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Abstract

In recent years, a variety of nonlinear dimensionality reduction techniques have been proposed, many of which rely on the
evaluation of local properties of the data. The paper presents a review and systematic comparison of these techniques. The
performances of the techniques are investigated on artificial and natural tasks. The results of the experiments reveal that nonlinear
techniques perform well on selected artificial tasks, but do not outperform the traditional PCA on real-world tasks. The paper
explains these results by identifying weaknesses of current nonlinear techniques, and suggests how the performance of nonlinear
dimensionality reduction techniques may be improved.
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1. Introduction

Real-world data, such as speech signals, digital
photographs, or fMRI scans, usually has a high dimen-
sionality. In order to handle this data adequately, its
dimensionality needs to be reduced. Dimensionality re-
duction is the transformation of high-dimensional data
into a meaningful representation of reduced dimension-
ality. Ideally, the reduced representation should have a
dimensionality that corresponds to the intrinsic dimen-
sionality of the data. The intrinsic dimensionality of
data is the minimum number of parameters needed to
account for the observed properties of the data [43]. Di-
mensionality reduction is important in many domains,
since it mitigates the curse of dimensionality and other
undesired properties of high-dimensional spaces [62].
As a result, dimensionality reduction facilitates, among
others, classification, visualization, and compression
of high-dimensional data. Traditionally, dimensionality
reduction was performed using linear techniques such
as Principal Components Analysis (PCA) and factor
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analysis. However, these linear techniques cannot ade-
quately handle complex nonlinear data.
Therefore, in the last decade, a large number of nonlin-
ear techniques for dimensionality reduction have been
proposed (see for an overview, e.g., [23,96,114]). In
contrast to the traditional linear techniques, the nonlin-
ear techniques have the ability to deal with complex
nonlinear data. In particular for real-world data, these
nonlinear dimensionality reduction techniques may of-
fer an advantage, because real-world data is likely to be
highly nonlinear. Previous studies have shown that non-
linear techniques outperform their linear counterparts
on complex artificial tasks. For instance, the Swiss roll
dataset comprises a set of points that lie on a spiral-like
two-dimensional manifold within a three-dimensional
space. A vast number of nonlinear techniques are per-
fectly able to find this embedding, whereas linear tech-
niques fail to do so. In contrast to these successes on
artificial datasets, successful applications of nonlinear
dimensionality reduction techniques on natural datasets
are scarce. Beyond this observation, it is not clear to
what extent the performances of the various dimen-
sionality reduction techniques differ on artificial and
natural tasks (a comparison is performed in [83], but
this comparison is very limited in scope with respect to
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the number of techniques and tasks that are addressed).
Motivated by the lack of a systematic comparison
of dimensionality reduction techniques, this paper
presents a comparative study of the most important
linear dimensionality reduction technique (PCA), and
twelve frontranked nonlinear dimensionality reduction
techniques. The aims of the paper are (1) to inves-
tigate to what extent novel nonlinear dimensionality
reduction techniques outperform the traditional PCA
on real-world datasets and (2) to identify the inherent
weaknesses of the twelve nonlinear techniques for di-
menisonality reduction. The investigation is performed
by both a theoretical and an empirical evaluation of the
dimensionality reduction techniques. The identification
is performed by a careful analysis of the empirical re-
sults on specifically designed artificial datasets and on
the real-world datasets.
Next to PCA, the paper investigates the following
twelve nonlinear techniques: (1) multidimensional scal-
ing, (2) Isomap, (3) Maximum Variance Unfolding,
(4) Kernel PCA, (5) diffusion maps, (6) multilayer au-
toencoders, (7) Locally Linear Embedding, (8) Lapla-
cian Eigenmaps, (9) Hessian LLE, (10) Local Tangent
Space Analysis, (11) Locally Linear Coordination, and
(12) manifold charting. Although our comparative re-
view includes the most important nonlinear techniques
for dimensionality reduction, it is not exhaustive. In ap-
pendix A, we list (nonlinear) dimensionality reduction
techniques that are not included in our comparative
review. There, we briefly explain why these techniques
are not included.
The outline of the remainder of this paper is as fol-
lows. In section 2, we give a formal definition of
dimensionality reduction. Section 3 briefly discusses
the most important linear technique for dimensional-
ity reduction (PCA). Subsequently, section 4 describes
and discusses the selected twelve nonlinear techniques
for dimensionality reduction. Section 5 evaluates all
techniques on theoretical characteristics. Then, in sec-
tion 6, we present an empirical evaluation of techniques
for dimensionality reduction on artificial and natural
datasets. Section 7 discusses the results of the exper-
iments; moreover, it identifies weaknesses and points
of improvement of the nonlinear techniques. Section 8
provides our conclusions. Our main conclusion is that
the focus of the research community should shift to-
wards nonlocal techniques for dimensionality reduction
with objective functions that can be optimized well in
practice (such as PCA, Kernel PCA, and autoencoders).

2. Dimensionality reduction

The problem of (nonlinear) dimensionality reduction
can be defined as follows. Assume we have dataset rep-
resented in a n×D matrixX consisting of n datavectors
xi (i ∈ {1, 2, . . . , n}) with dimensionality D. Assume
further that this dataset has intrinsic dimensionality d
(where d < D, and often d� D). Here, in mathemati-
cal terms, intrinsic dimensionality means that the points
in dataset X are lying on or near a manifold with di-
mensionality d that is embedded in the D-dimensional
space. Dimensionality reduction techniques transform
dataset X with dimensionality D into a new dataset Y
with dimensionality d, while retaining the geometry of
the data as much as possible. In general, neither the
geometry of the data manifold, nor the intrinsic dimen-
sionality d of the dataset X are known. Therefore, di-
mensionality reduction is an ill-posed problem that can
only be solved by assuming certain properties of the
data (such as its intrinsic dimensionality). Throughout
the paper, we denote a high-dimensional datapoint by
xi, where xi is the ith row of the D-dimensional data
matrix X . The low-dimensional counterpart of xi is de-
noted by yi, where yi is the ith row of the d-dimensional
data matrix Y . In the remainder of the paper, we adopt
the notation presented above.
Figure 1 shows a taxonomy of techniques for dimen-
sionality reduction. The main distinction between tech-
niques for dimensionality reduction is the distinction
between linear and nonlinear techniques. Linear tech-
niques assume that the data lie on or near a linear sub-
space of the high-dimensional space. Nonlinear tech-
niques for dimensionality reduction do not rely on the
linearity assumption as a result of which more complex
embeddings of the data in the high-dimensional space
can be identified. The further subdivisions in the taxon-
omy are discussed in the review in the following two
sections.

3. Linear techniques for dimensionality reduction

Linear techniques perform dimensionality reduction
by embedding the data into a subspace of lower dimen-
sionality. Although there exist various techniques to do
so, PCA is by far the most popular (unsupervised) lin-
ear technique. Therefore, in our comparison, we only
include PCA as a benchmark. We briefly discuss PCA
below.
Principal Components Analysis (PCA) [58] constructs
a low-dimensional representation of the data that de-
scribes as much of the variance in the data as possible.
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Fig. 1. Taxonomy of dimensionality reduction techniques.

This is done by finding a linear basis of reduced dimen-
sionality for the data, in which the amount of variance
in the data is maximal.
In mathematical terms, PCA attempts to find a lin-
ear mapping M that maximizes MT cov(X)M , where
cov(X) is the covariance matrix of the data X . It can
be shown that this linear mapping is formed by the d
principal eigenvectors (i.e., principal components) of
the covariance matrix of the zero-mean data 1 . Hence,
PCA solves the eigenproblem

cov(X)M = λM (1)

The eigenproblem is solved for the d principal eigenval-
ues λ. The low-dimensional data representations yi of
the datapoints xi are computed by mapping them onto
the linear basis M , i.e., Y = (X − X̄)M .
PCA has been successfully applied in a large number
of domains such as face recognition [111], coin clas-
sification [59], and seismic series analysis [89]. The
main drawback of PCA is that the size of the covari-
ance matrix is proportional to the dimensionality of the
datapoints. As a result, the computation of the eigen-
vectors might be infeasible for very high-dimensional
data. In datasets in which n < D, this drawback may be
overcome by computing the eigenvectors of the squared

1 PCA maximizes MT cov(X)M with respect to M , under the
constraint that |M | = 1. This constraint can be enforced by intro-
ducing a Lagrange multiplier λ. Hence, an unconstrained maximiza-
tion of MT cov(X)M +λ(1−MT M) is performed. A stationary
point of this quantity is to be found when cov(X)M = λM .

Euclidean distance matrix (X − X̄)(X − X̄)T instead
of the eigenvectors of the covariance matrix 2 . Alter-
natively, iterative techniques such as Simple PCA [85]
or probabilistic PCA [92] may be employed in order to
perform PCA.

4. Nonlinear techniques for dimensionality
reduction

In section 3, we discussed the main linear technique
for dimensionality reduction, which is established and
well studied. In contrast, most nonlinear techniques for
dimensionality reduction have been proposed more re-
cently and are therefore less well studied. In this section,
we discuss twelve nonlinear techniques for dimension-
ality reduction. Nonlinear techniques for dimensionality
reduction can be subdivided into three main types 3 : (1)
techniques that attempt to preserve global properties of
the original data in the low-dimensional representation,
(2) techniques that attempt to preserve local properties
of the original data in the low-dimensional representa-
tion, and (3) techniques that perform global alignment
of a mixture of linear models. In subsection 4.1, we dis-
cuss six global nonlinear techniques for dimensionality
reduction. Subsection 4.2 presents four local nonlinear
techniques for dimensionality reduction. Subsection 4.3
presents two techniques that perform a global alignment
of a collection of locally linear models. Thus, it can be
considered as a combination of the former two types.

