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ABSTRACT

In this paper we present the operation results of a
portable computer-based measurement equipment conceived
to perform non-destructive testing of suspicious termite in-
festations. Its signal processing module is based in the Spec-
tral Kurtosis (SK), with the de-noising complement of the
Discrete Wavelet Transform (DWT). The SK pattern allows
the targeting of alarms and activity signals. The DWT com-
plements the SK, by keeping the successive approximations
of the termite emissions, supposed more non-gaussian (less
noisy) and with less entropy than the detail approximations.
For a given mother wavelet, the maximum acceptable level,
in the wavelet decomposition tree, which preserves the in-
sects’ emissions features, depends on the comparative evolu-
tion of the approximations details’ entropies, and the value of
the global spectral kurtosis associated to the approximation
of the separated signals. The paper explains the detection
criterion by showing real-life recordings.

1. INTRODUCTION

This paper deals with the performance of a final-version
equipment for termite detection, whose previous prototype’s
performance was described in [1]. The measurement method
is mainly based in the interpretation of the spectral kurtosis
graph, along with the wavelet analysis. We use the sound
card, which simplifies the hardware and the criterion of de-
tection.

The instruments for plague detection are thought with the
objective of decreasing subjectiveness of the field operator.
At the same time, they should be conceived to perform an
early targeting of the plague, in order to treat the infestation
before serious economic damage occurs. On-site monitoring
implies reproducing the natural phenomenon of insect emis-
sions with high accuracy. As a consequence it is imperative
the use of a deep storage device, and high sensitive probes.
These features make the price paid very high, and still do not
guarantee the success of the detection. Besides, the expert’s
subjectiveness plays a crucial role.

The methods in which the instruments are based are very
much dependent on the detection of excess of power in the
signals; these are the so-called second-order methods, e.g.
the RMS calculation, which does not provide information
regarding the time fluctuations of the amplitudes. Another
handicap of the second-order principle, e.g. the classical
power spectrum, attends to the preservation of the energy

during data processing. Consequently, the eradication of ad-
ditive noise lies in filter design and sub-band decomposition.

As an alternative to improve noise rejection and complete
characterization of the signals, in the past ten years, a myr-
iad of higher-order methods are being applied, in scenarios
which involve signal separation and characterization of non-
Gaussian signals. The main handicap of applying higher-
order statistics is the amount of data which they generate, and
that have to be stored in the measurement unit. An examina-
tion of the multi-dimensional data structures (tensors) reveals
redundant (symmetrical) information; so relevant directions
have to be selected within the tensor data structure. Secondly,
the interpretation of higher-order cumulants and poly-spectra
are reduced to a set of catalogued noise processes, and only
a few attempts have been made in order to characterize the
processes via HOS.

This paper describes a method based in the spectral kur-
tosis (a modification of the method described in [2] and [1])
to detect infestations of subterranean termites in a real-life
scenario (Southern Spain). Wavelet decomposition is used
as an extra tool to aid detection from the preservation of the
approximation of the signal, which is thought to be more
Gaussian than the details.

The measurement site was selected by our partner plague
eradication company, to be a suspicious location. Speech
and the typical urban background sounds clearly bury the ter-
mites’ emissions, which came from the soil, under all of us.
Sounds were not audible, except from alarms signals, only
produced when termites are clearly disturbed.

The interpretation of the results is focussed on the
peakedness of the statistical probability distribution associ-
ated to each frequency component of the signal, to measure
the distance from the Gaussian distribution. The spectral kur-
tosis serves as a twofold tool. First, it enhances non-Gaussian
signals over the background. Secondly, it offers a more com-
plete characterization of the transients emitted by the insects.

The paper is structured as follows: in Section 2 a re-
view on termite detection and relevant HOS experiences sets
the foundations. In Section 3 we make a brief report on
the definition of kurtosis; we use an unbiased estimator of
the spectral kurtosis, successfully used in [1], using a higher
measurement bandwidth. Results are presented in Section 5.
Wavelets are summarized in Section 4. Finally, conclusions
are drawn in Section 6.



