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Section 1

 

Introduction

 

This technical note describes the FDM-TDM transmultiplexer, a class of digital signal pro-
cessing algorithms used to construct a bank of digital filters. Such a filter bank can be used to 
separate the spectrally disjoint portions of an input signal. The need for such a filter bank 
arises frequently in practical applications and the growing capability of digital signal process-
ing (DSP) devices makes the digital transmux approach ever more attractive compared to 
alternate system designs.

This technical note begins by motivating the use of a digital filter bank for signal selection 
and processing applications. Section 3 describes in analytical detail two classic, but distinct, 
ways of deriving the equations for an FDM-TDM transmultiplexer. Use of the resulting 
design equations is illustrated in Section 4. There it is explained how the algorithms are used 
to form the basis for a very efficient demodulator for frequency shift keyed (FSK) voice fre-
quency telegraphy (VFT) signals. The design rules lead to the filter bank card used in the 
Company’s Model l02T Telegraphy Demodulator.

The transmultiplexer rarely appears alone in signal sorting and processing applications and 
therefore it must be designed in coordination with other parts of the system. An important 
example of this is digital tuning of the input signal, an operation that frequently precedes the 
transmultiplexing operation. Section 5 examines the design interactions between these two 
functions and describes several examples of how these tradeoffs have been made in actual 
equipment.

Appendices are included that provide additional analytical details and a discussion of the 
issues associated with designing filter pulse responses for transmultiplexers.
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Section 2

 

What is an FDM-TDM Transmultiplexer?

 

2.1     Frequency-Division Multiplexing

 

A common technique for sending many separate signals through the same physical medium is 
to use different portions of the available frequency spectrum for each one. Using spectral sep-
aration to permit the simultaneous transmission of signals from multiple users is generically 
called frequency division multiplexing (FDM). An example of this transmission technique is 
so-called FSK VFT. The spectrum of such a signal, along with its formal frequency alloca-
tions, is shown in Figure 1. In this case, designated the R.35 Recommendation by the ITU-T, 
each of the individual telegraphy signals is frequency-shift-keyed at a rate of 50, 60, or 75 
bits/second and occupies one of 24 nonoverlapping spectral allocations within the 300 to 
3400 Hz voice band. In the case of R.35, the 

 

mark

 

 and 

 

space

 

 frequencies are 60 Hz apart and 
the carrier, or center frequency, are 120 Hz apart.

The FSK VFT example will be returned to shortly. It should be noted first however that FDM 
techniques are widely used in telecommunications. An important example is multichannel 
FDM telephony in which many voice signals are bandlimited to about 3100 Hz each, single-
sideband upconverted with carriers of different frequencies, and then summed. The resulting 
composite signal has spectrally disjoint channels at regular intervals of 3 or 4 kHz

 

1

 

. Even new 
fiber optic transmission systems are using FDM techniques, calling it instead wavelength 
division multiplexing (WDM). 

 

1. Four kilohertz spacing is by far the most common.
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Figure 1

 

Canal Allocations for a Multichannel Voice Frequency Telegraph (VFT) Signal
Conforming to CCITT Recommendation R.35 and a Typical Signal Spectrum

 

2.2     Use of a Filter Bank 

 

Suppose now that we desired to separate the 24 individual telegraphy signals in an R.35 
waveform so that each could be demodulated. A reasonable approach would be to build a 
bank of 24 filters to separate the individual FSK signals. A bank of 24 FSK demodulators 
would process the outputs of the filter bank. Note that in this case the filters need to be regu-
larly spaced at intervals of 120 Hz and that each requires about the same bandwidth (about 
90 Hz).

Suppose further that we desire to perform the demodulation digitally. This suggests the block 
diagram shown in Figure 2. The input FDM signal is applied to a bank of filters. Each filter 
has a bandpass characteristic centered on one of the 24 FSK canals. The filtered signals are 
then downconverted to a center frequency at or near DC and then digitized at a common rate 
high enough to satisfy the Nyquist sampling theorem for every FSK signal. We then choose to 
time division multiplex (TDM) the sampled FSK signals. This multiplexing allows all 24 sig-
nals to be placed on the same digital bus and perhaps to be processed by the same time-shar-
ing digital demodulator.



 

TN-073R2

 

Use of a Filter Bank 

 

4

 

Figure 2

 

General Schematic of an FDM-TDM Transmultiplexer Composed 
of a Filter Bank and a TDM Multiplexer

 

Looking again at Figure 2 we see that the processing can be viewed as falling into five seg-
ments: 

 

1.

 

The filter bank

 

2.

 

The downconversion

 

3.

 

The sampling

 

4.

 

The commutation of samples to produce a TDM bus carrying all signals

 

5.

 

The demodulator, or more generally, the users of the individual sampled signals

While our objective was to separate the individual signals and to digitize them in preparation 
for possible processing, we observe at this point that steps 1 through 4 have the effect of con-
verting the input FDM signal, in which each component signal is separated by frequency, into 

Input
FDM
Signal

A/D

A/D

A/D

Output
TDM
Signal

FDM Demux TDM Demux 900444

Bandpass Filters
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a TDM output signal, in which each component signal is available in its separate timeslot. 
This operation of converting from one form of multiplexing to another is termed transmulti-
plexing. The structure from FDM input to TDM output is therefore called an FDM-to-TDM 
transmultiplexer, or even more simply, an FDM-TDM transmux. 

