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Target Dependent Score Normalization Techniques and
Their Application to Signature Verification

Julian Fierrez-Aguilar, Javier Ortega-Garcia, and
Joaquin Gonzalez-Rodriguez

Abstract—Score normalization methods in biometric verification, which
encompass the more traditional user-dependent decision thresholding
techniques, are reviewed from a test hypotheses point of view. These
are classified into test dependent and target dependent methods. The
focus of the paper is on target dependent score normalization techniques,
which are further classified into impostor-centric, target-centric, and
target-impostor methods. These are applied to an on-line signature veri-
fication system on signature data from the First International Signature
Verification Competition (SVC 2004). In particular, a target-centric tech-
nique based on the cross-validation procedure provides the best relative
performance improvement testing both with skilled (19%) and random
forgeries (53%) as compared to the raw verification performance without
score normalization (7.14% and 1.06% Equal Error Rate for skilled and
random forgeries, respectively).

Index Terms—Biometrics, decision threshold, score normalization, sig-
nature verification.

I. INTRODUCTION

Automatic extraction of identity cues from personal traits (e.g., fin-
gerprints, speech, or face images) has given rise to a particular area of
pattern recognition (biometrics) where the goal is to infer identity of
people from personal data [1], [2]. The increasing interest in biomet-
rics is related to the number of important applications where a correct
assessment of identity is crucial. Biometrics provides a way to establish
an identity based on “who you are,” rather than by “what you possess”
or “what you know.” This concept not only ensures enhanced security
but also avoids the need to remember and maintain multiple passwords.
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Previous studies have shown that the performance of a number of
biometric verification systems, especially those based on behavioral
traits such as written signature [3]-[5] and voice [6], [7], can be im-
proved with user-dependent decision thresholds. Even greater verifi-
cation performance improvement can be expected through the use of
score normalization techniques [8], [9]. These methods (which include
the user-dependent decision thresholding as a particular case) account
not only for user specificities but also for intersession and environment
changes [10].

The objectives of this work are: 1) to provide a framework for score
normalization collecting previous work in related areas; 2) to provide
some guidelines for the application of these techniques in real world
scenarios; and 3) to provide an example of a successful application of
the proposed normalization methods regarding the First International
Signature Verification Competition (SVC 2004) [11], where the system
proposed by the authors [12] was ranked first and second for random
and skilled forgeries, respectively.

The paper is structured as follows: The Introduction includes some
definitions, the system model of biometric verification with score nor-
malization, and the description of a preliminary experiment which cor-
roborates the motivation of this work.! In Section III, the subset of score
normalization methods we focus on is detailed. Some experiments on
the development corpus of SVC 2004 extended task are reported in
Section IV. Conclusions are given in Section V.

A. Definitions and System Model

In authentication (also known as verification) applications, the
clients or targets are known to the system (through an enrollment
or training process) whereas the impostors can potentially be the
world population. In such applications, the users provide a biometric
sample X (e.g., a written signature) and their claimed identities 7°
and a one-to-one matching is performed. The result of the com-
parison s (similarity score) can be further normalized to s, before
comparing it to a decision threshold. If the score is higher than the
decision threshold, then the claim is accepted; otherwise, the claim
is rejected. The system model of biometric authentication with score
normalization is provided in Fig. 1 for an on-line signature verification
application.

Depending on the biometric verification system at hand, impostors
may know information about the client that lowers verification per-
formance when it is exploited (e.g., signature shape in signature ver-
ification). As a result, two kinds of impostors are usually considered,
namely: 1) casual impostors producing random forgeries, when no in-
formation about target user is known and 2) real impostors producing
skilled forgeries, when some information regarding the biometric trait
being forged is used.

B. Experimental Motivation

As pointed out above, it has been observed in a number of bio-
metric verification systems that using user-dependent thresholds im-
proves verification performance [3]—-[7]. This occurs because the client
and impostor score distributions are not aligned for the different targets
involved (mainly due to target specificities). The following preliminary
experiment by using the on-line signature verification system described
in [12] on the development corpus of the SVC 2004 extended task [11]
corroborates this fact.