2. TERMITE DETECTION AND HIGHER-ORDER
STATISTICS

Subterranean termites nest in the soil to obtain moisture, but
they also nest in wood that is often wet. They can also build
mud tunnels to reach wood several meters above the ground.
These tunnels can extend for 15-20 meters to reach wood
and often enter a structure through expansion joints in con-
crete slabs or where utilities enter the house. Termites are
able to travel up to 40 meters from the colony and, once they
discover a food source, they leave a chemical track for others
to follow.

Termite detection has been gaining importance within the
research community in the last two decades, due to the urgent
necessity of avoiding the use of harming termiticides, and to
the joint use of new emerging techniques of detection and
hormonal treatments (IGR1 products), with the aim of per-
forming an early treatment of the infestation. A partial infes-
tation can be exterminated after two or three generations of
the colony’s members with the aid of these hormones, which
stop chitin synthesis [1].

The primary method of termite detection consists of look-
ing for evidence of activity. But only about 25 percent of the
building structure is accessible, and the conclusions depend
very much on the level of expertise and the criteria of the
inspector [3]. As a consequence, new techniques have been
developed to remove subjectiveness and gain accessibility.

User-friendly equipment is being currently used in tar-
geting subterranean insect infestations by means of tempo-
ral analysis of the vibratory data sequences. An acoustic-
emission (AE) sensor or an accelerometer is fixed to the sus-
picious structure. The hits are captured by the transducer and
registered by the counting assembly inside the hand-held in-
strument. This class of instruments is based on the calcula-
tion of the root mean square (RMS) value of the vibratory
waveform. The RMS value comprises information of the AE
raw signal power during each time-interval of measurement
(averaging time). This measurement strategy coveys a loss of
potentially valuable information both in the time and in the
frequency domain. In fact, the events are averaged over time
and the instantaneous occurrence of the impulses is omitted.
Looking at the frequency content of the signals, the only pos-
sible action for the field operator is the option of pre-filtering,
which allows the suppression of low-frequency audio signals
which mask termites’ emissions.

A more sophisticated family of instruments makes use of
spectral analysis and digital filtering to detect and character-
ize vibratory signals [1]. Both classes of systems (counting-
assemblies and spectrum-based) have the drawback of the
relative high cost and their practical limitations.

From the practical point of view, the utility of the above
acoustic techniques and equipment for detection depends
very much on several biophysical factors. The main one is
the amount of distortion and attenuation as the sound trav-
els through the soil (∼600 dB m−1, compared with 0.008 dB
m−1 in the air). This is the reason whereby digital signal
processing techniques emerged as an alternative.

On the other hand, second-order statistics (i.e. correla-
tion) and power spectra estimation (the second-order spec-
trum) fail in low SNR conditions even with ad hoc piezo-
electric sensors. Spectrum estimation and spectrogram ex-
tract time-frequency features, but ignoring phase properties
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of the signals. Besides, second-order algorithms are very
sensitive to noise, which makes the users’ identification cri-
teria (mainly based on frequency-pattern recognition) be-
ing difficult to apply without great uncertainty. Comple-
mentary second-order tools, like wavelets and wavelet pack-
ets (time-dependent technique) concentrate on transients and
non-stationary movements, making possible the detection of
singularities and sharp transitions, by means of sub-band de-
composition [4].

Higher-order statistics, are being widely used in several
fields. In the field of termite detection, a cumulant-based
independent component analysis algorithm has proven to
separate termites’ alarm signals from synthetics noise back-
grounds in a blind source separation scenario.The informa-
tion contained in the diagonal of the bi-spectrum data struc-
ture has proven to enhance the frequency pattern of the ter-
mites’ emissions [5].