To this point no mention has been made of how the filter bank and downconversion process 
might be implemented. It could (and has) been done using analog filters and separate down-
converters, each using its own local oscillator and mixer. This technical note describes algo-
rithms that permit the same functions to be performed digitally. The conceptual distinction is 
shown in Figure 3. The top portion of Figure 3 mimics the structure shown in Figure 2. The 
filtering and downconversion are performed discretely and then each output is digitized and 
commutated. The bottom portion of Figure 3 shows the objective in the development of a dig-
ital FDM-to-TDM transmultiplexer. In this case, the input FDM signal is digitized. All band-
pass filtering and downconversion is performed digitally. The downconverted outputs are 
then 

 

read out

 

 sequentially to produce the desired TDM output.

 

Figure 3

 

Fundamental Description of a Digital FDM-to-TDM Transmultiplexer

Voice Channel
Demux 1 A/D

Time Division
Multiplexer

Voice Channel
Demux C A/D

Analog
FDM Signal

8 kHz

8 kHz TDM
Data Stream

f k

Analog
FDM Signal

Digital
TransmultiplexerA/D

a) Conventional Processing

b) Digital FDM-TDM Transmultiplexer 900445

TDM Data Stream

Frequency Discrete Time
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2.3     Processing Methods

 

We return to the example of demodulating the various FSK signals present in an R.35 VFT 
composite signal. Suppose that we use a transmultiplexer to separate the 24 FSK signals, or 

 

canals

 

, as they are called, and place them on a TDM bus. Twenty-four demodulators or one 
time-shared demodulator convert the FSK signals into binary form. Thus the problem is 
neatly solved. In fact, the actual problem is slightly more complicated. In fact, only a small 
percentage of the 24 canals in a practical R.35 system are typically transmitting data at any 
given time. Most are in the 

 

steady mark

 

 or 

 

steady space

 

 condition. As a result, most of the 24 
demodulators are unused at any given time. Is this concept of demultiplexing all of the canals 
the most efficient?

There are two basic and commonly used schemes for handling occasionally active FDM sig-
nals. Both are illustrated in Figure 4. The top scheme uses tunable filters and some common 
mechanism for detecting activity. Once activity is detected, a resource manager of some sort 
directs one of the tuners to the signal’s frequency. The tuner output is then processed appro-
priately. In the case of FSK VFT, for example, the processor would be an FSK demodulator. 
The lower scheme is the one discussed earlier—all signals are demultiplexed and all process-
ing, both activity detection and demodulation in the case of the VFT signals, is performed by 
using sampled waveform data taken from the TDM bus. In fact, systems have been built both 
ways, the choice depending on such factors as how the detector subsystem can be built, how 
many channels there are, how many signals might be active simultaneously, and the relative 
costs of implementation. The advent of the FDM-TDM transmultiplexer has shifted the bal-
ance toward the latter approach, particularly in applications where the activity factors are 
high or where several steps of processing are required, each of which needs independent and 
simultaneous access to the frequency channels. 
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Figure 4

 

Two Methods of Processing Occasionally Active FDM Signals 
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Section 3

 

Derivation of the equations for a Basic FDM-TDM 

 

Transmux

 

Two intuitively reasonable approaches to developing the equations for the FDM-TDM trans-
multiplexer are presented in this section. The first emulates Figure 5. We first develop the 
equations for a digital counterpart of the analog tuners used in the filter bank and then observe 
that significant computational improvements can be obtained when the tuning frequencies are 
linked together in a simple way. The second subsection starts from a different point, that of 
using the discrete Fourier transform as a spectral channelizer. We ultimately find out that 
these two approaches yield essentially the same analytical results.

 

Figure 5

 

Using a Digital Tuner to Extract One FDM Channel

 

3.1     The Transmux as a Bank of Single Channel Digital Tuners

3.1.1 Fundamental equations for a Single-Channel Digital Tuner

 

The input FDM signal is assumed to be the continuous-time waveform 

 

x

 

c

 

(

 

t

 

). The analog-to-
digital converter shown in Figure 5 samples this waveform at the uniform rate of 

 

f

 

s

 

 samples 
per second, producing the discrete-time sequence 

 

x

 

(

 

k

 

), where 

 

x

 

(

 

k

 

) 

 

≡

 

 

 

x

 

c

 

(

 

t = kT

 

), the integer 

 

k

 

 is 
the time index, and 

 

T

 

 is the sampling interval given by . The spectrum of this sequence is 
shifted down in frequency by multiplying it by a complex exponential of the form 

 

e

 

–j2

 

π

 

ƒ kT

 

, 
where 

 

ƒ

 

o

 

 is the desired amount of the frequency downconversion. The product of 

 

x

 

(

 

k

 

) and this 
exponential is then filtered in discrete time by using the pulse response 

 

h

 

(

 

k

 

). The duration of 
the pulse response 

 

h

 

(

 

k)

 

 is assumed to be finite and in particular of length no greater than 

 

L

 

, an 
integer. The filter output (

 

k

 

) is then decimated by a factor of 

 

M

 

, yielding the sequence 

 

y

 

(

 

r

 

), 
where the integer 

 

r

 

 is the decimated time index.