Target-dependent client and impostor score distributions (Gaussian
fit) are plotted in Fig. 2 and show testing either with skilled (left) or

Tn Section 11, the framework for score normalization and some background
on error estimation methods is described.

1094-6977/$20.00 © 2005 IEEE
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Fig. 2. Gaussian fit of client (solid) and impostor (dashed) score distributions for targets ul to u20 of SVC 2004 development corpus considering either skilled

(left) or random (right) forgeries from respectively real and casual impostors.

random forgeries (right). In this experiment, it can be observed that in-
dividual verification performance between some of the targets is quite
different (e.g., ul and u8 when testing with skilled forgeries). Big dif-
ferences can also be observed in the client-impostor scoring regions
(e.g., ul and u9 when testing with random forgeries). The main objec-
tive of using user-dependent decision thresholds or, more generally, ap-
plying target dependent score normalization techniques with a unique
user-independent decision threshold [8], [9], is to prevent such mis-
alignments.

II. THEORETICAL BACKGROUND
A. Score Normalization

Given a test sample X the problem of biometric authentication can
be stated as a basic hypotheses test between two hypotheses:
e HO0: X is from hypothesized client 7 .
e H1: X is not from hypothesized client 7 .
The optimum test to decide between these two hypotheses is a likeli-
hood ratio test given by [13]
p(X|HO) [ >6 Accept HO
p(X|H1) { <6 Accept H1

where p(X |HO0) and p(X | H1) are respectively the probability density
functions for the hypotheses H0 and H1 evaluated for the observed
biometric sample X . The decision threshold for accepting or rejecting
HO is . An equivalent log-likelihood ratio test is obtained by trans-
forming (1) into the log domain

ey

>log# Accept HO

. 2
<log® Accept H1 @

log p(X|HO) — log p(X|H1) {

A common practice in biometric verification (e.g., GMM in the case
of speaker recognition [14], HMM in the case of signature recognition
[12], etc.) consists in characterizing each client 7 by a statistical model
A7 (i.e., the reference model in Fig. 1). In this case, the similarity s is
computed as

s =logp(X A7) 3)
which is an estimation of log p(X|H0). As a result, the optimal score
normalization strategy for an authentication system based on statistical
modeling is given by

s$n =5 —logp(X|H1). “4)

Note that, the normalizing term log p( X | H1) is affected, in general,
by the following.

¢ Input information: the input biometric sample X .
* Information from client: scores s7 , ..., sk , from the hypothe-
sized target 7 claiming its model A7 . B B
« Information from impostors: both models {\7,..., A;{,-I} and
scores {SI[., R SK,'T } from N7 possible impostors (either real
or casual) of the hypothesized client 7 claiming the model AT
Estimation of logp(X|H1) based on the different information
involved is not a straightforward task. Thus, operational procedures
of score normalization (also known as likelihood normalization) are
usually employed. Much effort has gone in to deriving such procedures
based on the statistical formalism described above, mainly by the
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speaker recognition community [8], [9]. These operational procedures
aim at designing a function

Sn :f(s, X, {s;[, RV ng} R {/\,{, RN /\:{,I} R {SIT, RV 9%7})
&)

so as to minimize the error rate of the verification task. The use of
linear functions of various statistics of the information involved in (5)
is the prevailing strategy for deriving normalization schemes. This is
the case of [9]: 1) z-norm, which considers only scores from impos-
tors; 2) t-norm, based on the input biometric sample and models from
impostors; and 3) UBM-norm, which considers the input biometric
sample and a universal background model characterizing the average
target. Other examples can also be found regarding face [15] or signa-
ture recognition [16].

In order to simplify the discussion while providing a powerful frame-
work for score alignment, neither input test information nor models
from impostors are considered in this work

sn=1 (s,{s;[,...,ng},{s;[,...,sgi}). (6)

This family of score normalization methods will be referred to as
target dependent score normalization techniques. Other normalization
methods using the input biometric sample and models from impostors
will be referred to as test dependent normalization techniques.