3. CUMULANTS AND THE SPECTRAL KURTOSIS

Higher-order cumulants are polynomial functions of the mo-
ments, and they are related each other via a recursive for-
mula, described in Eq. (1):

κr = µ ′
r −

r−1

∑
k=1

(
r−1
k−1

)
κkµ ′

r−k (1)

In multiple-signal processing it is very common to de-
fine the combinational relationship among the cumulants of
r stochastic signals, {xi}i∈[1,r], and their moments of order
p,p ≤ r, given by using the Leonov-Shiryaev formula [6]

Cum(x1, ...,xr) = ∑(−1)p−1 · (p−1)! ·E{∏
i∈s1

xi}

·E{∏
i∈s2

x j}· · ·E{∏
i∈sp

xk},
(2)

where the addition operator is extended over all the par-
titions, like one of the form (s1,s2, . . . ,sp), p = 1,2, · · · ,r;
and (1 ≤ i ≤ p ≤ r); being si a set belonging to a partition of
order p, of the set of integers 1,. . . ,r.

Ideally, the spectral kurtosis is a representation of the kur-
tosis of each frequency component of a process. For estima-
tion issues we will consider M realizations of the process;
each realization containing N points; i.d. we consider M
measurement sweeps, each sweep with N points. The time
spacing between points is the sampling period, Ts, of the data
acquisition unit.

An unbiased estimator for the spectral kurtosis for M N-
point realizations at the frequency index m is given by:

ĜN,M
2,X (m) =

M
M−1

[
(M +1)∑M

i=1 |Xi
N(m)|4(

∑M
i=1 |Xi

N(m)|2)2 −2

]
. (3)

This estimator is the one we have implemented and it was
also used successfully in [2]. To show its performance we
have tested it with a synthetics matrix consisting of M=500
realizations or signals, each register containing N=1921 data.
The sampling frequency is Fs=64,000 Hz. One realization is
the linear combination of 5 signals. Two sine waves with
constant amplitude values, at frequencies of 5 kHz and 15



kHz. One sine at 25 kHz with amplitude varying according
to a Gaussian distribution. A white Gaussian process and,
finally, a colored Gaussian process filtered between 10 and
11 kHz, by a 5th-order Butterworth digital bandpass filter.
Fig. 1 shows the performance of the spectral kurtosis esti-
mator over the synthetics. The kurtosis is negative for each
frequency component with constant amplitude value, pos-
itive for the component with Gaussian-law amplitude, and
null for the colored Gaussian noise. The spectral kurtosis is
obviously zero for all the components of the white Gaussian
noise.
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Figure 1: Performance of the spectral kurtosis estimator over
a synthetics.

Regarding the experimental signals, we expect to de-
tect positive peaks in the kurtosis’s spectrum, which may be
associated to termite emissions, characterized by random-
amplitude impulse-like events. We assume, as a starting
point, that non-Gaussian behavior of termite emissions is
more acute than in speech. As a final remark, we expect that
constant amplitude interferences are clearly differentiate due
to their negative peaks in the SK graphs.

4. THE WAVELET TRANSFORM

A mother wavelet is a function ψ with finite energy2, and
zero average. This function is normalized3, ‖ψ‖ = 1, and is
centered in the neighborhood of t=0.

ψ(t) can be expanded with a scale parameter a, and trans-
lated by b, resulting the daughter functions or wavelet atoms,
which remain normalized:

ψa,b(t) =
1√
a

ψ
(

t −b
a

)
; (4)

The CWT can be considered as a correlation between the
signal under study s(t) and the wavelets (daughters). For a
real signal s(t), the definition of CWT is:

CWT s(a,b) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(
t −b

a

)
dt; (5)

2 f ∈ L2(ℜ), the space of the finite energy functions, verifying∫ +∞
−∞ | f (t)|2 dt < +∞.