A/D
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These processing steps are shown in graphical form in Figure 6. Both sides of the two-sided 
spectrum of the sampled input signal are seen in Figure 6(a). For the moment, the input signal 
is assumed to be real-valued and therefore the spectrum is symmetrical around 0 Hz2. A chan-
nel of interest in this spectrum has been shaded and its center frequency is noted to be ƒo. 
Multiplying the input signal by e–j2πƒ kT has the effect of shifting the spectrum to the left 
(assuming 0 ≤ ƒo ≤ ) and centering the desired channel at 0 Hz. The downconverted signal is 
now complex-valued, and therefore spectral symmetry around 0 Hz is neither required nor 
expected. The transfer function of the lowpass filter appears in Figure 6(c). The filter pulse 
response h(k) is chosen to attain the desired spectral characteristics. In particular, the filter 
needs to pass the channel of interest without degradation and suppress all others sufficiently. 
How to design such a pulse response is discussed in Appendix A. In general, the quality of 
the filter grows with the value of the parameter L. The filter shown here is symmetrical 
around 0 Hz and its pulse response h(k) can therefore be real-valued. This is not required 
however. 

After the application of the shifted signal ρ(k) to the filter, the spectrum shown in Figure 6(d) 
results. The desired channel is isolated from all others. It is sampled, however, at a rate far 
faster than required by the Nyquist sampling theorem. The filter output is then decimated by 
the factor M, resulting in the spectrum shown in Figure 6(e). The channel’s bandwidth is the 
same as before but now its percentage bandwidth, that is, its bandwidth compared to its final 
sampling rate, is much higher. In a good digital tuner the percentage bandwidth after decima-
tion usually ranges between 0.5 and 0.9, where unity is the theoretical limit imposed by the 
sampling theorem.

In principle, the parameters ƒs (and hence T), ƒo, L, and M can be chosen arbitrarily. In fact, 
significant simplications to the implementation of the tuner occur if they are carefully chosen. 
To do this we must first develop a general equation for the decimated tuner output y(r).

2. Even though real-valued inputs are assumed here, all of the ensuing analysis applies to complex-valued signals 
as well.

o
ƒs
2
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Figure 6 Spectral Description of Each Step in the Digital Tuning of a Single Channel

The undecimated filter output (k) can be written as the convolutional sum of ρ(k) and the fil-
ter pulse response h(k):

Substituting the expression for ρ(k) yields
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Separating the two terms in the exponential produces the next expression:

Decimation by the factor M is introduced by evaluating (k) only at the values of k where 
k = rM. We denote the decimated output as y(r), given by

3.1.2 Choosing Various System Parameters to Simplify the General
Equation for the Tuner Output

Equation 4 holds for arbitrary choice of L, M, ƒo, and ƒs. To obtain the equations for the basic 
FDM-TDM transmultiplexer, we must first simplify the general equation for the output of the 
digital tuner. We do this by making the three key assumptions:

1. We assume that the sampling rate ƒs and the tuning frequency ƒo are integer multiples of 
the same frequency step ∆ƒ. In the case of FDM multichannel telephone systems for 
example, ∆ƒ is typically 4 kHz. We define the integer parameters N and n with the 
expressions ƒs ≡ N • ∆ƒ and ƒo ≡ n • ∆ƒ.

2. We next assume that the pulse response duration L is an integer multiple of the factor N 
defined above. We define the positive integer parameter Q where L ≡ Q • N. This is a 
nonrestrictive assumption since Q can be chosen large enough to make it true for any 
value of L. If QN exceeds the minimum required value of L, then h(k) can be made 
artificially longer by padding it with zero values. The factor Q turns out to be an important 
design parameter. The parameters Q and N are determined separately and the resulting 
value of L follows from their choice.

3. We also assume that the decimation factor M is chosen to be closely related to the 
parameter N. Typical values are M = N and M = .

We can now examine the effects of these assumptions. First, the relationship between ƒs, ƒo, 
and ∆ƒ allows y(r) to be written as

We subscript the decimated output y(r) by the parameter n to indicate that it depends on the 
tuning frequency ƒo = n • ∆ƒ.

The second assumption, the definition of the parameter Q, permits the single sum to be split 
into a nested double sum. To do this, define the new integer indices q and p by the expressions 

Examination of equation 6 shows that the pulse response running index l has a unique value 
in the range from 0 to L – 1 for each permissible value of p and q. This permits the single con-

y

N
2
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volutional sum over the index l to be replaced (for reasons to be shown) with a double sum 
over the indices p and q. In particular,

The first portion of the exponential term in the sum vanishes since its argument is always an 
integer multiple of 2π. Moving the terms of the summation in the last step is possible since 
the remaining term of the exponential does not depend on the running index q. It is useful to 
give a short name to the terms in brackets in the last equation. Noting that it is a function of 
the decimated time index r and the running index p, we define the variable v(r,p) by the 
expression

Notice that v(r,p) is a function of the input data x(k), the filter pulse response h(l), and the sys-
tem parameters Q, M, and N, but it is not a function of the selected conversion frequency ƒo, 
represented in the equation for yn(r) by the integer n. 

Substituting v(r,p) into the equation for the decimated output yn(r) of the tuner tuned fre-
quency ƒo = n • ∆ƒ yields

Notice that the frequency dependency of the tuner shows up only in the exponential terms. 