4.1. Global techniques

Global nonlinear techniques for dimensionality re-
duction are techniques that attempt to preserve global
properties of the data. The subsection presents six global
nonlinear techniques for dimensionality reduction: (1)
MDS, (2) Isomap, (3) MVU, (4) Kernel PCA, (5) diffu-
sion maps, and (6) multilayer autoencoders. The tech-
niques are discussed in subsection 4.1.1 to 4.1.6.

4.1.1. MDS
Multidimensional scaling (MDS) [29,68] represents

a collection of nonlinear techniques that maps the high-
dimensional data representation to a low-dimensional
representation while retaining the pairwise distances be-

2 It can be shown that the eigenvectors ui and vi of the matrices
XT X and XXT are related through vi = 1

λi
Xui, see, e.g., [26].

3 The reader should note that although diffusion maps and Kernel
PCA are global methods, they can behave as local methods depend-
ing on the choice of the kernel.
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tween the datapoints as much as possible. The quality
of the mapping is expressed in the stress function, a
measure of the error between the pairwise distances in
the low-dimensional and high-dimensional representa-
tion of the data. Two important examples of stress func-
tions (for metric MDS) are the raw stress function and
the Sammon cost function. The raw stress function is
defined by

φ(Y ) =
∑
ij

(‖xi − xj‖ − ‖yi − yj‖)2 (2)

in which ‖xi − xj‖ is the Euclidean distance between
the high-dimensional datapoints xi and xj and ‖yi−yj‖
is the Euclidean distance between the low-dimensional
datapoints yi and yj . The Sammon cost function is given
by

φ(Y ) =
1∑

ij‖xi − xj‖
∑
i 6=j

(‖xi − xj‖ − ‖yi − yj‖)2

‖xi − xj‖
(3)

The Sammon cost function differs from the raw stress
function in that it puts more emphasis on retaining dis-
tances that were originally small. The minimization of
the stress function can be performed using various meth-
ods, such as the eigendecomposition of a pairwise dis-
similarity matrix, the conjugate gradient method, or a
pseudo-Newton method [29].
MDS is widely used for the visualization of data, e.g., in
fMRI analysis [104] and in molecular modelling [113].
The popularity of MDS has led to the proposal of vari-
ants such as SPE [3], CCA [32], SNE [54,81], and
FastMap [39]. In addition, there exist nonmetric vari-
ants of MDS, that aim to preserve ordinal relations in
data, instead of pairwise distances [29].

4.1.2. Isomap
Multidimensional scaling has proven to be successful

in many applications, but it suffers from the fact that it
is based on Euclidean distances, and does not take into
account the distribution of the neighboring datapoints.
If the high-dimensional data lies on or near a curved
manifold, such as in the Swiss roll dataset [106], MDS
might consider two datapoints as near points, whereas
their distance over the manifold is much larger than the
typical interpoint distance. Isomap [106] is a technique
that resolves this problem by attempting to preserve
pairwise geodesic (or curvilinear) distances between
datapoints. Geodesic distance is the distance between
two points measured over the manifold.
In Isomap [106], the geodesic distances between the
datapoints xi (i ∈ {1, 2, . . . , n}) are computed by
constructing a neighborhood graph G, in which every

datapoint xi is connected with its k nearest neighbors
xij (j ∈ {1, 2, . . . , n}) in the dataset X . The shortest
path between two points in the graph forms a good
(over)estimate of the geodesic distance between these
two points, and can easily be computed using Dijk-
stra’s or Floyd’s shortest-path algorithm [35,41]. The
geodesic distances between all datapoints in X are
computed, thereby forming a pairwise geodesic dis-
tance matrix. The low-dimensional representations yi

of the datapoints xi in the low-dimensional space Y
are computed by applying multidimensional scaling
(see subsection 4.1.1) on the resulting distance matrix.
An important weakness of the Isomap algorithm is
its topological instability [7]. Isomap may construct
erroneous connections in the neighborhood graph G.
Such short-circuiting [73] can severely impair the per-
formance of Isomap. Several approaches have been
proposed to overcome the problem of short-circuiting,
e.g., by removing datapoints with large total flows in
the shortest path-algorithm [27] or by removing nearest
neighbors that violate local linearity of the neighbor-
hood graph [97]. A second weakness is that Isomap
may suffer from ‘holes’ in the manifold. This problem
can be dealt with by tearing manifolds with holes [73].
A third weakness of Isomap is that it can fail if the
manifold is nonconvex [107]. Despite these three weak-
nesses, Isomap was successfully applied on tasks such
as wood inspection [83], visualization of biomedical
data [76], and head pose estimation [91].

4.1.3. MVU
Maximum Variance Unfolding (MVU) is similar

to Isomap in that it defines a neighborhood graph on
the data and retains pairwise distances in the resulting
graph [118]. MVU differs from Isomap by explicitly
attempting to ‘unfold’ data manifolds. It does so by
maximizing the Euclidean distances between the dat-
apoints, under the constraint that the distances in the
neighborhood graph are left unchanged (i.e., under the
constraint that the local geometry of the data manifold
is not distorted). The resulting optimization problem
can be solved efficiently using semidefinite program-
ming.
MVU starts with the construction of a neighborhood
graph G, in which each datapoint xi is connected to its
k nearest neighbors xij

. Subsequently, MVU attempts
to maximize the sum of the squared Euclidean dis-
tances between all datapoints, under the constraint that
the distances inside the neighborhood graph G are pre-
served. In other words, MVU performs the following
optimization problem.
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Maximize
∑
ij

‖ yi − yj ‖2 subject to:

(1) ‖ yi − yj ‖2=‖ xi − xj ‖2 for ∀(i, j) ∈ G

MVU reformulates the optimization problem as a
semidefinite programming problem (SDP) [112] by
defining a matrix K that is the inner product of the
low-dimensional data representation Y . It can be shown
that the above optimization is similar to the SDP.

Maximize trace(K) subject to:

(1) kii − 2kij + kjj =‖ xi − xj ‖2 for ∀(i, j) ∈ G

(2)
∑
ij

kij = 0

(3) K ≥ 0

From the solution K of the SDP, the low-dimensional
data representation Y can be obtained by performing a
singular value decomposition.
Similar to Isomap, short-circuiting may impair the per-
formance of MVU, because it adds constraints to the
optimization problem that prevent successful unfolding
of the manifold. Despite this weakness, MVU was suc-
cessfully applied for, e.g., sensor localization [119] and
DNA microarray data analysis [64].

4.1.4. Kernel PCA
Kernel PCA (KPCA) is the reformulation of tradi-

tional linear PCA in a high-dimensional space that is
constructed using a kernel function [98]. In recent years,
the reformulation of linear techniques using the ‘ker-
nel trick’ has led to the proposal of successful tech-
niques such as kernel ridge regression and Support Vec-
tor Machines [100]. Kernel PCA computes the princi-
pal eigenvectors of the kernel matrix, rather than those
of the covariance matrix. The reformulation of PCA in
kernel space is straightforward, since a kernel matrix is
similar to the inproduct of the datapoints in the high-
dimensional space that is constructed using the kernel
function. The application of PCA in the kernel space
provides Kernel PCA the property of constructing non-
linear mappings.
Kernel PCA computes the kernel matrix K of the dat-
apoints xi. The entries in the kernel matrix are defined
by

kij = κ(xi, xj) (4)

where κ is a kernel function [100]. Subsequently, the
kernel matrix K is centered using the following modi-
fication of the entries

kij = kij −
1
n

∑
l

kil −
1
n

∑
l

kjl +
1
n2

∑
lm

klm (5)

The centering operation corresponds to subtracting the
mean of the features in traditional PCA. It makes sure
that the features in the high-dimensional space defined
by the kernel function are zero-mean. Subsequently, the
principal d eigenvectors vi of the centered kernel ma-
trix are computed. The eigenvectors of the covariance
matrix αi (in the high-dimensional space constructed
by κ) can now be computed, since they are related to
the eigenvectors of the kernel matrix vi (see, e.g., [26])
through

αi =
1√
λi

Xvi (6)

In order to obtain the low-dimensional data representa-
tion, the data is projected onto the eigenvectors of the
covariance matrix αi. The result of the projection (i.e.,
the low-dimensional data representation Y ) is given by

yi =


n∑

j=1

αj
1κ(xj , xi), . . . ,

n∑
j=1

αj
dκ(xj , xi)

 (7)

whereαj
1 indicates the jth value in the vectorα1 and κ is

the kernel function that was also used in the computation
of the kernel matrix. Since Kernel PCA is a kernel-based
method, the mapping performed by Kernel PCA relies
on the choice of the kernel function κ. Possible choices
for the kernel function include the linear kernel (making
Kernel PCA equal to traditional PCA), the polynomial
kernel, and the Gaussian kernel [100].
Kernel PCA has been successfully applied to, e.g., face
recognition [65], speech recognition [77], and novelty
detection [56]. An important weakness of Kernel PCA
is that the size of the kernel matrix is proportional to
the square of the number of instances in the dataset. An
approach to resolve this weakness is proposed in [109].

