inputs in a creation file, a 0 means BINARY_MAP and a 1 

DIRECT_MAP, using any higher number then the network will assume that number 

corresponds to the number of features to be used.  
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Parameter File 

LRate1:  0.0 Learning Rate for 1st Layer (also in-out layer) 

LRate2:  0.0 Learning Rate for 2nd Layer (hid-out) 

Momentum: 0.9 Momentum Term 

Gamma(Decay): 0.98 TD Decay 

Lambda(TD?): 0.1 Eligibility Trace value.  

 

By Setting a Learning Rate to zero you ask the program to calculate an appropriate value for 

you. The program uses the formula 1/inputs for the first learning rate and 1/hidden for the 

second.  

 

Board File 

2 - How many boards are in the file 

  The Board             Params  

/-----------------------------------------------------------------------------\   /-------------\ 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2   -0.1 +0.1 4 

0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0   -0.5 +0.5 3 

 

The Parameters correspond to, draw reward if black, draw reward if red and points to clone 

respectively. This allows to train networks on situations where drawing is actually good (when 

at piece disadvantage) or where it is very bad. The points to clone represents how many 

points are needed from the two game test sequence in order for the network to be passed fit 

for cloning. 2 points are awarded for a win, 1 point for a draw, none for a loss.  

Numbers are used to represent the pieces. There are as follows: 0 = Empty, 1 = BlackMan,  

2 = RedMan, 3 = BlackKing, 4 = RedKing. 
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9.2 How to Use the Programs 

 

NeuroDraughts uses five programs for various functions, the following is a descriptions of how 

to use them and what to use them for. 

 

Cloning Tournament Runner 

 

Usage: ND create_file, param_file, board_file, savegame_file,  testafter, gamelimit 

 

This is the main program in the NeuroDraughts family. It takes as it’s parameters a Creation 

File or Pre Created File, a Parameter File and a Board File. It also lets you specify where to 

save the games, how many games to test after and how many tests to make.  

Using the creation file is creates two equal networks. It then uses the parameters file to set up 

the learning rates and momentum. It then plays the specified number of games on each board 

from the Board File. If the network one (which is being trained) meets the criteria specified by 

the Board File it then gets cloned and the process is repeated until the limit is encountered.  

 

Fight Simulator 

 

Usage: FIGHT opponent1, opponent2, board_file, savegame_file 

 

In order to match two differing networks against one another the Fight program is provided. 

This again take a Board File as a parameter. It also take two Pre Created Files (the two 

opponents) with which it creates the networks.  

Using these network it then goes through each of the boards in the Board File, playing two 

games on each (each player getting to start once) and showing the results. This is a simple 

method of determining the strength of two different networks.  
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PDN to ND Converter 

 

Usage: CONVPDN PDN_file, output_file, ignore_draws 

 

PDN is a standard Draughts Notation and therefore it is useful to have a program which will 

convert between PDN and a list of boards, which is what ND uses for training. You must give it 

the PDN and output file and it also allows you to specify if draws are to be ignored or not. This 

allows a user to take their favourite championship games and train a network with them using 

the following program.  

 

Expert Trainer 

 

Usage: XTRAIN create_file, param_file, training_file, training_epochs 

 

This program takes a Creation File or Pre Created File, a Training Data File and a Parameter 

File as it’s input. Using this training File it trains the network for the specified number of 

epochs.  

 

NeuroDraughts  

 

This is the interface which allows you to play against one the created networks. Before playing 

you must copy the network you want to play against to opp1.net and then run the program. 

Prepare to be beaten! 

 

10. Conclusions 
 

Some of the goals I set out in my initial aims for this project have, for various reasons, not 

made it to implementation. The main purpose was to see how good a draughts player could 

be created with as little as possible domain specific knowledge. In the end I had to concede 

and use feature mapping but if more processing power was available, as well as more time, 

more might have been achieved. It was also an aim of this project to investigate the 

possibilities of automatic feature discovery. Although none of the ideas have made it into the 

current version of NeuroDraughts, some promising progress has been made. 
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10.1 NeuroDraughts, a success? 

 

As set out above, the aim was to create a draughts playing program that could beat it’s 

creator. The program achieved this easily, with the creator only managing the occasional 

draw. It has also performed well against Dave Harte, an Irish U18 champion and other 

competent draughts players. Given that my knowledge of both ANN and TD, as well as other 

AI methods was minimal when starting out on this project a year ago I feel that a lot has been 

achieved, both from a personal point of view as well as a technical and theoretical point of 

view.  