Before discussing this result in detail it remains to examine the effects of the third assump-
tion. To do this, define the decimation factor M by the expression M ≡ , where K = 1, 2, or 
4. Look first at the exponential terms preceding the sum. It can now be written as 

N
K
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With K defined this way, the most general expression for yn(r) is

It can be verified that for K = 1, 2, or 4, the factor multiplying the sum is at most a negation or 
a swapping from imaginary to real or vice versa. Thus no actual multiplication is needed. By 
far the cleanest case is the one in which the other system parameters (for example, N, Q, and 
h(k)) are selected so that the decimation factor M exactly equals N, or, equivalently, that 
K = 1. In this case, the exponential preceding the sum collapses to unity, yielding what will be 
termed in this technical note as the basic FDM-TDM transmux equation3:

3.1.3 Interpretation of the Basic Tuner equation in Terms of the Discrete 
Fourier Transform

Examination of equation 19 shows that each sample of the tuner output, when tuned to fre-
quency ƒo = n∆ƒ, is the N-point inverse discrete Fourier transform (DFT) of the preprocessed 
data {v(r,p)}, evaluated at frequency index n. The signal flow described by the equation is 
shown in Figure 7. The sampled input data x(k) passes into a digital tapped delay line of 
length QN at the sampling rate ƒs. Every M-th sample, the complete contents of the delay line, 
all QN samples, are used to compute {v(r,p)}. Thus the v(r,p) are computed at the decimated 
rate of . Each of the N elements of v(r,p) is computed by weighting Q of the delayed input 
samples by the appropriate coefficient from the pulse response vector h(k) and summing them 
together. Notice that at each decimated sampling interval all of the delayed data and all of the 
pulse response coefficients are used to compute the v(r,p). Notice also that since QN is usu-
ally much greater than M, each input sample is used in the production of the {v(r,p)} over 
several consecutive values of the decimated sampling index r. 

The computation of the {v(r,p)} has several names in the literature. In some cases, it is 
referred to simply as the preprocessor or weighting processor. From the DFT-based filter bank 
interpretation of the transmultiplexer, in which the filter pulse function h(k) is viewed as a 
spectral window function, the operation is called windowing and folding. Some of the first 
researchers in the area [9] termed it polyphase filtering. Even though the reasons for this 
name are fairly obscure, it is commonly used.

3. Because of the K = 1 assumption, this equation is the simplest of all those seen to this point and will be refered 
to as the basic equation. Many applications require M to be chosen differently however (see Section 4 for 
example) and in these cases equation 12 should be used.
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Figure 7 Signal Flow to the Output of the Single-Channel Digital Tuner
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Once the input data has been preprocessed, windowed and folded, or polyphase filtered, as 
you will, the resulting N values of v(r,p) are Fourier-transformed to produce yn(r). Notice that 
all of this computation must be repeated for each value of r.

It will be useful later to know how much computation is required to implement this simplified 
tuner. Assume for this calculation that the input data x(k) is complex-valued and that the pulse 
response h(k) is real-valued. If so, then 2QN multiply-add operations are needed for each 
computation of the {v(r,p)} and 4N multiply-adds (approximately) are needed for the compu-
tation of the single point of the DFT, all of this at the decimated sampling rate of . A con-
ventional tuner using a real-valued, L-point pulse response and complex input data requires 
4ƒs multiply-adds for the mixer and  multiply-adds for the filtering. Comparing the two 
shows that the filtering/weighting is exactly the same for the two, while the tuning vs. DFT 
comparison depends on the relative values of M and N. Using the example of the basic 
transmux, where N = M, we find that the two are equal. When M < N, the simplified equations 
actually require slightly more computation. Why then do we go to this trouble? 

3.1.4 Generalization to the FFT-Based Digital Transmultiplexer

What if we desire to tune a second channel, say one that has a center frequency of 
ƒ1 = m • ∆ƒ? Following through the derivation done before, we find that ym(r) is given by the 
same equations except that n is replaced with m. Examining the situation more closely we 
notice that the {v(r,p)} need not be recomputed to obtain the second tuner output. In fact, the 
only operation required to obtain the second tuner output is to recompute the inverse DFT, but 
this time evaluated for the index m instead of n. The conventional tuning approach must be 
completely repeated to obtain the output for another channel. It is usually the case that the 
computation of the {v(r,p)} is much larger than the computation required for the DFT. The 
fact that it need not be repeated quickly makes the preprocessor/DFT scheme significantly 
more efficient than the conventional digital tuner approach as the number of channels to be 
tuned grows. If we use the number of multiply-adds as an indication of computational com-
plexity, and if we denote the number of channels to be tuned by the integer C, we can quantify 
this comparison by noting that

are needed for C conventional decimated digital tuners while 

are needed for the preprocessor /DFT method.

The goal outlined in Section 2 was to demultiplex all of the channels carried in the input 
FDM signal. If the input sampling rate is not chosen extravagantly, then the number of chan-
nels should be somewhat less than  if the input signal is real-valued, and somewhat less than 
N if the signal is complex-valued. To obtain the worst-case situation, we assume that it is 
complex-valued and that C = N. In this case, the total multiply-add computation is given by

ƒs
M

2ƒsL
M

N
2
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Even though this value is less than that required by the direct tuning method, the quadratic 
dependence on the number of channels N makes this method expensive for situations where a 
large number of channels must be dealt with.