4.1.5. Diffusion maps
The diffusion maps (DM) framework [70,80] orig-

inates from the field of dynamical systems. Diffusion
maps are based on defining a Markov random walk on
the graph of the data. By performing the random walk
for a number of timesteps, a measure for the proxim-
ity of the datapoints is obtained. Using this measure,
the so-called diffusion distance is defined. In the low-
dimensional representation of the data, the pairwise dif-
fusion distances are retained as well as possible.
In the diffusion maps framework, a graph of the data is
constructed first. The weights of the edges in the graph
are computed using the Gaussian kernel function, lead-
ing to a matrix W with entries

wij = e−
‖xi−xj‖

2

2σ2 (8)
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where σ2 indicates the variance of the Gaussian. Sub-
sequently, normalization of the matrix W is performed
in such a way that its rows add up to 1. In this way, a
matrix P (1) is formed with entries

p
(1)
ij =

wij∑
k wik

(9)

Since diffusion maps originate from dynamical systems
theory, the resulting matrix P (1) is considered a Markov
matrix that defines the forward transition probability
matrix of a dynamical process. Hence, the matrix P (1)

represents the probability of a transition from one data-
point to another datapoint in a single timestep. The for-
ward probability matrix for t timesteps P (t) is given by
(P (1))t. Using the random walk forward probabilities
p
(t)
ij , the diffusion distance is defined by

D(t)(xi, xj) =

√√√√∑
k

(p(t)
ik − p

(t)
jk )2

ψ(xk)(0)
(10)

In the equation, ψ(xi)(0) is a term that attributes more
weight to parts of the graph with high density. It is de-
fined by ψ(xi)(0) = mi∑

j
mj

, where mi is the degree of

node xi defined by mi =
∑

j pij . From Equation 10, it
can be observed that pairs of datapoints with a high for-
ward transition probability have a small diffusion dis-
tance. The key idea behind the diffusion distance is that
it is based on many paths through the graph. This makes
the diffusion distance more robust to noise than, e.g.,
the geodesic distance. In the low-dimensional represen-
tation of the data Y , diffusion maps attempt to retain the
diffusion distances. Using spectral theory on the ran-
dom walk, it can be shown 4 that the low-dimensional
representation Y that retains the diffusion distances is
formed by the d nontrivial principal eigenvectors of the
eigenproblem

P (t)v = λv (11)

Because the graph is fully connected, the largest eigen-
value is trivial (viz. λ1 = 1), and its eigenvector v1 is
thus discarded. The low-dimensional representation Y
is given by the next d principal eigenvectors. In the low-
dimensional representation, the eigenvectors are nor-
malized by their corresponding eigenvalues. Hence, the
low-dimensional data representation is given by

Y = {λ2v2, λ3v3, . . . , λd+1vd+1} (12)

Diffusion maps have been successfully applied to, e.g.,
shape matching [90] and gene expression analysis [123].

4 See [70] for the derivation.

4.1.6. Multilayer autoencoders
Multilayer encoders are feed-forward neural net-

works with an odd number of hidden layers [33,55].
The middle hidden layer has d nodes, and the input
and the output layer have D nodes. An example of an
autoencoder is shown schematically in Figure 2. The
network is trained to minimize the mean squared error
between the input and the output of the network (ide-
ally, the input and the output are equal). Training the
neural network on the datapoints xi leads to a network
in which the middle hidden layer gives a d-dimensional
representation of the datapoints that preserves as much
information inX as possible. The low-dimensional rep-
resentations yi can be obtained by extracting the node
values in the middle hidden layer, when datapoint xi is
used as input. If linear activation functions are used in
the neural network, an autoencoder is very similar to
PCA [69]. In order to allow the autoencoder to learn a
nonlinear mapping between the high-dimensional and
low-dimensional data representation, sigmoid activa-
tion functions are generally used.
Multilayer autoencoders usually have a high number of
connections. Therefore, backpropagation approaches
converge slowly and are likely to get stuck in local
minima. In [55], this drawback is overcome by a learn-
ing procedure that consists of three main stages.
First, the recognition layers of the network (i.e., the
layers from X to Y ) are trained one-by-one using Re-
stricted Boltzmann Machines (RBMs). RBMs are two-
layer neural networks with visual and hidden nodes that
are binary and stochastic 5 . RBMs can be trained effi-
ciently using an unsupervised learning procedure that
minimizes the so-called contrastive divergence [52].
Second, the reconstruction layers of the network (i.e.,
the layers from Y to X ′) are formed by the inverse of
the trained recognition layers. In other words, the au-
toencoder is unrolled. Third, the unrolled autoencoder
is finetuned in a supervised manner using backpropa-
gation.
Autoencoders have succesfully been applied to prob-
lems such as missing data imputation [1] and HIV
analysis [16].

4.2. Local techniques

Subsection 4.1 presented six techniques for dimen-
sionality reduction that attempt to retain global proper-
ties of the data. In contrast, local nonlinear techniques

5 For continuous data, the binary nodes may be replaced by mean-
field logistic or exponential family nodes.

6



Fig. 2. Schematic structure of an autoencoder.

for dimensionality reduction are based on solely pre-
serving properties of small neighborhoods around the
datapoints. The central claim of these techniques is
that by preservation of local properties of the data, the
global layout of the data manifold is retained as well.
This subsection presents four local nonlinear techniques
for dimensionality reduction: (1) LLE, (2) Laplacian
Eigenmaps, (3) Hessian LLE, and (4) LTSA in subsec-
tion 4.2.1 to 4.2.4.

4.2.1. LLE
Local Linear Embedding (LLE) [94] is a local tech-

nique for dimensionality reduction that is similar to
Isomap in that it constructs a graph representation of
the datapoints. In contrast to Isomap, it attempts to
preserve solely local properties of the data. As a result,
LLE is less sensitive to short-circuiting than Isomap,
because only a small number of properties are affected
if short-circuiting occurs. Furthermore, the preservation
of local properties allows for successful embedding
of nonconvex manifolds. In LLE, the local proper-
ties of the data manifold are constructed by writing
the datapoints as a linear combination of their nearest
neighbors. In the low-dimensional representation of the
data, LLE attempts to retain the reconstruction weights
in the linear combinations as good as possible.
LLE describes the local properties of the manifold
around a datapoint xi by writing the datapoint as a
linear combination Wi (the so-called reconstruction
weights) of its k nearest neighbors xij

. Hence, LLE
fits a hyperplane through the datapoint xi and its near-
est neighbors, thereby assuming that the manifold is
locally linear. The local linearity assumption implies

that the reconstruction weights Wi of the datapoints
xi are invariant to translation, rotation, and rescaling.
Because of the invariance to these transformations, any
linear mapping of the hyperplane to a space of lower
dimensionality preserves the reconstruction weights
in the space of lower dimensionality. In other words,
if the low-dimensional data representation preserves
the local geometry of the manifold, the reconstruc-
tion weights Wi that reconstruct datapoint xi from its
neighbors in the high-dimensional data representation
also reconstruct datapoint yi from its neighbors in
the low-dimensional data representation. As a conse-
quence, finding the d-dimensional data representation
Y amounts to minimizing the cost function

φ(Y ) =
∑

i

(yi −
k∑

j=1

wijyij )
2 (13)

It can be shown 6 that the coordinates of the low-
dimensional representations yi that minimize this cost
function can be found by computing the eigenvectors
corresponding to the smallest d nonzero eigenvalues of
the inproduct (I −W )T (I −W ). In this formula, I is
the n× n identity matrix.
The popularity of LLE has led to the proposal of linear
variants of the algorithm [49,67], and to successful
applications to, e.g., superresolution [24] and sound
source localization [37]. However, there also exist ex-
perimental studies that report weak performance of
LLE. In [76], LLE was reported to fail in the visual-
ization of even simple synthetic biomedical datasets.
In [61], it is claimed that LLE performs worse than
Isomap in the derivation of perceptual-motor actions.
A possible explanation lies in the difficulties that LLE
has when confronted with manifolds that contains
holes [94]. In addition, LLE tends to collapse large
portions of the data onto a single point in cases where
the target dimensionality is too low.

4.2.2. Laplacian Eigenmaps
Similar to LLE, Laplacian Eigenmaps find a low-

dimensional data representation by preserving local
properties of the manifold [9]. In Laplacian Eigenmaps,
the local properties are based on the pairwise distances
between near neighbors. Laplacian Eigenmaps compute
a low-dimensional representation of the data in which
the distances between a datapoint and its k nearest

6 φ(Y ) = (Y −WY )2 = Y T (I−W )T (I−W )Y is the function
that has to be minimized. Hence, the eigenvectors of (I−W )T (I−
W ) corresponding to the smallest nonzero eigenvalues form the
solution that minimizes φ(Y ).
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neighbors are minimized. This is done in a weighted
manner, i.e., the distance in the low-dimensional data
representation between a datapoint and its first nearest
neighbor contributes more to the cost function than the
distance between the datapoint and its second nearest
neighbor. Using spectral graph theory, the minimiza-
tion of the cost function is defined as an eigenproblem.
The Laplacian Eigenmap algorithm first constructs a
neighborhood graph G in which every datapoint xi is
connected to its k nearest neighbors. For all points xi

and xj in graph G that are connected by an edge, the
weight of the edge is computed using the Gaussian
kernel function (see Equation 8), leading to a sparse
adjacency matrix W . In the computation of the low-
dimensional representations yi, the cost function that
is minimized is given by

φ(Y ) =
∑
ij

(yi − yj)2wij (14)

In the cost function, large weights wij correspond
to small distances between the datapoints xi and xj .
Hence, the difference between their low-dimensional
representations yi and yj highly contributes to the cost
function. As a consequence, nearby points in the high-
dimensional space are brought closer together in the
low-dimensional representation.
The computation of the degree matrix M and the graph
Laplacian L of the graph W allows for formulating the
minimization problem as an eigenproblem [4]. The de-
gree matrix M of W is a diagonal matrix, of which the
entries are the row sums of W (i.e., mii =

∑
j wij).