B. Error Estimation Methods

Biometric verification involves a tradeoff between two types of er-
rors: 1) False Rejection (FR), occurring when a client user is rejected
by the system and 2) False Acceptance (FA), taking place when an im-
postor is accepted as being a true user. A specific point is attained when
FA and FR rates coincide, the so-called Equal Error Rate (EER). For
the estimation of these performance measures on a specific system, data
from benchmark corpora are usually divided into training and testing
sets. Training data are used for computing the reference models in
Fig. 1 and testing data are used to generate scores from which error
rates are computed. This is the so-called hold-out method [17]. Other
approaches that may be useful in small sample size situations have also
been proposed [18]. For our discussion, the following error estimation
methods are of interest.

* Resubstitution: all the available data is used for training as well

as testing.

* Rotation: this is a version of cross-validation [18]. Regarding the
available data for each target, the reference model is designed
by choosing k consecutive samples as the design set, and the
remaining samples constitute the test set; this is repeated for
all distinct choices of &k consecutive observations. When £ is
chosen to be equal to the number of samples minus one, the
leave-one-out procedure is obtained [17].

III. TARGET DEPENDENT SCORE NORMALIZATION TECHNIQUES

In the following sections, target dependent score normalization tech-
niques are classified according to [8].

A. Impostor-Centric Methods

In Impostor-Centric methods (IC) no information about client score
intra-variability is used. Therefore

sic = f (s,z = {s{, . e’iT}) . )

The following IC methods are considered in this work:
. IC —1: S1C—1 = S — U1

e IC—2:s1c2 =s5—(uz +o01)

e IC—3:s1c3 = (s — HI)/JI

where 17 and o7 are respectively the mean and standard deviation of
the impostor scores 7. IC — 1 is proposed here as a robust technique for
small sample size normalization problems [18], IC — 2 is equivalent to
the a priori decision threshold setting described in [6], and IC — 3 is
the well known z-norm technique [8].

Note that the impostor scores 7 can be, in general, from either casual
impostors (in this case leading to a casual-Impostor-Centric method,
cIC) or from real impostors (similarly, leading to 7IC).

B. Target-Centric Methods

In Target-Centric methods (TC) no information about impostor score
variability is used. Therefore

sre = f (s,C = {.517— .. ,5%7}) . 8)

Similarly to the impostor-centric case, the following methods are
obtained:

e TC—1:stc_1 = s— puc

e TC-—2:src—2 = 85— (pec —oc)

o TC-3:srco—3 = (5s— puc)/oc
where pt¢ and o¢ are, respectively, the mean and standard deviation of
the client scores C. TC — 1 is based on the running average normaliza-
tion strategy proposed in [19], TC — 2 is a form of the a priori decision
thresholding technique proposed in [20], and TC — 3 is the normaliza-
tion scheme proposed in [21].

Client scores C should be obtained from the available training set.
In this work, we propose to generate C by using one of the sampling
methods described in Section II-B, namely resubstitution (in this
case leading to a resubstitution-Target-Centric method, resTC) or
rotation (similarly, leading to rotTC). The former strategy leads to
optimistically biased estimates whereas the later one gives unbiased
estimates with larger computational requirements. These two resam-
pling techniques have been considered for convenience regarding the
experiments reported later on. Other techniques such as cross-valida-
tion or bootstrap should be also considered regarding other verification
problems.

C. Target-Impostor Methods

In Target-Impostor methods (TI) information from both client score
intra-variability and impostor score variability is used. Therefore

sti=f (s,C: {.Q;T,...,S?\;T},I: {9;[,,9157}) )

Based on the decision thresholding techniques in [7] and [22], we
obtain the two following target-impostor normalization methods:

A TI — 1: STI—1 = 8§ — SEF;R(C,I)

o TI-2:s11—2=5— (uzoe + peoz)/(oz + oc)
where sprr(C, Z) is the target-dependent decision threshold at the em-
pirical EER obtained from the histograms of C and Z. For the exper-
iments reported below, the operational procedure for computing the
EER proposed in [23] has been followed.