Solution to this problem comes in the form of the fast Fourier transform (FFT), a class of 
algorithms that can be used to efficiently compute all of the points of a DFT if N, the size of 
the DFT, meets certain conditions. In particular, if N is a so-called highly composite number, 
that is, it is the product of small positive integers, then various symmetries can be exploited to 
dramatically reduce the computation needed to compute the desired C tuner outputs. 

In practice the size of the DFT, N, is typically chosen to equal 2R or 4 , where R is some pos-
itive integer, resulting in what is known as the radix-2 or radix-4 FFT, respectively4.

For discussion here we will assume the use of a radix-2 FFT (even though it is well known 
that the radix-4 algorithm is somewhat more computationally efficient). With this assumption 
we find that the number of multiply-adds needed to compute all N possible tuner outputs, is 
given by

Comparison of this equation with equation 21 shows that the FFT-based method always 
requires less computation than direct DFT computation of all N tuners and requires less than 
the direct DFT computation of C tuners when C exceeds log2N. For example, suppose that 
N = 64 for a particular problem. If more than log264 = 6 tuners are required, then the FFT is 
more efficient. If C is more on the order of 50, as it probably would be, then FFT-based com-
putation of the DFT is about eight times more efficient than direct computation of the DFT 
and even more efficient compared to conventional computation of the tuner outputs. A graph-
ical example is shown in Figure 8.

The generic FFT-based transmultiplexer consists of a preprocessor, which blocks, weights, 
and sums the input data to produce the N values of v(r,p), and an FFT, which efficiently com-
putes the DFT for every value of n. This structure is shown in Figure 9. The input data is sam-
pled (or provided by a preceding digital subsystem), preprocessed, and DFTed using the FFT 
algorithm. The FFT output bins are read out sequentially, thus producing the time division 
multiplexed (TDM) form promised originally.

The computational efficiency of the transmultiplexer can therefore be traced to two key items: 

1. Separation of the tuning computation into two segments, one of which (the {v(r,p)}) need 
be computed only once

2. The use of the FFT algorithm to compute the inverse DFT

The first accrues from strategic choices of the sampling and tuning frequencies, while the sec-
ond depends on N being chosen to be a highly composite integer.

4. An important exception to this is the so-called prime-factor transform in which N is the product of small, prime 
factors (e.g., 2, 3, 5 , 7, 11, etc).

R
2



TN-073R2 The Transmux as a DFT-based Filter Bank 

17

Figure 8 The Number of Multiply-Adds Needed to Compute C Tuner Outputs for a
Particular Set of System Parameters

Figure 9 The Basic FDM-to-TDM Digital Transmultiplexer

3.2     The Transmux as a DFT-based Filter Bank

We have just developed an FDM-TDM transmultiplexer by first writing the equations for a 
single, decimated digital tuner. The equations for a bank of tuners come from then assuming 
that (1) they all use the same filter pulse response and (2) their center frequencies are all inte-
ger multiples of some basic frequency step. In this section, we develop an alternate view, 
which happens to yield the same equations. It produces a different set of insights, however, 
making its presentation worthwhile.
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3.2.1 Using the DFT as a Filter Bank

Instead of building a bank of tuners and then constraining their tuning frequencies to be regu-
larly spaced, suppose we start with a structure known to provide equally-spaced spectral mea-
surements and then manipulate it to obtain the desired performance.

Consider the structure shown in Figure 10. The sampled input signal x(k) enters a tapped 
delay line of length N. At every sampling instant, all N current and delayed samples are 
weighted by constant coefficients w(i) (where w(i) scales x(k–i), for i between 0 and N – 1), 
and then applied to an inverse discrete Fourier transform5. The complete N-point DFT is com-
puted for every value of k and produces N outputs. The output sample stream from the m-th 
bin of the DFT is denoted as Xm(k).

Figure 10 Processing Weighted, Delayed Signals with Discrete Fourier Transform

Since DFTs are often associated with spectrum analysis, it may seem counterintuitive to con-
sider the output bins as time samples. It is strictly legal from an analytical point of view, how-
ever, since the DFT is merely an N-input, N-output, memoryless, linear transformation. Even 
so, the relationship of this scheme and digital spectrum analysis will be commented upon 
later. We continue by first examining the path from the input to a specific output bin, the m-th 
one, say. For every input sample x(k) there is an output sample Xm(k). By inspection we can 
write an equation relating the input and chosen output:

5. Whether or not it is implemented with an FFT is irrelevant at this point. Also, we happen to use the inverse DFT 
to produce a result consistent with that found in the proceeding subsction, but the forward DFT could also be 
used.
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the m-th bin of an N-point DFT of the weighted, delayed data. We can look at this equation 
another way by defining m(p) by the expression

and observing that equation 24 can be written as

From this equation it is clear that Xm(k) is the output of the FIR digital filter that has x(k) as its 
input and m(p) as its pulse response. Since the pulse response does not depend on the time 
index k, the filtering is linear and shift-invariant. For such a filter we can compute its transfer 
function, using the expression

Suppose that we first choose the simple case with uniform weighting, that is, w(p) = 1 for 
0 ≤ p ≤ N – 1 and, therefore, m(p) = ej2π . In this case, Wm(w) is given by 

The magnitude of this transfer function is plotted in Figure 11. From this plot we can con-
clude that the pulse response m(p) has what might be generally considered to be the fre-
quency response of a bandpass filter. The filter is centered on bin m and its bandwidth is 
nominally . While it might be characterized as a bandpass filter, we also note that the pass-
band is quite rounded and the stopband rejection is relatively poor. The first sidelobes are 
only 13 dB lower than the peak of the passband response.