The graph Laplacian L is computed by L = M −W .
It can be shown that the following holds 7

φ(Y ) =
∑
ij

(yi − yj)2wij = 2Y TLY (15)

Hence, minimizing φ(Y ) is proportional to minimizing
Y TLY . The low-dimensional data representation Y can
thus be found by solving the generalized eigenvalue
problem

Lv = λMv (16)

for the d smallest nonzero eigenvalues. The d eigenvec-
tors vi corresponding to the smallest nonzero eigenval-
ues form the low-dimensional data representation Y .
Laplacian Eigenmaps have been successfully applied
to, e.g., clustering [82,101,120], face recognition [51],
and the analysis of fMRI data [22]. In addition, variants
of Laplacian Eigenmaps may be applied to supervised

7 Note that φ(Y ) =
∑

ij
(yi − yj)

2wij =
∑

ij
(y2

i + y2
j −

2yiyj)wij =
∑

i
y2

i mii +
∑

j
y2

j mjj − 2
∑

ij
yiyjwij =

2Y T MY − 2Y T WY = 2Y T LY

or semi-supervised learning problems [28,10]. A linear
variant of Laplacian Eigenmaps is presented in [50].

4.2.3. Hessian LLE
Hessian LLE (HLLE) [36] is a variant of LLE that

minimizes the ‘curviness’ of the high-dimensional man-
ifold when embedding it into a low-dimensional space,
under the constraint that the low-dimensional data rep-
resentation is locally isometric. This is done by an eige-
nanalysis of a matrix H that describes the curviness of
the manifold around the datapoints. The curviness of the
manifold is measured by means of the local Hessian at
every datapoint. The local Hessian is represented in the
local tangent space at the datapoint, in order to obtain
a representation of the local Hessian that is invariant
to differences in the positions of the datapoints. It can
be shown 8 that the coordinates of the low-dimensional
representation can be found by performing an eigen-
analysis of H.
Hessian LLE starts with identifying the k nearest neigh-
bors for each datapoint xi using Euclidean distance. In
the neighborhood, local linearity of the manifold is as-
sumed. Hence, a basis for the local tangent space at
point xi can be found by applying PCA on its k nearest
neighbors xij

. In other words, for every datapoint xi,
a basis for the local tangent space at point xi is deter-
mined by computing the d principal eigenvectors M =
{m1,m2, . . . ,md} of the covariance matrix cov(xi·).
Note that the above requires that k ≥ d. Subsequently,
an estimator for the Hessian of the manifold at point xi

in local tangent space coordinates is computed. In or-
der to do this, a matrix Zi is formed that contains (in
the columns) all cross products of M up to the dth or-
der (including a column with ones). The matrix Zi is
orthonormalized by applying Gram-Schmidt orthonor-
malization [2]. The estimation of the tangent Hessian
Hi is now given by the transpose of the last d(d+1)

2
columns of the matrix Zi. Using the Hessian estimators
in local tangent coordinates, a matrix H is constructed
with entries

Hlm =
∑

i

∑
j

((Hi)jl × (Hi)jm) (17)

The matrixH represents information on the curviness of
the high-dimensional data manifold. An eigenanalysis
of H is performed in order to find the low-dimensional
data representation that minimizes the curviness of
the manifold. The eigenvectors corresponding to the
d smallest nonzero eigenvalues of H are selected and

8 The derivation is too extensive for this paper; it can be found
in [36].
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form the matrix Y , which contains the low-dimensional
representation of the data. A successful application of
Hessian LLE to sensor localization has been presented
in [86].

4.2.4. LTSA
Similar to Hessian LLE, Local Tangent Space Anal-

ysis (LTSA) is a technique that describes local proper-
ties of the high-dimensional data using the local tan-
gent space of each datapoint [126]. LTSA is based on
the observation that, if local linearity of the manifold
is assumed, there exists a linear mapping from a high-
dimensional datapoint to its local tangent space, and
that there exists a linear mapping from the correspond-
ing low-dimensional datapoint to the same local tangent
space [126]. LTSA attempts to align these linear map-
pings in such a way, that they construct the local tan-
gent space of the manifold from the low-dimensional
representation. In other words, LTSA simultaneously
searches for the coordinates of the low-dimensional data
representations, and for the linear mappings of the low-
dimensional datapoints to the local tangent space of the
high-dimensional data.
Similar to Hessian LLE, LTSA starts with computing
bases for the local tangent spaces at the datapoints xi.
This is done by applying PCA on the k datapoints xij

that are neighbors of datapoint xi. This results in a map-
ping Mi from the neighborhood of xi to the local tan-
gent space Θi. A property of the local tangent space Θi

is that there exists a linear mapping Li from the local
tangent space coordinates θij

to the low-dimensional
representations yij

. Using this property of the local tan-
gent space, LTSA performs the following minimization

min
Yi,Li

∑
i

‖ YiJk − LiΘi ‖2 (18)

where Jk is the centering matrix of size k [100]. It
can be shown 9 that the solution of the minimization is
formed by the eigenvectors of an alignment matrix B,
that correspond to the d smallest nonzero eigenvalues of
B. The entries of the alignment matrix B are obtained
by iterative summation (for all matrices Vi and starting
from bij = 0 for ∀ij)

BNiNi
= BNiNi

+ Jk(I − ViV
T
i )Jk (19)

where Ni is a selection matrix that contains the indices
of the nearest neighbors of datapoint xi. Subsequently,
the low-dimensional representation Y is obtained by
computation of the eigenvectors corresponding to the d
smallest nonzero eigenvectors of the symmetric matrix

9 The proof is too extensive for this paper; it can be found in [126].

1
2 (B +BT ).
In [108], a successful application of LTSA to microarray
data is reported. A linear variant of LTSA is proposed
in [124].

4.3. Global alignment of linear models

In the previous subsections, we discussed techniques
that compute a low-dimensional data representation by
preserving global or local properties of the data. Tech-
niques that perform global alignment of linear mod-
els combine these two types: they compute a number
of locally linear models and perform a global align-
ment of these linear models. The subsection presents
two such techniques, viz., LLC and manifold chart-
ing. The techniques are discussed separately in subsec-
tion 4.3.1 and 4.3.2.

4.3.1. LLC
Locally Linear Coordination (LLC) [105] computes

a number of locally linear models and subsequently
performs a global alignment of the linear models. This
process consists of two steps: (1) computing a mixture
of local linear models on the data by means of an Ex-
pectation Maximization (EM) algorithm and (2) align-
ing the local linear models in order to obtain the low-
dimensional data representation using a variant of LLE.
LLC first constructs a mixture of m factor analyzers
(MoFA) using the EM algorithm [34,44,63]. Alterna-
tively, a mixture of probabilistic PCA models (MoP-
PCA) model [110] could be employed. The local linear
models in the mixture output m data representations
zij and their corresponding responsibilities rij (where
j ∈ {1, . . . ,m}) for every datapoint xi. The responsi-
bilities rij describe to what extent datapoint xi corre-
sponds to the model j; they satisfy

∑
j rij = 1. Using

the local models and the corresponding responsibili-
ties, responsibility-weighted data representations uij =
rijzij are computed. The responsibility-weighted data
representations uij are stored in a n ×mD block ma-
trix U . The alignment of the local models is performed
based on U and on a matrix M that is given by M =
(I −W )T (I −W ). Herein, the matrix W contains the
reconstruction weights computed by LLE (see subsec-
tion 4.2.1), and I denotes the n × n identity matrix.
LLC aligns the local models by solving the generalized
eigenproblem

Av = λBv (20)
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for the d smallest nonzero eigenvalues 10 . In the equa-
tion, A is the inproduct of MTU and B is the in-
product of U . The d eigenvectors vi form a matrix L,
that can be shown to define a linear mapping from the
responsibility-weighted data representation U to the un-
derlying low-dimensional data representation Y . The
low-dimensional data representation is thus obtained by
computing Y = UL.

4.3.2. Manifold charting
Similar to LLC, manifold charting constructs a low-

dimensional data representation by aligning a MoFA
or MoPPCA model [19]. In contrast to LLC, manifold
charting does not minimize a cost function that corre-
sponds to another dimensionality reduction technique
(such as the LLE cost function). Manifold charting min-
imizes a convex cost function that measures the amount
of disagreement between the linear models on the global
coordinates of the datapoints. The minimization of this
cost function can be performed by solving a general-
ized eigenproblem.
Manifold charting first performs the EM algorithm to
learn a mixture of factor analyzers, in order to obtain
m low-dimensional data representations zij and corre-
sponding responsibilities rij (where j ∈ {1, . . . ,m})
for all datapoints xi. Manifold charting finds a linear
mapping from the data representations zij to the global
coordinates yi that minimizes the cost function

φ(Y ) =
n∑

i=1

m∑
j=1

rij ‖ yi − yik ‖2 (21)

where yi =
∑m

k=1 rikyik. The intuition behind the cost
function is that whenever there are two linear models
in which a datapoint has a high responsibility, these
linear models should agree on the final coordinate of
the datapoint. The cost function can be rewritten in the
form

φ(Y ) =
n∑

i=1

m∑
j=1

m∑
k=1

rijrik ‖ yij − yik ‖2 (22)

which allows the cost function to be rewritten in the
form of a Rayleigh quotient. The Rayleigh quotient can
be constructed by the definition of a block-diagonal ma-
trix D with m blocks by

D =


D1 . . . 0

...
. . .

...