IV. EXPERIMENTS

Various practical aspects of the normalization methods described
above are explored in this section. Experiments are carried out by using
the on-line signature verification system described in [12], [16] on SVC
2004 signature data [11].

A. On-Line Signature Verification System

For the experiments reported in this paper, the HMM-based on-line
signature verification system from Universidad Politecnica de Madrid
competing in the First International Signature Verification Competition
(SVC 2004) has been used. Below we briefly describe the basics of the



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005 421

utst uls10 uls21 u1s30 uBs1 u8s10 uBs21 u8s30
P N 4 M (A
x 0 : 0 0
- . s -1
20 40 60 80 50 100
1 : : 1 1 : 2
> 0 s 0 S AN R > 0
-1 : B -1 -1 ; : -1 ! : g ] :
20 40 60 80 50 100 50 100 50 100 150 50 100 150 50 100 150
R . 1 : S ; o 2
5 0 - W [ /r’ W\/ﬂ 0 -\ 59 0 0 0 :
2 -1t AfF v -1 -1 : 2 -
2 ,ZW\/\[ -2 -2 i 2 -2 -2 -2 -2 : :
& AL E : -3 : L - - i
20 40 60 80 50 100 50 100 50 100 150 50 100 150 0 50 100 150 50 100 150
§ 1 1 1 * 1 £ 1 1 1 1 J
E o 0 of-|- : : 0 E o 0 0 0 g
<1 -1l -1 -1 k < -1 -1 -1 :
0 20 40 60 80 ) 20 40 60 80 [ 50 100 ] 50 100 [ 50 100 150 0 50 100 150 0 50 100 150 [ 50 100 150
£ 1 . 1 5 1 1 : 5! 1 ] 1 v 1 i :
0 0 0 0
@ - P -1 S \ @5 B L : > ' DL :
0 20 40 60 80 ] 20 40 60 80 [ 50 100 0 50 100 0 50 100 150 0 50 100 150 0 50 100 150 [ 50 100 150
Fig. 3. Signature examples from SVC 2004 corpus. For each one of the targets ul (left) and u8 (right), two genuine signatures (left columns) and two skilled

forgeries (right columns) are given.

system. For further details we refer the reader to [12], [16] and the
references therein.

1) Feature Extraction: Only coordinate trajectories (x[n],y[n]),
n = 1,...,N, and pressure signal p[n],n = 1,...,N, are
considered in the feature extraction process, where N, is the du-
ration of the signature in time samples. Signature trajectories are
first preprocessed by subtracting the center of mass followed by
a rotation alignment based on the average path tangent angle. An
extended set of discrete-time functions are derived from the pre-
processed trajectories consisting of sample by sample estimations
of various dynamic properties. As a result, the signature is pa-
rameterized as the following set of seven discrete-time functions
{z[n], y[n], p[n]. 8[n], v[n], p[n], a[n]},.n = 1,...,N,, and first
order time derivatives of all of them (¢, v, p, and « stand, respectively,
for path tangent angle, path velocity magnitude, log curvature radius,
and total acceleration magnitude). A whitening linear transformation
is finally applied to each discrete-time function so as to obtain zero
mean and unit standard deviation function values.

2) Similarity Computation: Given the parameterized enrollment
set of signatures of a client 7, a left-to-right Hidden Markov Model
A7 is estimated by using the Baum-Welch iterative algorithm [24]. No
transition skips between states are allowed and multivariate Gaussian
mixture density observations are used (2 states and 32 mixtures per
state). On the other hand, given a test signature X parameterized as
P (with a duration of N, time samples) and a claimed identity 7
modeled as A7, the similarity matching score

-

- logp(PI\T)

s

10
is computed by using the Viterbi algorithm [24].

B. Database Description

There are not many signature databases publicly available at the mo-
ment for research purposes [25]. As a result, the common practice
in on-line signature recognition research is to evaluate the proposed
recognition strategies on small data sets acquired at the different re-
search laboratories [5]. In this environment, the First International Sig-
nature Verification Competition (SVC 2004) has been organized [11]
providing a common reference for system comparison on the same sig-
nature data and evaluation protocol.