We’ve now shown that the path from the input to the m-th bin can be described as a finite 
impulse response (FIR) filtering operation and that the transfer function of that filtering oper-
ation has a fairly sloppy bandpass characteristic, at least when the data weighting is uniform. 
What happens for other values of m then? The answer is “the same thing.” For each value of 
m between 0 and N – 1, the pulse response m(p) is computed, leading to the transfer func-
tion Wm(ω). An overlay of these bandpass responses is shown in the lower portion of 
Figure 11. From this we can conclude that the block diagram shown in Figure 10 describes a 
single-input, N-output bank of filters. The filter center frequencies are spaced uniformly in 
increments of  Hz. All N outputs are sampled in time as frequently as the input. When the 
weighting function w(p) is uniform, then the bandpass filters have the form of equation 28, 
shown in Figure 11.
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Figure 11 Transfer Function of the Paths from the Data Input x(k) to the DFT Outputs Xm(k)

3.2.2 The Implications of Attaining the Desired Bandpass 
Characteristic 

We’ve just shown that the DFT of delayed versions of the input sequence x(k) has the general 
properties of a bank of regularly-spaced bandpass filters. Two considerations leave us short of 
our goals. The first is that the shape of the transfer function for each bandpass filter is not 
good enough for most applications and must be improved. The second is that of reducing the 
amount of computation required. We address the first one in this section, and temporarily 
defer the computation issue.

Figure 12 shows two transfer functions. The one pointed to from the left is exactly the same 
as that shown in Figure 11 and defined in equation 28. The one pointed to from the right is 
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representative of the type needed for demultiplexing FDM multichannel telephone signals. It 
offers essentially flat response for most of the passband, has very sharp transition bands, and 
suppresses all energy outside of the transition bands by 55 dB or more. While other applica-
tions may require different transfer functions, as a rule they will be much more stringent than 
unweighted transfer function shown in Figure 12.

Figure 12 Comparison of the Unweighted Transfer Function Wm(ω) and a Typical
Desired Characteristic

How then do we attain different transfer function characteristics? In fact, we use some of the 
remaining degrees of freedom, the weighting function w(p). By allowing w(p) to be non-uni-
form we can now alter the shape of the transfer function of each bandpass filter. By using 
well-known FIR filter design techniques (see Appendix A) it is possible to attain virtually any 
shape. It is not, however, possible to always attain the desired shape and the desired band-
width while keeping the duration of the pulse response constant. In fact, as discussed in 
Appendix A, for a constant bandwidth, the pulse response duration must grow as the transi-
tion bandwidth is forced to be smaller and as the stopband suppression in increased. The 
chain of events described in Figure 13 then unfolds.

Shown across the top of Figure 13 is a stylized version of that seen in the bottom portion of 
Figure 11. The uniform weight shown on the top right leads to the bandpass filter shapes 
shown on the left. Note that the filters are separated in frequency by  Hz.ƒs

N
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Figure 13 Effects of Changing Data Weighting and DFT Size

Now suppose we employ non-uniform weighting to improve the shape of the bandpass filters. 
As discussed in Appendix A, such non-uniform weighting can be used to attain the desired 
transfer function shape, but virtually always at the expense of the bandpass filter’s bandwidth. 
In fact, to obtain the desired characteristic shown in Figure 12, with its flat passband, sharp 
skirts, and high-attenuation stopband, the minimum passband bandwidth is more than a factor 
of ten larger than the unweighted response. Thus the use of a non-uniform weighting, as 
shown on the right of Figure 13(b), results in the situation shown on the left side. There are 
still N bandpass filters, and their center frequencies are still separated by integer multiples 

 Hz, but each filter has been widened considerably, leading to a high degree of overlap.

The first problem to deal with is not the overlap, but rather the fact that the individual band-
pass filters are far wider than the original goal of about  Hz. This is dealt with by returning 
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to Figure 10 and simply letting the delay line length, the number of weighting coefficients, 
and the DFT order grow until the filters are sufficiently narrowband to meet our objectives. 
Again using the example of the desired frequency response seen in Figure 12, the dimensions 
must grow by more than a factor of ten.

While the resulting dimensions can take on rather arbitrary values (above some minimum 
value) we’ll assume here that the new size N' is an integer multiple of N. In particular, we 
assume that the delay line, and the weighting and DFT with it, are extended to the length N' 
where:

where Q is a positive integer. We further assume that Q is chosen to be large enough that a 
weighting function of length N' can be designed to produce not only the desired shape but 
also a bandwidth of about  Hz. The resulting situation is shown in Figure 13(c). The weight-
ing function is now longer than before (by a factor of Q). On the left we see that there are now 
N' filters in the filter bank. Each one of them now has the desired nominal bandwidth of  Hz, 
but their center frequencies are now separated by  Hz instead of  Hz. The overlap 
seen just above still exists but now there is a factor of Q more filters, a factor of Q narrower, 
and a factor of Q more closely spaced. Thus the positive effect of expanding the delay line 
dimension to QN is that the resulting filter bank includes the desired bandpass filters, both in 
bandpass characteristics and center frequencies. The negative aspects include the fact that the 
amount of weighting and DFT computation have gone up by a factor of Q and that there are 
now (Q –1) • N superfluous bandpass filters. 