10.2 Future Development 

 

As already mentioned, a lot of ideas for NeuroDraughts remain un-implemented. It will 

however remain in development, with the emphasis being put on reducing the domain specific 

knowledge whilst trying to keep the level of play constant. The most promising development to 

be tried is that of Hybrid Systems, which avail of Genetic Algorithm technology to attempt to 

automatically discover features.  
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13. Appendix A - List of Features 
 

The Features were designed to work in binary groups. Because of the nature of ANN’s it was 

necessary for each feature to be represented by a set of binary inputs instead of one scalar 

input. To achieve this features are organised into groups. The first in a group calculates the 

actual scalar value of the feature and sets the first bit or the bits allocated, whereas those 

following simply set successive bits. Most features have 3 inputs allocated, allowing them to 

represent a range of 0 to 7 but some have 4, allowing 0 to 15.  

The following list owes a heavy debt to A.L. Samuels who provided a similar list in his paper 

[4]. As well as providing the features, Samuels also provided charts detailing how important 

certain features proved to be. Armed with that information I was able to significantly prune the 

feature set to the following.  

 

 

PieceAdvantage 4 inputs allocated 

Pieces were given the standard values of 2 for a man and 3 for a king. This feature calculated 

how much of an advantage it had over it’s opponent. 

 

PieceDisadvantage 4 inputs allocated 

This feature is the opposite of PieceAdvantage 

 

PieceThreat  3 inputs allocated 

This calculated how many pieces where under threat from the opponent.  

 

PieceTake  3 inputs allocated 

This calculated how many of the opponents pieces are under threat from us. 

 

BackRowBridge 1 input allocated 

This is set on if the bridge is in place. i.e. squares 1 and 3.  

 

CentreControl  3 inputs allocated 

This is credited with 1for each piece we have in the centre squares. 

 

XCentreControl 3 inputs allocated 

This is credited with 1 for each piece the opponent has in the centre squares or could move to 

in his next move.  
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TotalMobility  4 inputs allocated 

This is credited with 1 for each square to which the opponent can move. 

 

Exposure  3 inputs allocated 

This is credited with 1 for each piece that is flanked on each side of either diagonal by empty 

squares. 

 

Advancement  3 inputs allocated 

This is credited with 1 for each piece in the 5th and 6th rows and debited with one for each 

piece in the 3rd and 4th rows.  

 

DoubleDiagonal 4 inputs allocated 

This is credited with 1 for each piece on a double diagonal square. 

 

KingCentreControl 3 inputs allocated 

This is credited with 1 for each king on a centre square.  
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14. Appendix B - Object Descriptions 
 

14.1 EvalNet - The TD Evaluation Neural Network Class. 

 

This class contains all the code to implement a neural network trained by TD and momentum. 

It could be used for any application which requires a neural network evaluation function. This 

has been proven by it’s use, entirely unmodified, in solving the Grid World problem. It’s only 

limitation is that it has been designed only for use in evaluation functions, as it is fixed with a 

single output. 

 

Constructor 1 

EvalNet(numinputs, numhidden, dlinks, seed, lowrange, highrange, bias, name) 

 

This constructor allows you to specify the number of inputs and hidden units in the network. It 

also allows the specification of whether or not direct links between input and output units 

should be used. The low and high range values are the limits within which the weights will be 

initialised. The bias variable allows you to specify the value of the bias unit for both layers. The 

name variable allow you to give the net a name to distinguish it from other nets. The name’s 

purpose is twofold. It is useful in debugging to keep track of what’s being trained and serves 

as a tag on saved networks.  

 

Constructor 2 

EvalNet(loadfile, bias ) 

 

This constructor loads all the details of a network from a file, except the bias.  

 

Evaluating the Network 

EvaluateNet(inputvector) 

 

To evaluate a network is simple. An input vector, which MUST match the dimensions of the 

network created, it passed to it. The network is then evaluated in the same fashion as an 

ordinary neural network. 
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Initialising TD training 

InitTDTrain( iv, gamma,  lambda) 

 

Before TD training can begin a several things must be initialised. These include momentum 

variables and the partial derivative (or eligibility trace). It also requires the starting input vector 

(iv) as well as the gamma and lambda values that will be used until the sequence terminates. 

 

Training the intermediate boards 

TDTrain( iv) 

 

At each time step between the start and finish, TDTrain is called with the intermediate input 

vector. After calculating the error between the previous and current output, it adjusts the 

weights accordingly. Once it has done this is recalculates the output of the network as well as 

the eligibility’s for the next run. 

 

Final Reward for TD Training 

TDFinal(evalue) 

 

When the final outcome is reached a reward is given to the network. 

 

Saving the Network 

SaveNet(savefile) 

 

This routine saves the network for later use. The name, dimensions and weights are all that is 

saved. Bias, Learning Rates, gamma, lamdba etc are all NOT saved. 