Development corpus of the extended task (including coordinate and
timing information, pen orientation and pressure) is used in the exper-
iments that follow. This corpus consists of 40 sets of signatures. Each
set contains 20 genuine signatures from one contributor (acquired in
two separate sessions) and 20 skilled forgeries from five other contrib-
utors. The signatures are mostly in either English or Chinese. Some
examples are depicted in Fig. 3 for two different targets of the data set.
Plots of the coordinate trajectories, pressure signal, and pen orienta-
tion functions are also given. The highly skilled nature of the signature
forgeries is remarkable.

C. Experimental Procedure

Signature data from the two acquisition sessions in SVC 2004 are
used both for training and testing. In case of training, five random gen-
uine signatures from both sessions are used for each target. In case of
testing, the remaining 15 genuine signatures are used. For a specific
target user, casual impostor test scores are computed by using signa-
tures from all the remaining targets and real impostor test scores are
computed by using the 20 skilled forgeries of each target. Impostor
scores for error estimation are computed in a leave-one-out fashion;
i.e., testing signatures from one impostor with a normalization scheme
estimated with statistics from the remaining impostors and rotating the
scheme. Score normalization results are provided using statistics either
from casual or real impostors for the computation of the normalization
functions.

A priori score normalization methods are compared in the experi-
ments. This means that only the information from the training set is
used both for the enrollment of the targets and for the estimation of
the parameters of the normalization functions (by using the resampling
techniques described in Section II-B). In order to have an indication
of the level of performance with an ideal score alignment between tar-
gets, results using the target dependent score normalization TI—1 (see
Section III-C) a posteriori are also given. Only in this case, test infor-
mation is used both for error estimation and for the computation of the
normalization functions.

For the comparison of competing algorithms in SVC 2004, FR and
FA rates for different threshold values, EER, and ROC curves are used
[11]. A variant of these, the so-called Detection Error Tradeoff (DET)
plot [26], is used in the experiments reported below; in this case, the
use of a normal deviate scale makes the comparison of competing sys-
tems easier. For the computation of EERs, the operational procedure
described in [23] has been used.
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D. Results

1) Impostor-Centric Methods: In the first experiment summa-
rized in Fig. 4 the different impostor-centric methods described in
Section III-A are compared, testing either with skilled (left) or random
(right) forgeries.

Raw verification performance with no normalization (7.14% and
1.06% EER for skilled and random forgeries, respectively) is signif-
icantly improved by the a posteriori normalization scheme (2.79% and
0.01%, respectively). This corroborates the preliminary experiment in
Fig. 2 and will be used as the reference for further comparisons.

Regarding the test with skilled forgeries, a priori method IC — 3
outperforms IC — 1 and IC — 2. Raw performance is only improved
in this case by considering statistics from real impostors (rIC). This
means that testing with skilled forgeries, while using statistics from
random impostors for estimating the normalization functions, leads to
degraded performance as compared to not using score normalization
at all.
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Verification performance for various target-centric normalization methods. Effects of variability between training and testing on verification performance.

Regarding the test with random forgeries, significant improvements
are obtained considering statistics either from casual (¢IC) or from real
impostors (r1C).

2) Target-Centric Methods: The effects of using different training
strategies on the verification performance are summarized in Fig. 5. We
consider two training strategies: a) training data from both acquisition
sessions and testing data from both sessions (left) and b) training data
from the first session and testing data from the second session (right), as
in SVC 2004 protocol. With regard to the second strategy, raw verifica-
tion performance drops significantly and the robust score normalization
method TC — 1 outperforms the others. The multisession training and
testing strategy is used in all other experiments.

Results using different resampling techniques for the estimation of
target score variability are summarized in Fig. 6 for three different
verification systems of decreasing verification performance (from left
to right). For the rotation scheme (rotTC), & = 3 is used (see Sec-
tion II-B), so 2 x 5 target scores are considered for the computation of
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the statistics involved in the computation of the normalization function.
In the case of resubstitution, 5 target scores are used. As can be ob-
served, the rotation scheme always leads to verification improvements
whereas the resubstitution strategy only leads to improvements in the
low performance system. This result penalizes the biased estimation
provided by the resubstitution scheme in favor of the unbiased rotation
procedure.