Suppose now that we choose to compute only every Q-th point of the DFT. The delay line is 
still QN samples long, there are still QN coefficients in the weighting function, and the DFT 
still has order QN, but we’ll choose to only compute those output bins Xm(k) where m is an 
integer multiple of Q. This results in the situation shown in Figure 13(d). The same QN-point 
weighting function is used as immediately above. This case, with N filters of nominal band-
width  Hz and spaced  Hz apart, was our objective. To achieve it, however, required 
expanding the dimensions of the preceding operations quite considerably.

We now develop some equations that describe the steps just traversed. Starting with 
equation 24 we replace N with N' = QN, obtaining an expression for the time sequence seen at 
the m-th DFT bin. 

Suppose, as discussed above, that we eliminate the filter overlapping by evaluating only every 
Q-th DFT bin. Thus we compute Xm(k) only for those values of m that are integer multiples of 
Q. Specifically, if n is assumed to be an integer, then we only compute Xm(k) for values of m 
given by m = Qn. This is leads to
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Since we have achieved the goal of constructing spectrally concentrated bandpass filters 
(albeit at the cost of expanding the size of all steps preceding the final DFT computation), we 
can now consider decimating the filter outputs. Since the filter bandwidths are nominally 

 Hz, decimation by up to 

 

N

 

 is possible without violating the sampling theorem. Suppose we 
decimate by the factor 

 

M

 

, where 0 < 

 

M

 

 

 

≤

 

 

 

N

 

. This means evaluating the integer time index 

 

k

 

 
only at integer multiples of 

 

M

 

. If we allow the integer to be the decimated time index, the dec-
imated version of the 

 

n

 

-th DFT bin output is

At this point we can start making comparisons. Equation 3 closely resembles equation 31 and 
equation 4 closely resembles equation 32. In fact, if we use the definition of 

 

v

 

(

 

r,p

 

) developed 
earlier, then equation 32 becomes

which differs from the equation for 

 

y

 

n

 

(

 

r

 

) developed in equation 12 only in the absence of a 
residual carrier term. If, for example, we want to compute 

 

y

 

n

 

(

 

r

 

), we can do it by selecting the 
right DFT output bin (

 

n

 

 in this case) and multiplying it by the residual carrier term, if any. 
Thus for all practical purposes, the 

 

bank of tuners

 

 viewpoint and the 

 

DFT-based filter bank

 

 
viewpoint yield the same structure and same results.

 

3.2.3 The Effect of Bin Decimation on an FFT 

 

More insight into the relationship between the DFT-based filter bank and the basic FDM-to-
TDM transmultiplexer shown in Figure 9 can be gained by considering the common situation 
where an FFT is used to compute the DFT. In the preceding section, it was shown that the 
DFT filter implicitly uses a 

 

QN

 

-point DFT but in fact only 

 

N

 

 output bins are computed. Con-
sider now the FFT flow graph shown in Figure 14(a). The input is 

 

QN

 

 (8, in this case) 
weighted input samples (

 

p

 

) and the output is 

 

QN

 

 bins. Suppose now that all we want is the 
odd numbered output bins. Careful examination of the flow graph shows that more than just 
the output points can be deleted. Look at 

 

x

 

(

 

0

 

), for example. It is computed using numbers 
from the previous stage which are only used to compute undesired outputs. Thus these inter-
mediate terms need not be computed either. This process can continue until the point where 
the intermediate points are needed. To see how this works, examine Figure 14(b). Removing 
all unneeded nodes reveals something very interesting. The FFT processing naturally breaks 
into two sections. The second section, the 

 

QN

 

-point FFT pruned of all unneeded nodes, is rec-
ognized to have the flow graph of an 

 

N

 

-point FFT. In fact, if the bin decimation is not offset 
from bin 0, then the 

 

twiddle factors

 

 are exactly those of an 

 

N

 

-point FFT as well. The section 
preceding the 

 

N

 

-point FFT can be written as 

 

N

 

 

 

Q

 

-point sums of weighted, delayed input data 
samples. These sums can be recognized as the {

 

v(r,p)}. Thus by pruning out the unneeded 
nodes in a QN-point FFT taken over the weighted input data, the computation of the filter 
bank gracefully separates into the cascade of a preprocessor that computes the {v(r,p)} and an 
N-point FFT. The resulting block diagram is exactly the same as that shown in Figure 9.
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Figure 14 Pruning a Decimation-in-Time (DIT) Fast Fourier Transform (FFT)
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3.2.4 Relationship of the Filter Bank Approach to Digital Spectrum
Analysis 

A matter of confusion to many engineers is that the filter bank scheme seems to produce time 
samples from FFT bins. This confusion has its root in the fact that the DFT, and hence the 
FFT, are usually discussed in the context of digital spectrum analysis and are typically spoken 
of as methods of converting from the time domain to the frequency domain. How then can a 
DFT-based filter bank produce time samples from spectral bins? In fact, the right perspective 
is the opposite one.