0 . . . Dm

 (23)

10The derivation of this eigenproblem can be found in [105].

where Dj is the sum of the weighted covariances of the
data representations zij . Hence, Dl is given by

Dj =
n∑

i=1

rij cov([Zj 1]) (24)

In Equation 24, the 1-column is added to the data rep-
resentation Zj in order to facilitate translations in the
construction of yi from the data representations zij . Us-
ing the definition of the matrix D and the n × mD
blockdiagonal matrix U with entries uij = rij [zij 1],
the manifold charting cost function can be rewritten as

φ(Y ) = LT (D − UTU)L (25)

where L represents the linear mapping on the matrix Z
that can be used to compute the final low-dimensional
data representation Y . The linear mapping L can thus
be computed by solving the generalized eigenproblem

(D − UTU)v = λUTUv (26)

for the d smallest nonzero eigenvalues. The d eigenvec-
tors vi form the columns of the linear combination L
from [U 1] to Y .

5. Characterization of the techniques

In the sections 3 and 4, we provided an overview of
techniques for dimensionality reduction. This section
evaluates the techniques by three theoretical character-
izations. First, relations between the dimensionality re-
duction techniques are identified (subsection 5.1). Sec-
ond, we list and discuss a number of general proper-
ties of the techniques such as the nature of the objec-
tive function that is optimized and the computational
complexity of the technique (subsection 5.2). Third, the
out-of-sample extension of the techniques is discussed
in subsection 5.3.

5.1. Relations

Many of the techniques discussed in Section 3 and 4
are highly interrelated, and in certain special cases even
equivalent. For instance, performing Kernel PCA with a
linear kernel is identical to performing traditional PCA.
Autoencoders in which only linear activation functions
are employed are very similar to PCA as well [69].
Performing (metric) multidimensional scaling using the
raw stress function with squared Euclidean distances
is identical to performing PCA, due to the relation be-
tween the eigenvectors of the covariance matrix and the
squared Euclidean distance matrix that we already dis-
cussed in section 3. Performing MDS using geodesic
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distances is identical to performing Isomap. Similarly,
performing Isomap with the number of nearest neigh-
bors k set to n− 1 is identical to performing traditional
MDS, and thus also to performing PCA.
Diffusion maps are similar to Isomap, in that they at-
tempt to preserve distances through the neighborhood
graph. The main difference between diffusion maps and
Isomap is that Isomap retains pure geodesic distances,
whereas diffusion maps retain a weighted sum of the
distances of all paths through the graph. In addition,
diffusion maps in which t = 1 are fairly similar to Ker-
nel PCA with the Gaussian kernel function. There are
two main differences between the two: (1) no centering
of the Gram matrix is performed in diffusion maps (al-
though the centering is generally not considered to be
an essential part of Kernel PCA [100]) and (2) diffu-
sion maps do not employ the principal eigenvector of
the Gaussian kernel matrix, whereas Kernel PCA does.
The spectral techniques Kernel PCA, Isomap, LLE, and
Laplacian Eigenmaps can all be viewed upon as special
cases of the more general problem of learning eigen-
functions [12,48]. As a result, Isomap, LLE, and Lapla-
cian Eigenmaps can be considered as special cases of
Kernel PCA (using a specific kernel function). For in-
stance, this relation is visible in the out-of-sample exten-
sions of Isomap, LLE, and Laplacian Eigenmaps [15].
The out-of-sample extension for these techniques is per-
formed by means of a so-called Nyström approxima-
tion [6,88], which is known to be equivalent to the Ker-
nel PCA projection [98].
MVU can also be viewed upon as a special case of Ker-
nel PCA, in which the SDP is the kernel function. In
addition, Isomap can be viewed upon as a technique
that finds an approximate solution to the MVU prob-
lem [122]. Evaluation of the dual MVU problem has
also shown that LLE and Laplacian Eigenmaps show
great resemblance to MVU [122].
As a consequence of these relations between the tech-
niques, our empirical comparative evaluation in sec-
tion 6 does not include (1) MDS, (2) Kernel PCA using
a linear kernel, and (3) autoencoders with linear activa-
tion functions, because they are similar to PCA. Further-
more, we do not evaluate Kernel PCA using a Gaussian
kernel in the experiments, because of its resemblance
to diffusion maps; instead we use a polynomial kernel.

5.2. General properties

In Table 1, the thirteen dimensionality reduction tech-
niques are listed by four general properties: (1) the con-
vexity of the optimization problem, (2) the main free

Technique Convex Parameters Computational Memory

PCA yes none O(D3) O(D2)

MDS yes none O(n3) O(n2)

Isomap yes k O(n3) O(n2)

MVU yes k O((nk)3) O((nk)3)

Kernel PCA yes κ(·, ·) O(n3) O(n2)

Diffusion maps yes σ, t O(n3) O(n2)

Autoencoders no net size O(inw) O(w)

LLE yes k O(pn2) O(pn2)

Laplacian Eigenmaps yes k, σ O(pn2) O(pn2)

Hessian LLE yes k O(pn2) O(pn2)

LTSA yes k O(pn2) O(pn2)

LLC no m, k O(imd3) O(nmd)

Manifold charting no m O(imd3) O(nmd)

Table 1
Properties of techniques for dimensionality reduction.

parameters that have to be optimized, (3) the computa-
tional complexity of the main computational part of the
technique, and (4) the memory complexity of the tech-
nique. We discuss the four general properties below.
For property 1, Table 1 shows that most techniques for

dimensionality reduction optimize a convex cost func-
tion. This is advantageous, because it allows for find-
ing the global optimum of the cost function. Because
of their nonconvex cost functions, autoencoders, LLC,
and manifold charting may suffer from getting stuck in
local optima.
For property 2, Table 1 shows that most nonlinear tech-
niques for dimensionality reduction all have free param-
eters that need to be optimized. By free parameters, we
mean parameters that directly influence the cost func-
tion that is optimized. The reader should note that iter-
ative techniques for dimensionality reduction have ad-
ditional free parameters, such as the learning rate and
the permitted maximum number of iterations. The pres-
ence of free parameters has advantages as well as dis-
advantages. The main advantage of the presence of free
parameters is that they provide more flexibility to the
technique, whereas their main disadvantage is that they
need to be tuned to optimize the performance of the di-
mensionality reduction technique.
For properties 3 and 4, Table 1 provides insight into the
computational and memory complexities of the com-
putationally most expensive algorithmic components of
the techniques. The computational complexity of a di-
mensionality reduction technique is of importance to its
applicability. If the memory or computational resources
needed are too large, application becomes infeasible.
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The computational complexity of a dimensionality re-
duction technique is determined by data properties such
as the number of datapoints n, the original dimension-
ality D, the target dimensionality d, and by parameters
of the techniques, such as the number of nearest neigh-
bors k (for techniques based on neighborhood graphs)
and the number of iterations i (for iterative techniques).
In Table 1, p denotes the ratio of nonzero elements in a
sparse matrix to the total number of elements, m indi-
cates the number of local models in a mixture of factor
analyzers, and w is the number of weights in a neural
network. Below, we discuss the computational complex-
ity and the memory complexity of each of the entries
in the table.
The computationally most demanding part of PCA is
the eigenanalysis of theD×D covariance matrix, which
is performed using a power method in O(D3). Because
PCA stores aD×D covariance matrix, its memory com-
plexity isO(D2) 11 . MDS, Isomap, diffusion maps, and
Kernel PCA perform an eigenanalysis of an n× n ma-
trix using a power method in O(n3). Because Isomap,
diffusion maps, and Kernel PCA store a full n×n ker-
nel matrix, the memory complexity of these techniques
is O(n2).
In contrast to the spectral techniques discussed above,
MVU solves a semidefinite program (SDP) with nk
constraints. Both the computational and the memory
complexity of solving an SDP are cube in the number
of constraints [18]. Since there are nk constraints, the
computational and memory complexity of the main part
of MVU is O((nk)3). Training an autoencoder using
RBM training or backpropagation has a computational
complexity of O(inw). The training of autoencoders
may converge very slowly, especially in cases where
the input and target dimensionality are very high (since
this yields a high number of weights in the network).
The memory complexity of autoencoders is O(w).
The main computational part of LLC and manifold
charting is the computation of the MoFA or MoPPCA
model, which has computational complexity O(imd3).
The corresponding memory complexity is O(nmd).
Similar to, e.g., Kernel PCA, local techniques perform
an eigenanalysis of an n×n matrix. However, for local
techniques the n × n matrix is sparse. The sparsity of
the matrices is beneficial, because it lowers the compu-
tational complexity of the eigenanalysis. Eigenanalysis
of a sparse matrix (using Arnoldi methods [5] or Jacobi-
Davidson methods [42]) has computational complexity

11In datasets in which n < D, the computational and memory com-
plexity of PCA can be reduced to O(n3) and O(n2), respectively
(see section 3).

O(pn2), where p is the ratio of nonzero elements in
the sparse matrix to the total number of elements. The
memory complexiyt is O(pn2) as well.
From the discussion of the four general properties of
the techniques for dimensionality reduction above, we
make four observations: (1) some nonlinear techniques
for dimensionality reduction may suffer from getting
stuck in local optima, (2) all nonlinear techniques re-
quire the optimization of one or more free parameters,
(3) whenD < n (which is true in most cases), nonlinear
techniques have computational disadvantages compared
to PCA, and (4) a number of nonlinear techniques suffer
from a memory complexity that is square or cube with
the number of datapoints n. From these observations, it
is clear that nonlinear techniques impose considerable
demands on computational resources, as compared to
the linear technique. Attempts to reduce the computa-
tional and/or memory complexities of nonlinear tech-
niques have been proposed for, e.g., Isomap [31,72],
MVU [117,119], and Kernel PCA [109]. The increased
computational cost of nonlinear techniques should be
compensated by an improvement in performance.