3‖ f‖ =
(∫ +∞

−∞ | f (t)|2 dt
)1/2

= 1.

where ψ∗(t) is the complex conjugate of the mother wavelet
ψ(t), s(t) is the signal under study, and a and b are the scale
and the position respectively (a ∈ ℜ+ −0,b ∈ ℜ). The scale
parameter is proportional to the reciprocal of the frequency.
Eq. (5) establishes that each coefficient provide numerical in-
formation about the similarity between the signal under study
and the time-shifted frequency-scaled wavelet daughter.

In the Discrete Time Wavelet Transform (DTWT) only a
subset of scale and time shifts are chosen. A tree-structure
arrangement of filters allows the sub-band decomposition of
the signal. The original signal passes through two comple-
mentary filters (quadrature mirror filters), and two signals
are obtained as a result of a down-sampling process, cor-
responding to the approximation and detail coefficients. In
each stage of the filtering process the same two digital fil-
ters are used: a high-pass and its mirror filter (low-pass). All
these filters have the same relative bandwidth (ratio between
frequency bandwidth and center frequency).

Any finite energy signal s(t) can be decomposed over a
wavelet orthogonal basis according to:

s(t) =
+∞

∑
j=−∞

+∞

∑
k=−∞

〈s,ψ j,k〉ψ j,k (6)

Each partial sum, indexed by k, in Eq. (6) can be interpreted
as the details variations at the scale a = 2 j (at each level j of
analysis, the scale is increased by a factor of two.):

d j(t) =
+∞

∑
k=−∞

〈s,ψ j,k〉ψ j,k s(t) =
+∞

∑
j=−∞

d j(t) (7)

The approximation of the signal s(t) can be progressively
improved by obtaining more layers or levels, with the aim
of recovering the signal selectively. For example, if s(t)
varies smoothly we can obtain an acceptable approximation
by means of removing fine scale details, which contain in-
formation regarding higher frequencies or rapid variations of
the signal. This is done by truncating the sum in equation 6
at the scale a = 2J :

sJ(t) =
+∞

∑
j=J

d j(t) (8)

Details corresponding to indexes j < J are not gathered in
Eq. (8).

Daubechies 5 has been selected as most similar wavelet
mother, because of the highest coefficients in the decompo-
sition tree. Given the wavelet mother, to show the process of
selecting the maximum decomposition level in the wavelet
tree, we have adopted a criterion based on the calculation of
Shannon’s entropy (information entropy), which is a measure
of the uncertainty associated with a random variable X ; this
entropy denoted by H(X), and defined by:

H(X) := −
N

∑
i=1

p(xi) log10 p(xi), (9)

where X is an N-outcome measurement process {xi, i =
1, · · · ,N}, and p(xi) is the probability density function of the
outcome xi.

We show this strategy via the following example, based
on real-life data, which contain activity signals from ter-
mites, presented in Fig. 5 (without de-noising) and in Fig. 6



(once, the signal has been de-noised). The lower sub-figure
in Fig. 6 is the result of the de-noising performance at the
4th-decomposition level; using the global thresholding we
keep the approximation signal. The entropy of the approxi-
mations and the details are compared for each level of com-
parison and shown in Fig. 2.

By looking at the graph of Fig. 2, at level 4, the entropy
of the approximations is less than the entropy of the details.
So level 4 is in a sense, a point of inversion. No improvement
is obtained for level 5, where the entropies are very similar.
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Figure 2: Evolution of the entropy.

We can also see that the global difference of entropies
increases towards zero, at level 5, as a complementary indi-
cation that further decomposition will not suppose progress
in de-noising.

5. EXPERIMENTS AND RESULTS

5.1 The instrument and the measurement procedure

A piezoelectric probe-sensor (model SP-1L from Acoustic
Emission Consulting) is used in the final version of the in-
strument, and was described in detail in [1]. The sensor is
connected to the sound card of a lap-top computer and the
acquisition is driven by MATLAB, via the Graphical User
Interface (GUI) (not shown in this paper).