3) Target-Impostor Methods: Verification performance for the
target-impostor methods described in Section III-C is shown in Fig. 7.
In the case of tests with skilled forgeries, only the use of target-im-
postor normalization schemes based on real impostor statistics (rotTrI)
leads to performance improvements as compared to not using score
normalization. With regard to the test with random forgeries, verifica-
tion performance improvements are obtained considering either casual
or real impostor statistics for the computation of the normalization
functions.

4) Summary: Results using a selection of practical a priori normal-
ization methods following SVC 2004 guidelines (i.e., using real im-
postor statistics for the computation of the normalization functions is
not permitted) are summarized in Fig. 8. In this case, only the target-
centric method is capable of performance improvements testing both
with skilled and random forgeries.
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V. CONCLUSION

Score normalization methods in biometric verification, which
encompass the more traditional user-dependent decision thresholding
techniques, have been reviewed from a test hypotheses point of view.
These have been classified into test dependent and target dependent
methods. The focus of the paper has been on target dependent score
normalization techniques, further classifying them into impostor-cen-
tric, target-centric, and target-impostor methods.

The techniques described have been applied to the on-line signature
verification system ranked first and second in SVC 2004 for random
and skilled forgeries, respectively (1.06% EER and 7.14% EER, re-
spectively, on SVC 2004 development data with multisession training).
Various experimental findings have been obtained. Most remarkably,
target-centric techniques based on a variation of the cross-validation
procedure provided the best performance improvement testing both
with random (0.50% EER) and skilled (5.79% EER) forgeries.

Other experimental findings worth noting are that: 1) the use of ca-
sual impostor statistics for estimating the normalization functions leads
to the highest performance improvement when testing with random
forgeries but lowers verification performance in case of testing against
skilled forgeries; 2) the use of real impostor statistics leads to verifica-
tion performance improvements when testing either with random or



424

Fig. 8.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

SVC 2004 development corpus (skilled forgeries)

! — No align. —EER= 7.14%

40 [ | = = Apost. —EER= 2.79%

: —— Impostor—Centric — EER=18.50%

I | = Target-Impostor — EER=17.06%

o Target—Centric — EER= 5.79%

< 20 - : : : : ; I

=® :
o :
2 10 f
c :
kel ;
8 5 o
9 :
I L
2 2
© :
[T .
1
0.5 -
: : : : : : ST T

0.2 et

0205 1 2 5 10 20
False Acceptance Rate (%)

False Rejection Rate (%)

— No align. - EER= 1.06%
40 poriit - o Apost. —EER= 0.01%
= |mpostor—-Centric — EER= 0.20%
:| === Target-Impostor — EER= 0.20%
20 froveiees Target-Centric — EER= 0.50%
10
5
2
1
0.5
01 firoi i
0.05 T el ...........
ooz

SVC 2004 development corpus (random forgeries)

002 01 051 2 5 10 20
False Acceptance Rate (%)

Verification performance for various target dependent normalization methods on SVC 2004 development corpus.

skilled forgeries; 3) when high variability between sessions is encoun-
tered, robust score normalization methods (as those based only on mean
scores) should be used; and 4) resampling methods for the estimation
of target score intra-variability should be unbiased.

Future work includes the review of test dependent score normaliza-
tion techniques [8] and their application to the described on-line signa-
ture verification system.
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Hallucinating Face by Eigentransformation

Xiaogang Wang and Xiaoou Tang

Abstract—In video surveillance, the faces of interest are often of small
size. Image resolution is an important factor affecting face recognition by
human and computer. In this paper, we propose a new face hallucination
method using eigentransformation. Different from most of the proposed
methods based on probabilistic models, this method views hallucination as
a transformation between different image styles. We use Principal Compo-
nent Analysis (PCA) to fit the input face image as a linear combination of
the low-resolution face images in the training set. The high-resolution image
is rendered by replacing the low-resolution training images with high-reso-
lution ones, while retaining the same combination coefficients. Experiments
show that the hallucinated face images are not only very helpful for recogni-
tion by humans, but also make the automatic recognition procedure easier,
since they emphasize the face difference by adding more high-frequency
details.