5.3. Out-of-sample extension

An important requirement for dimensionality re-
duction techniques is the ability to embed new
high-dimensional datapoints into an existing low-
dimensional data representation. So-called out-of-
sample extensions have been developed for a number
of techniques to allow for the embedding of such new
datapoints. For the linear technique (PCA), the out-
of-sample extension is straightforward. In PCA, the
out-of-sample extension is performed by multiplying
the new datapoint with the linear mapping matrix M .
This approach is also viable for Kernel PCA, although
the out-of-sample extension of Kernel PCA requires
some additional kernel function computations [98]. For
autoencoders, the out-of-sample extension is straight-
forward too, since the trained network defines the
transformation from the high-dimensional to the low-
dimensional data representation.
For the other nonlinear dimensionality reduction tech-
niques a parametric mapping from the high-dimensional
to the low-dimensional space is not available, and there-
fore, the out-of-sample extension is far from straight-
forward. A technique for the out-of-sample extensions
of Isomap, LLE, and Laplacian Eigenmaps has been
presented in [15], in which the techniques are redefined
as kernel methods. Subsequently, the out-of-sample
extension is performed using the Nyström approxima-
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tion [88], which approximates the eigenvectors of a
large n×n matrix based on the eigendecomposition of
a smaller m ×m submatrix of the large matrix (if the
rank of the large matrix equals m, the approximation is
even exact). Similar techniques for the out-of-sample
extension of Isomap are proposed in [27,31]. For MVU,
an approximate out-of-sample extension has been pro-
posed that is based on computing a linear transfor-
mation from a set of landmark points to the complete
dataset (using a similar approach as LLE) [117]. An
alternative out-of-sample extension for MVU finds this
linear transformation by computing the eigenvectors
corresponding to the smallest eigenvalues of the graph
Laplacian (similar to Laplacian Eigenmaps) [119]. An
estimation technique for out-of-sample extension that
can be applied to all nonlinear dimensionality reduc-
tion techniques is proposed in [75]. The technique finds
the nearest neighbor of the new datapoint in the high-
dimensional representation, and computes the linear
mapping from the nearest neighbor to its corresponding
low-dimensional representation. The low-dimensional
representation of the new datapoint is found by apply-
ing the same linear mapping on this datapoint.
From the evaluation above, we observe that linear and
nonlinear techniques for dimensionality reduction are
quite similar in that they allow the embedding of new
datapoints. However, for a number of nonlinear tech-
niques, the out-of-sample extension has to be performed
using an estimation technique, which undoubtedly leads
to estimation errors in the out-of-sample extension.

6. Experiments

In this section, a systematic empirical comparison
of the performance of the linear and nonlinear tech-
niques for dimensionality reduction is performed. We
perform the evaluation by measuring generalization er-
rors in classification tasks on two types of datasets: (1)
artificial datasets and (2) natural datasets.
The setup of our experiments is described in subsec-
tion 6.1. In subsection 6.2, the results of our experiments
on five artificial datasets are presented. Subsection 6.3
presents the results of the experiments on five natural
datasets.

6.1. Experimental setup

In our experiments on both the artificial and the natu-
ral datasets, we apply the techniques for dimensionality
reduction on the high-dimensional representation of the
data. Subsequently, we judge the quality of the result-

(a) True underlying manifold. (b) Reconstructed manifold up
to a nonlinear warping.

Fig. 3. Two low-dimensional data representations.

ing low-dimensional data representation by evaluating
to what extent the local structure of the data is retained.
The evaluation is performed by measuring the general-
ization errors of k-nearest neighbor classifiers that are
trained on the low-dimensional data representation. We
motivate our experimental setup below.
First, we opt for an evaluation of the local structure of
the data, because for, e.g., successful visualization or
classification of data only its local structure needs to
be retained. We evaluate how well the local structure
of the data is retained by measuring the generalization
error of k-nearest neighbor classifiers trained on the re-
sulting data representations, because the high variance
of this classifier (for small values of k). The high vari-
ance of the k-nearest neighbor classifier makes it very
well suitable to judge the quality of the local structure
of the data.
Second, we opt for an evaluation of the quality based
on generalization errors instead of one based on recon-
struction errors for two main reasons. The first reason
is that a high reconstruction error does not necessar-
ily imply that the dimensionality reduction technique
performed poorly. For instance, if a dimensionality re-
duction technique recovers the true underlying mani-
fold in Figure 3(a) up to a nonlinear warping, such as
in Figure 3(b), this leads to a high reconstruction er-
ror, whereas the local structure of the two manifolds is
nearly identical (as the circles indicate). In other words,
reconstruction errors measure the quality of the global
structure of the low-dimensional data representation,
and not quality of the local structure. The second reason
is that our main aim is to investigate the performance of
the techniques on real-world datasets, in which the true
underlying manifold of the data is usually unknown, and
as a result, reconstruction errors cannot be computed.
For all dimensionality reduction techniques except for

Isomap and MVU, we performed experiments without
out-of-sample extension, because our main interest is in
the performance of the dimensionality reduction tech-
niques, and not the quality of the out-of-sample exten-
sion. In the experiments with Isomap and MVU, we
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employ the respective out-of-sample extensions of these
techniques (see subsection 5.3) in order to embed data-
points that are not connected to the largest component
of the neighborhood graph that is constructed by these
techniques. The use of the out-of-sample extension of
these techniques is necessary because the traditional im-
plementations of these techniques can only embed the
points that comprise the largest component of the neigh-
borhood graph.
The parameter settings that were employed in our exper-
iments are listed in Table 2. Most parameters were opti-
mized using an exhaustive grid search within a reason-
able range, which is shown in Table 2. For two param-
eters (σ in diffusion maps and Laplacian Eigenmaps),
we employed fixed values in order to restrict the com-
putational requirements of our experiments. The value
of k in the k-nearest neighbor classifiers was set to 1.
We determined the target dimensionality in the exper-
iments by means of the maximum likelihood intrinsic
dimensionality estimator [74]. The results of the exper-
iments were obtained using leave-one-out validation.

Technique Parameter settings

PCA None

Isomap 5 ≤ k ≤ 15

MVU 5 ≤ k ≤ 15

Kernel PCA κ = (XXT + 1)5

Diffusion maps 10 ≤ t ≤ 100 σ = 1

Autoencoders Three hidden layers; sigmoid

LLE 5 ≤ k ≤ 15

Laplacian Eigenmaps 5 ≤ k ≤ 15 σ = 1

Hessian LLE 5 ≤ k ≤ 15

LTSA 5 ≤ k ≤ 15

LLC 5 ≤ k ≤ 15 5 ≤ m ≤ 25

Manifold charting 5 ≤ m ≤ 25

Table 2
Parameter settings for the experiments.

6.1.1. Artificial datasets
We performed experiments on five artificial datasets.

The datasets were specifically selected to investigate
how the dimensionality reduction techniques deal with:
(i) data that lies on or near a low-dimensional manifold
that is or is not isometric to Euclidean space, (ii) data
that lies on or near an discontinuous manifold, and (ii)
data forming a manifold with a high intrinsic dimen-
sionality. The artificial datasets on which we performed

experiments are: the Swiss roll dataset (addressing i),
the helix dataset (i), the twin peaks dataset (i), the bro-
ken Swiss roll dataset (ii), and the high-dimensional
(HD) dataset (iii). Figure 4 shows plots of the first four
artificial datasets. The HD dataset consists of points ran-
domly sampled from a 5-dimensionial non-linear man-
ifold embedded in a 10-dimensional space. In order to
ensure that the generalization errors of the k-nearest
neighbor classifiers reflect the quality of the data rep-
resentations produced by the dimensionality reduction
techniques, we assigned all datapoints to one of two
classes according to a checkerboard pattern on the man-
ifold. All artificial datasets consist of 5,000 samples. We
opt for a fixed number of datapoints in each dataset, be-
cause in real-world applications, obtaining more train-
ing data is usually expensive.

(a) Swiss roll dataset. (b) Helix dataset.

(c) Twinpeaks dataset. (d) Broken Swiss roll dataset.

Fig. 4. Four of the artificial datasets.

6.1.2. Natural datasets
For our experiments on natural datasets, we selected

five datasets that represent tasks from a variety of do-
mains: (1) the MNIST dataset, (2) the COIL20 dataset,
(3) the NiSIS dataset, (4) the ORL dataset, and (5) the
HIVA dataset. The MNIST dataset is a dataset of 60,000
handwritten digits. For computational reasons, we ran-
domly selected 10,000 digits for our experiments. The
images in the MNIST dataset have 28× 28 pixels, and
can thus be considered as points in a 784-dimensional
space. The COIL20 dataset contains images of 20 dif-
ferent objects, depicted from 72 viewpoints, leading to
a total of 1,440 images. The size of the images is 32×32
pixels, yielding a 1,024-dimensional space. The NiSIS
dataset is a publicly available dataset for pedestrian
detection, which consists of 3,675 grayscale images of
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size 36× 18 pixels (leading to a space of dimensional-
ity 648). The ORL dataset is a face recognition dataset
that contains 400 grayscale images of 112 × 92 pixels
that depict 40 faces under various conditions (i.e., the
dataset contains 10 images per face). The HIVA dataset
is a drug discovery dataset with two classes. It consist
of 3,845 datapoints with dimensionality 1,617.