 

Loading weights from a File 

LoadWeights(loadfile) 

 

This routine loads the networks weights from a file. Care must be taken that the dimensions 

match as otherwise results are unpredictable. It’s intended use is in the cloning process, 

where nets swap weights regularly.  
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14.2 DirectNet - The TD Eval Network Class with Draughts Specifics. 

 

This code is designed to further abstract the EvalNet class. It basically mirrors all the functions 

of EvalNet except that is accepts Boards instead of array’s of floats. It then does one of three 

provided mapping before passing it on to EvalNet as an array of floats.  

 

Constructor 1 

DirectNet(typeofnet, nhidden, direct_links, seed, lowrange, highrange, bias, name) 

 

The main difference between this constructor and that of EvalNet is that instead of specifying 

a number of inputs, you specify the type of network. Three types are catered for: 

 

• NET_BINARYMAP -  Each board square is represented by 3 inputs. Each set either to 

 ON or OFF depending on what piece occupies it. The code’s   

 where as follows: 000 = Empty, 001 = BlackMan, 010 = RedMan, 

 011 = BlackKing, 100 = RedKing.  

• NET_DIRECTMAP -  Each board square is represented by a single input which is set to 

 0 for empty, 0.25 for black man, 0.5 for red man, 0.75 for black 

 king and 1 for red king.  

• NET_FEATUREMAP -  The board is now represented by a given number of features. A 

 full description of all features can be found in Appendix A. The 

 number specified indicates the number of features to use. 

 

Constructor 2 

DirectNet(fname, bias) 

 

This provides the exact same functionality as the EvalNet 2nd constructor. 

 

TD Training Functions.  

 

InitTDTrain(board, gamma, lambda, swapboard) 

TDTrain(board, swapboard) 

TDFinal(evalue) 

 

These functions call their conterparts in EvalNet. The only difference is that they accept 

Boards as parameters, and before they call the EvalNet functions they perform the required 

mapping. They also have an extra parameter, swapboard, which is used to signify a red board 

which must be swapped before being evaluated.  
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Evaluating a Board 

EvaluateNet(board) 

 

As with the training functions, evaluating a board simply requires that the board be mapped to 

an input vector first. Then it calls the EvalNet function. 

 

Mapping the board to the Input Vector 

 

The following two private functions perform the bulk of DirectNet’s work.  

 

ComputeIV(pboard) 

mapfeatures(iv, board) 

 

Firstly ComputeIV creates the appropriate size float array and then passes it along with the 

board to mapfeatures, which performs the mapping from board to float array. 
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14.3 DraughtsGame - Draughts Game Managing Class 

 

This class forms the basis of the training process.  

 

Constructor 1 

DraughtsGame() 

 

No parameters are required to initialise a DraughtsGame. It simply acts as a convenient 

tournament hall. It keeps track of the current game as well as games played, which networks 

are being trained, who’s black, who’s red, how many moves have been made, average moves 

made in a particular sequence as well as average pieces left in a sequence.  

 

Play a Tournament 

AutoPlay(fname, train, numofgames, board, gamma, lambda, opp1, opp2) 

 

This function allows one to specify the number of games to play, the initial board configuration, 

which networks to train, where to store the games being played as well as, most importantly, 

the network to be associated with each opponent. This function forms the core of the training 

regime.  

 

Make a Move 

MakeBlackMove(void) 

MakeRedMove(void) 

 

Using the networks provided by AutoPlay these functions call the function SuggestMove (in 

player.cpp) to decide which move to make. After making the suggested move these function 

also handle the training (if any is be performed) of the networks. 

 

Initialising the Game 

InitGame(char* fname, BOARD* board, int train) 

 

This function set’s up the file for recording, saving any preliminary information already 

available such as the names of players etc. It also initialises the board as well as setting up 

variable for training. 
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Cleaning Up after a Game 

EndGame(whowon) 

 

This function administers the reward to those nets being trained as well as recording the 

information in the PDN file.  

 

 

14.4 Miscellaneous Headers. 

 

Several other headers exist in NeuroDraughts. All of them are described in their appropriate 

header file. They are: 

Board.cpp -  Contains definition of Board and XBoard structs as well those functions  

  relating to them. 

Features.cpp -  Contains the code for calculating all the various features. 

Player.cpp -  Contains the code for SuggestMove which implements a basic Minimax  

  search routine. 

Train.cpp -  Contains the code for converting PDN files to training boards for   

  NeuroDraughts as well as routines to implement training from this data. 
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Appendix C - Internal Board Representation 

 

This is taken exactly from Sameuls’s paper. It differs from standard 1-32 notation in that it 

skips numbers 9,18 and 27. It allows for very easy move/exchange calculation as any square 

to the north east is +4, south east is -5, north west +5 and south west -4. This is called an 

XBOARD in the program.  

 

 

Figure 10 - Internal Board Representation 