Index Terms—Eligentransformation, face hallucination, face recognition,
principal component analysis, super-resolution.

I. INTRODUCTION

In video surveillance, the faces of interest are often of small size be-
cause of the large distance between the camera and the objects. Image
resolution becomes an important factor affecting face recognition per-
formance. Since many detailed facial features are lost in the low-reso-
lution face images, the faces are often indiscernible. For identification,
especially by humans, it is useful to render a high-resolution face image
from the low-resolution one. This technique is called face hallucination
or face super-resolution [1].

The simplest way to increase image resolution is a direct inter-
polation of input images with such algorithms as nearest neighbor
or cubic spline. However, the performance of direct interpolation is
usually poor since no new information is added in the process. A
number of super-resolution techniques have been proposed in recent
years [2]-[13]. Most try to produce a super-resolution image from a
sequence of low-resolution images [2], [3]. Some other approaches
[51, [6], [8]-[10], [12], [14], [15] are based on learning from the
training set containing high- and low-resolution image pairs, with the
assumption that high-resolution images are Markov random fields
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(MRFs) [5], [9], [13]. These methods are more suitable for synthe-
sizing local texture, and are usually applied to generic images without
special consideration of the property of face images.

Baker and Kanade [1], [11], [16] developed a hallucination method
based on the property of face images. Abandoning the MRF assump-
tion, it infers the high-frequency components from a parent structure
by recognizing the local features from the training set. Liuer al. [4]
developed a two-step statistical modeling approach integrating global
and local parameter models. Both of the two methods use complicated
probabilistic models and are based on an explicit resolution reduction
function, which is sometimes difficult to obtain in practice.

Since face images are well structured and have similar appearances,
they span a small subset in the high dimensional image space [17],
[18]. In the study by Penev and Sirovich [19], face images are shown
to be well reconstructed by Principal Component Analysis (PCA)
representation with 300-500 dimensions. Zhaoet al. [20] showed
that the dimensionality of face space is insensitive to image size.
Moghaddam [21] downsampled face images to 12 by 21 pixels and
still achieved 95% recognition accuracy on 18004 face images from
the FERET database. These studies imply that facial components are
highly correlated and the high-frequency details of face images may
be inferred from the low-frequency components, utilizing the face
structural similarities.

Instead of using a probabilistic model, we propose a face halluci-
nation method using PCA to represent the structural similarity of face
images. The algorithm treats the hallucination problem as the trans-
formation between two different image styles. This method is closely
related to the work in [22], [23], in which a style transformation ap-
proach was applied to transform a photo into a sketch. In a similar way,
we could transform face images from low-resolution to high-resolution
based on mapping between two groups of training samples without de-
riving the transformation function [24]. The hallucinated face image
is rendered from the linear combination of training samples. Using a
small training set, the method can produce satisfactory results.

Hallucination can effectively improve the resolution of a face image,
thus making it much easier for a human being to recognize a face.
However, how much information has been extracted from the low-res-
olution image by the hallucination process and its contribution to au-
tomatic face recognition has not been studied before. In our method,
PCA is applied to the low-resolution face image. In the PCA represen-
tation, different frequency components are uncorrelated. By selecting
the number of eigenfaces, we could extract the maximum amount of
facial information from the low-resolution face image and remove the
noise. We also study the face recognition performance using different
image resolutions. For automatic recognition, a low resolution bound
is found through experimentation. We find that hallucination may help
the automatic recognition process, since it emphasizes the face differ-
ence by adding some high-frequency details.

II. HALLUCINATION BY EIGENTRANSFORMATION
A. Multiresolution Analysis

Viewing a two-dimensional (2-D) image as a vector, the process of
getting a low-resolution face image from the high-resolution one can
be formulated as

T=HTI,+7n. (1)

Here, I, is the high-resolution face image vector to be rendered, with

length IV as the total pixel number. I is the observed low-resolution
face image vector with length 5% V', where s is the downsampling factor
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