6.2. Experiments on artificial datasets

In Table 3, we present the generalization errors
of 1-nearest neighbor classifiers trained on the low-
dimensional data representations obtained from the
dimensionality reduction techniques. From the results
in Table 3, we can make five observations.
First, the results reveal that the nonlinear techniques
that employ neighborhood graphs (viz. Isomap, MVU,
LLE, Laplacian Eigenmaps, Hessian LLE, LTSA, and
LLC) outperform the other techniques on standard
manifold learning problems such as the Swiss roll
dataset. Techniques that do not employ neighborhood
graphs (viz. PCA, diffusion maps, Kernel PCA, autoen-
coders, and manifold charting) perform poorly on these
datasets. The performances of LLC and manifold chart-
ing on the Swiss roll dataset are comparable to those
of techniques that do not employ neighborhood graphs.
Second, from the results with the helix and twin peaks
datasets, we observe that three local nonlinear dimen-
sionality reduction techniques perform less well on
manifolds that are not isometric to Euclidean space.
The performance of Isomap, MVU, and LTSA on these
datasets is still very strong. In addition, we observe that
all neighborhood graph-based techniques outperform
techniques that do not employ neighborhood graphs
(including PCA).
Third, the results on the broken Swiss roll dataset indi-
cate that most nonlinear techniques for dimensionality
reduction cannot deal with discontinuous (i.e., non-
smooth) manifolds. On the broken Swiss roll dataset,
Hessian LLE is the only technique that does not suffer
severely from the presence of a discontinuity in the
manifold (when compared to the performance of the
techniques on the original Swiss roll dataset).
Fourth, from the results on the HD dataset, we observe
that most nonlinear techniques have major problems
when faced with a dataset with a high intrinsic dimen-
sionality. In particular, local dimensionality reduction
techniques perform disappointing on a dataset with a
high intrinsic dimensionality. On the HD dataset, PCA
is only outperformed by Isomap and an autoencoder,

which is the best performing technique on this dataset.
Fifth, we observe that Hessian LLE fails to find a so-
lution on the helix dataset. The failure is the result of
the inability of the eigensolver to solve the eigenprob-
lem up to sufficient precision. Both Arnoldi [5] and
Jacobi-Davidson eigendecomposition methods [42]
suffer from this problem, that is caused by the nature
of the eigenproblem that needs to be solved.
Taken together, the results show that although lo-
cal techniques for dimensionality reduction perform
strongly on a simple dataset such as the Swiss roll
dataset, this strong performance does not generalize
very well to more complex datasets (e.g., datasets
with non-smooth manifolds, manifolds that are non-
isometric to the Euclidean space, or manifolds with a
high intrinsic dimensionality).

6.3. Experiments on natural datasets

Table 4 presents the generalization errors of 1-
nearest neighbor classifiers that were trained on the
low-dimensional data representations obtained from
the dimensionality reduction techniques. The table
shows results obtained using leave-one-out validation
on the five natural datasets. In the table, the left col-
umn indicates the name of the dataset and the target
dimensionality to which we attempted to transform the
high-dimensional data (which was computed using the
maximum likelihood intrinsic dimensionality estima-
tor [74]). Note that for Hessian LLE and LTSA, the
dimensionality of the actual low-dimensional repre-
sentation cannot be higher than the number of nearest
neighbors that was used to construct the neighborhood
graph. The best performing technique for a dataset is
shown in boldface. From the results in Table 4, we
make three observations.
First, we observe that the performance of nonlinear
techniques for dimensionality reduction on the natural
datasets is rather disappointing compared to the per-
formance of these techniques on, e.g., the Swiss roll
dataset. In particular, PCA outperforms all nonlinear
techniques on three of the five datasets. Especially lo-
cal nonlinear techniques for dimensionality reduction
perform disappointingly. However, Kernel PCA and
autoencoders perform strongly on almost all datasets.
Second, the results in Table 4 reveal that two techniques
(viz., Hessian LLE and LTSA) fail on one dataset. The
failures of Hessian LLE and LTSA are the result of the
inability of the eigensolver to identify eigenvalues up
to a sufficient precision that arise from the nature of the
eigenproblem. Both Arnoldi [5] and Jacobi-Davidson
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Dataset (d) None PCA Isomap MVU KPCA DM Autoenc. LLE LEM HLLE LTSA LLC MC

Swiss roll (2D) 3.68% 30.56% 3.28% 5.12% 29.30% 28.06% 30.58% 7.44% 10.16% 3.10% 3.06% 27.74% 42.74%

Helix (1D) 1.24% 38.56% 1.22% 3.76% 44.54% 36.18% 32.50% 20.38% 10.34% failed 1.68% 26.68% 28.16%

Twinpeaks (2D) 0.40% 0.18% 0.30% 0.58% 0.08% 0.06% 0.12% 0.54% 0.52% 0.10% 0.36% 12.96% 0.06%

Broken Swiss (2D) 2.14% 27.62% 14.24% 36.28% 27.06% 23.92% 26.32% 37.06% 26.08% 4.78% 16.30% 26.96% 23.92%

HD (5D) 24.19% 22.14% 20.45% 23.62% 29.25% 34.75% 16.29% 35.81% 41.70% 47.97% 40.22% 38.69% 31.46%
Table 3
Generalization errors of 1-NN classifiers trained on artificial datasets.

Dataset (d) None PCA Isomap MVU KPCA DM Autoenc. LLE LEM HLLE LTSA LLC MC

MNIST (20D) 5.11% 5.06% 28.54% 18.35% 65.48% 59.79% 14.10% 19.21% 19.45% 89.55% 32.52% 36.29% 38.22%

COIL20 (5D) 0.14% 3.82% 14.86% 21.88% 7.78% 4.51% 1.39% 9.86% 14.79% 43.40% 12.36% 6.74% 18.61%

ORL (8D) 2.50% 4.75% 44.20% 39.50% 5.50% 49.00% 69.00% 9.00% 12.50% 56.00% 12.75% 50.00% 62.25%

NiSIS (15D) 8.24% 8.73% 20.57% 19.40% 11.70% 22.94% 9.82% 28.71% 43.08% 45.00% failed 26.86% 20.41%

HIVA (15D) 4.63% 5.05% 4.97% 4.89% 5.07% 3.51% 4.84% 5.23% 5.23% failed 6.09% 3.43% 5.20%
Table 4
Generalization errors of 1-NN classifiers trained on natural datasets.

eigendecomposition methods [42] suffer from this lim-
itation.
Third, the results show that on some natural datasets,
the classification performance of our classifiers was
not improved by performing dimensionality reduction.
Most likely, this is due to errors in the intrinsic dimen-
sionality estimator we employed. As a result, the target
dimensionalities may not be optimal (in the sense that
they minimize the generalization error of the trained
classifier). However, since we aim to compare the per-
formance of dimensionality reduction techniques, and
not to minimize generalization errors on classification
problems, this observation is of no relevance.

7. Discussion

In the previous sections, we presented a compara-
tive study of techniques for dimensionality reduction.
We observed that most nonlinear techniques do not out-
perform PCA on natural datasets, despite their abil-
ity to learn the structure of complex nonlinear mani-
folds. This section discusses the main weaknesses of
current nonlinear techniques for dimensionality reduc-
tion that explain the results of our experiments. In ad-
dition, the section presents ideas on how to overcome
these weaknesses. The discussion is subdivided into
three parts. Subsection 7.1 discusses five weaknesses of
local techniques for dimensionality reduction. In sub-
section 7.2, weaknesses of global techniques and tech-
niques that globally align a collection of linear mod-
els are discussed. Subsection 7.3 summarizes the main
weaknesses of current nonlinear techniques for dimen-

sionality reduction and present recommendations for the
development of future dimensionality reduction tech-
niques.

7.1. Local techniques

The results of our experiments show that the perfor-
mance of popular techniques based on neighborhood
graphs is rather disappointing on many datasets. Most
likely, the poor performance of these techniques is due
to one or more of the following five weaknesses.
First, local dimensionality reduction techniques suf-
fer from the curse of dimensionality of the embed-
ded manifold (i.e., the intrinsic dimension of the
data) [13,14,117], because the number of datapoints that
is required to characterize a manifold properly grows
exponentially with the intrinsic dimensionality of the
manifold. The susceptibility to the curse of dimension-
ality is a fundamental weakness of all local learners,
and therefore, it also applies to learning techniques
that employ Gaussian kernels (such as diffusion maps,
Support Vector Machines, and Gaussian processes).
For artificial datasets with low intrinsic dimensionality
such as the Swiss roll dataset, this weakness does not
apply. However, in most real-world tasks, the intrinsic
dimensionality of the data is much higher. For instance,
the face space is estimated to consist of at least 100
dimensions [79]. As a result, the performance of local
techniques is poor on many real-world datasets, which
explains the results of our experiments with the HD
dataset and the natural datasets.
Second, the inferior performance of local nonlinear
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techniques for dimensionality reduction arises from
the eigenproblems that the techniques attempt to solve.
Typically, the smallest eigenvalues in these problems
are very small (around 10−7 or smaller), whereas the
largest eigenvalues are fairly big (around 102 or larger).
Eigenproblems with these properties are extremely
hard to solve, even for state-of-the-art eigensolvers.
The eigensolver may not be able to identify the small-
est eigenvalues of the eigenproblem, and as a result,
the dimensionality reduction technique might produce
suboptimal solutions. The good results of Isomap (that
searches for the largest eigenvalues) compared to local
techniques (that search for the smallest eigenvalues)
may be explained by the difficulty of solving eigen-
problems.
Third, local properties of a manifold do not necessarily
follow the global structure of the manifold (as noted in,
e.g., [19,93]) in the presence of noise around the mani-
fold. In other words, local methods suffer from overfit-
ting on the manifold. Furthermore, local techniques for
dimensionality reduction are sensitive to the presence
of outliers in the data [25]. In local techniques for di-
mensionality reduction, outliers are connected to their
k nearest neighbors, even when they are very distant.
As a consequence, outliers degrade the performance of
local techniques for dimensionality reduction. A possi-
ble approach to resolve this problem is the usage of an
ε-neighborhood. In an ε-neighborhood, datapoints are
connected to all datapoints that lie within a sphere with
radius ε. A second approach to overcome the problem
of outliers is preprocessing the data by removing out-
liers [84,125].
Fourth, the local linearity assumption of local tech-
niques for dimensionality reduction implies that the
techniques assume that the manifold contains no dis-
continuities (i.e., the manifold is non-smooth). The re-
sults of our experiments with the broken Swiss dataset
illustrate the incapability of current dimensionality re-
duction techniques to model non-smooth manifolds.
In real-world datasets, the underlying manifold is not
likely to be smooth. For instance, objects in real-world
images undergo translations, which gives rise to discon-
tinuities in the underlying manifold representation. In
addition, most local nonlinear techniques cannot deal
with manifolds that are not isometric to the Euclidean
space, as the results of our experiments with the helix
and twinpeaks datasets revealed. This may be a prob-
lem, because for instance, a dataset of objects depicted
under various orientations gives rise to a manifold that
is closed (similar to the helix dataset). As a result, the
manifold is not isometric to Euclidean space.
Fifth, local techniques for dimensionality reduction