The transducer SP-1L was used to record the data reg-
isters in the field experience, and the ICP unit (Integrated
Circuit Piezoelectric; ICP interface) was connected to the
sound card of a lap-top computer, configuring an autonomous
measurement unit (the sampling frequency was Fs=44,100
Hz). The recording stage took place in a garden with evi-
dence of infestation, and the bare waveguide of the sensor
was introduced in the lawn, over the suspicious zone.

Termite sounds from feeding are like sharp pops and
crackles in the audio output. The key of the spectral kurtosis
detection strategy used in this work lies in the potential en-
hancement of this non-Gaussian behavior of the emissions.
If this happens, i.e. if an increase of the non-Gaussian ac-
tivity (increase in the kurtosis, peakedness of the probabil-
ity distribution) is observed-measured in the spectral kurto-
sis graph, there may be infestation in the surrounding subter-
ranean perimeter, where the transducer is attached.

Termite emissions are non-stationary, so the instrument
treats data by ensemble averaging of the sample registers,

following the indications in [7] (pp. 463-465). Each spec-
trum and spectral kurtosis graph presented in this section is
the result of averaging the spectra of the sample registers, or
realizations. As a final remark, acquired data is normalized

according to the norm: ‖s‖ =
(

∑N
i=1 |si|2

)1/2
.

5.2 Operating cases

In this subsection we present two possible situations associ-
ated to the measurement cases. We present the signals out
of the instrument display in order to be analyzed more pre-
cisely. A data acquisition time of 5 seconds and a sample
frequency of 44,100 Hz have been selected. So every time
the user performs an acquisition (pressing the button "Go")
220,500 points are stored. The software-engine is adjusted
to calculate the averaged spectral kurtosis (SK) over a set of
220 realizations, each of them containing 1,000 points.

Two couples of data registers have been selected as sig-
nificant examples, corresponding to typical measurements
situations. For a given couple, first we present the results
without applying wavelets. Then we explain the information
wavelets add.

Fig. 3 presents a clear detection case, characterized by
termite activity signals without termites’ alarms. Two peaks
are clearly enhanced in the SK graph (near 5 kHz, and near
15 kHz).
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Figure 3: A clear measurement of activity detection.

The de-noised data in the time domain are shown in the
upper graph of Fig. 4. Applying the spectral kurtosis to
the de-noised version, it is seen that all the frequency com-
ponents are enhanced, specially those ones in the detection
band. This fact confirms the presence of insects, and it is of
special value in doubtful situations (e.g. low-level signals),
when they are really needed.

In Fig. 5 a doubtful measurement case is presented. Ac-
tivity evidence is outlined only near 5 kHz. Once again, the
wavelets have been applied (shown in Fig. 6), and the en-
hancements near 5 kHz and 15 kHz confirm the detection.

Hereinafter, we present the conclusions.

6. CONCLUSIONS AND ACCOMPLISHMENTS

Assuming the starting hypothesis that the insect emissions
may have a more peaked probability distribution than any
other simultaneous source of emission in the measurement
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Figure 4: De-noising results for data in Fig. 3. A general
enhancement of the spectral kurtosis occurs.
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Figure 5: A doubtful measurement situation.

perimeter, we have design a termite detection strategy based
in the calculation of the 4th-order cumulants for zero time
lags, which are indicative of the signals’ kurtosis, and their
corresponding spectra (the spectral kurtosis, SK).

An estimator of the SK has been used to perform a se-
lective analysis of the peakedness of the signal. It has been
shown that new frequency components gain in relevance in
the spectral kurtosis graphs. This fact is specially notice-
able when wavelets are applied in order to clarify detection
in doubtful situations.

The main goal of this signal-processing method is to re-
duce subjectiveness due to visual or listening inspection of
the registers. This means that in a noisy environment, it may
be possible to ignore termite feeding activity even with an ad
hoc sensor because, despite the fact that the sensor is capa-
ble of register these low-level emissions, the human ear can
easily ignore them [1].
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