suffer from folding [20]. Folding is caused by a value
of k that is too high with respect to the sampling den-
sity of (parts of) the manifold. Folding causes the local
linearity assumption to be violated, leading to radial
or other distortions. In real-world datasets, folding is
likely to occur because the data density is not necessar-
ily equal over the manifold (i.e., because the prior is not
uniform over the manifold). An approach that might
overcome this weakness for datasets with small intrin-
sic dimensionality is adaptive neighborhood selection.
Techniques for adaptive neighborhood selection are
presented in, e.g., [78,95,116].
In addition to these five weaknesses, Hessian LLE and
LTSA cannot transform data to a dimensionality higher
than the number of nearest neighbors in the neigh-
borhood graph, which might lead to difficulties with
datasets with a high intrinsic dimensionality.

7.2. Global techniques

Our discussion on the results of global techniques
for dimensionality reduction is subdivided into three
parts. First, we discuss the results of the neighbor-
hood graph-based techniques Isomap and MVU. Sec-
ond, we discuss weaknesses explaining the results of
the two kernel-based techniques, Kernel PCA and dif-
fusion maps. Third, we discuss the results of the three
techniques that optimize nonconvex objective functions,
viz., autoencoders, LLC, and manifold charting.
For the first part, we remark that global techniques
for dimensionality reduction that employ neighborhood
graphs, such as Isomap and MVU, are subject to many
of the weaknesses that are mentioned in subsection 7.1,
because the construction of the neighborhood graph
is susceptible to (1) the curse of dimensionality, (2)
overfitting, and the (3) presence of outliers. The re-
sults of our experiments on natural datasets show that
global techniques for dimensionality reduction based on
neighborhood graphs are often outperformed by PCA.
However, the results also reveal that Isomap and MVU
outperform local techniques such as LLE on natural
datasets. The relatively good results of Isomap may
be explained from the presence of a large number of
‘short-circuits’ in the neighborhood graph, as a result
of which the neighborhood graph shows large resem-
blance to a random network. In such a network, the
distances through the graph are strongly correlated to
the (squared) Euclidean distances 12 , and Isomap thus

12In the Erdös-Rényi random network [38] on a Euclidean space, the
shortest path between two points through the network is correlated
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reduces to MDS and PCA. The relatively good results
of MVU may be explained by the maximization of the
variance in the low-dimensional data representation that
MVU performs. This maximization causes originally
distant points to be far apart in the low-dimensional data
representation as well, even when the constraints on the
maximization do not follow the local structure of the
manifold.
For the second part, we remark that kernel-based tech-
niques for dimensionality reduction (i.e., Kernel PCA
and diffusion maps) do not suffer from the weaknesses
of neighborhood graph-based techniques. However, the
performance of Kernel PCA and diffusion maps on the
Swiss roll dataset indicates that (similar to PCA) these
techniques are incapable of modelling certain complex
manifolds. The main reason for this incapability is that
kernel-based methods require the selection of a proper
kernel function. In general, model selection in kernel
methods is performed using some form of hold-out test-
ing [45], leading to high computational costs. Alterna-
tive approaches to model selection for kernel methods
are based on, e.g., maximizing the between-class mar-
gin or the data variance using semidefinite program-
ming [46,71], or on a structural analysis of label infor-
mation [21]. Despite these alternative approaches, the
construction of a proper kernel remains an important
obstacle for the successful application of Kernel PCA.
In addition, depending on the selection of the kernel,
kernel-based techniques for dimensionality reduction
may suffer from similar weaknesses as local techniques
(e.g., when a Gaussian kernel with a small value of σ
is employed). The poor performance of diffusion maps
in our experiments supports this claim.
For the third part, we remarkt that techniques that op-
timize nonconvex objective functions, such as autoen-
coders, LLC, and manifold charting, suffer from the
presence of local optima in the objective functions. For
instance, the EM algorithm that is employed in LLC and
manifold charting is likely to get stuck in a local max-
imum of the log-likelihood function. In addition, these
techniques are hampered by the presence of outliers in
the data. In techniques that perform global alignment
of linear models (such as LLC), the sensitivity to the
presence of outliers may be addressed by replacing the
mixture of factor analyzers by a mixture of t-distributed
subspaces (MoTS) model [30]. The intuition behind the
use of the MoTS model is that a t-distribution is less
sensitive to outliers than a Gaussian (which tends to
overestimate variances). For autoencoders, the presence
of local optima in the objective function has largely

with the Euclidean distance between the two points [87].

been overcome by the pretraining of the network us-
ing RBMs. Our results with autoencoders could even be
improved by employing RBMs with Gaussian visible
nodes [121], instead of the mean-shift logistic nodes that
we employed. A limitation of autoencoders is that they
are only applicable on datasets of reasonable dimension-
ality. If the dimensionality of the dataset is very high,
the number of weights in the network is too large to find
an appropriate setting of the network. Hence, the infe-
rior performance of autoencoders on the ORL dataset
is the result of the 10,304 dimensions in this dataset.
This limitation of autoencoders may be addressed by
preprocessing the data using PCA.

7.3. Summary

Taken together, the results of our experiments indi-
cate that nonlinear techniques for dimensionality re-
duction do not yet clearly outperform traditional PCA.
This result agrees with the results of studies reported
in the literature. On selected datasets, nonlinear tech-
niques for dimensionality reduction outperform linear
techniques [83,108], but nonlinear techniques perform
poorly on various other natural datasets [47,60,61,76].
In particular, our results establish two main weaknesses
of the popular local techniques for dimensionality re-
duction: (1) the susceptibility to the curse of dimen-
sionality and (2) the problems in finding the smallest
eigenvalues in an eigenproblem.
From the first weakness, we may infer that a require-
ment for future techniques for dimensionality reduction
is that they do not rely on local properties of the data. It
has been suggested that the susceptibility to the curse of
dimensionality may be addressed by the design of new
techniques in which the global structure of the data man-
ifold is represented in a number of linear models [14].
However, the poor results of LLC and manifold charting
in our experiments do not support this suggestion. The
main added value of local techniques for dimensional-
ity reduction techniques is that they can be applied in
domains where no information on the global structure
of the data is available, such as in sensor localization
problems [119].
The second weakness leads to the suggestion that in
dimensionality reduction, it is not so important which
property of the data is retained in the low-dimensional
data representation, but it is more important how well
it is retained. Therefore, we suggest that the focus of
the research community should shift towards the de-
velopment of techniques that have objective functions
that can be optimized well in practice. The strong per-
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formance of autoencoders reveals that these objective
functions are not necessarily convex.

8. Conclusions

The paper presents a review and comparative study
of techniques for dimensionality reduction. From the
results obtained, we may conclude that nonlinear tech-
niques for dimensionality reduction are, despite their
large variance, not yet capable of outperforming tradi-
tional PCA. In the future, we foresee the development
of new nonlinear techniques for dimensionality reduc-
tion that do not rely on local properties of the data man-
ifold. In addition, we foresee a shift in focus towards
the development of nonlocal techniques for dimension-
ality reduction with objective functions that can be op-
timized well, such as (Kernel) PCA and autoencoders.
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Appendix A. Related techniques

The comparative review presented in this paper ad-
dresses all main techniques for (nonlinear) dimension-
ality reduction. However, it is not exhaustive.
The comparative review does not include self-
organizing maps [66] and their probabilistic extension
GTM [17], because we consider these techniques to
be clustering techniques. Techniques for Independent
Component Analysis [11] are not included in our
review, because they were mainly designed for blind-
source separation. Linear Discriminant Analysis [40]
and Generalized Discriminant Analysis [8] are not in-
cluded in the review, because of their supervised nature.
Furthermore, our comparative review does not cover
a number of techniques that are variants or extensions
of the thirteen reviewed dimensionality reduction tech-
niques. These variants include factor analysis [102],
principal curves [25], kernel maps [103], conformal
eigenmaps [99], Geodesic Nullspace Analysis [20],
variants of multidimensional scaling [3,32,39,54,81],
techniques that (similarly to LLC and manifold chart-
ing) globally align a mixture of linear models [93,115],
and linear variants of LLE [49,67], Laplacian Eigen-
maps [50], and LTSA [124].
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