Consider again Figure 10 from the viewpoint of digital spectrum analysis. A simple FFT-
based spectrum analyzer accepts N samples of the input sequence, weights or windows the 
data, transforms it by using an N-point FFT, and then estimates the power spectral density by 
computing the magnitude square of the bin outputs. Comparing these steps to Figure 10, we 
see that they are identical except for two things: (1) the magnitude squaring operation at the 
bin outputs and (2) the fact that in spectrum analysis the window and transform operation is 
rarely done for every input sample. (Typically it is done every N-th sample [called 1:1 
overlapping] or even less frequently.) These facts suggest that DFT/FFT-based digital spec-
trum analysis is derived from the filter bank concept rather than the other way around. The fil-
ter bank shown in Figure 10 uses a transform computed over a record of weighted, delayed 
input data to split the input signal’s energy into N spectral bands. The degree to which this 
separation is completed depends on the choice of windowing or weighting function and on 
the length of the transform. If the function is chosen properly, the windowing operation and 
the DFT/FFT computation can be computed less frequently, that is, decimation can be intro-
duced. In this context, the simple FFT-based spectrum analyzer can be recognized to perform 
an instantaneous power measurement at the output of each of the filters in the bank. The qual-
ity of the analyzer depends on the window function chosen and the DFT/FFT order N (as they 
affect the passband shape), the rate at which the filter outputs are computed (given by the dec-
imation factor M), and the number of instantaneous power measurements averaged to obtain 
the spectral estimate. Thus we can conclude that the digital spectrum analyzer approximates 
the true power spectrum by measuring the power seen in each of the bandpass filter outputs 
produced by the DFT-based filter bank.

An interesting sidelight is that the most common name for the transmultiplexer preprocessor 
stems from the filter bank’s relationship with digital spectrum analysis. Look again at 
Figure 14. The input to the QN-point FFT is QN weighted and delayed input samples. From 
the bank-of-tuners viewpoint we know that the weighting function w(k) is just the tuner pulse 
response h(k) needed to bandlimit the tuned signal properly. In the context of spectrum analy-
sis, however, this function is called a data window. They are in fact identical and the tuner 
viewpoint provides the analytical basis on which to design the needed window. We’ve already 
observed that after pruning the FFT, the QN-point transform separates into two sections. The 
first section folds together Q windowed samples at a time to generate the N-point input to the 
FFT. From this viewpoint, it is commonly referred to as the window-and-fold section of the 
FDM-to-TDM transmultiplexer.
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3.3     Stylized FORTRAN Implementation of a Basic FDM-TDM Transmux

Table 1 shows a stylized example of a software implementation of an FDM-TDM transmulti-
plexer. Some details of the initialization steps have been blurred for the sake of simplicity and 
the parameters used are certainly not those appropriate to all applications, but the code should 
serve as an accurate guide to the amount of computation needed and its organization.
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Table 1 Stylized FORTRAN Example of an FDM-TDM Transmultiplexer  

SUBROUTINE TMUX(INPUT_ARRAY, INPUT_POINTER, OUTPUT_VECTOR)
C
C SUBROUTINE TMUX - IMPLEMENTS A BASIC FDM-TO-TDM TRANSMUX.
C A NEW VECTOR OF CHANNELIZED CHANNEL OUTPUTS, CALLED
C “OUTPUT_VECTOR" IS PRODUCED EACH TIME THE SUBROUTINE IS CALLED,
C UNLESS THE DATA IN “INPUT_ARRAY” IS EXPENDED.
C

PARAMETER N = 64 !NUMBER OF CHANNELS AND/OR BINS
PARAMETER Q = 3 !WEIGHTING FUNCTION EXPANSION FACTOR
PARAMETER M = N !DECIMATION FACTOR

C  THIS CHOICE OF M YIELDS BASIC TRANSMUX
C

INTEGER M, N, Q, INPUT_POINTER, J, K, INDEX
COMPLEX INPUT_ARRAY(1), OUTPUT_VECTOR(N), VRP(N)
REAL WEIGHTING(N*Q)

C
DATA WEIGHTING/ * QN values of the weighting function h(k) * /

C
C ***************** MOVE TIME POINTER ***************************
C

INPUT_POINTER = INPUT_POINTER + M
C
C ****************** COMPUTE v(r,p) *****************************
C

DO 10 J=1,N
1O VRP(J) = CMPLX(0.,0.) !ZERO THE VECTOR VRP
C

DO 30 J=1,N
 DO 20 K=1 Q
  INDEX = (K-1)*N+J-1 !COMPUTE OFFSET IN DATA AND WEIGHTING
  VRP(J) = VRP(J) + INPUT_ARRAY(INPUT_POINTER -INDEX) *

 1     WEIGHTING(INDEX+1)
20    CONTINUE
30 CONTINUE
C
C ****************** COMPUTE VECTOR OF OUTPUTS ******************
C ****************** USING INVERSE FFT ROUTINE ******************
C

CALL IFFT(VRP,OUTPUT_VECTOR,N)
C
C ****************** REMOVE RESIDUAL CARRIER TERM ***************
C
C ------------ IF M NOT EQUAL TO N, REMOVE CARRIER HERE
C
C ********************* NORMAL RETURN *************************** 
C

RETURN
C

END
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Section 4 Example: Using an FDM-TDM Transmux to 
Demodulate R.35 Telegraphy Signals 

Suppose that our design objective is to build a digital processor capable of demodulating all 
of the FSK canals found in the R.35 signal shown Figure 1. Suppose further that we choose to 
build the demodulator for each FSK signal along the lines of the one shown6 in Figure 15(a). 
This type of FSK demodulator uses two filters: one centered at the mark frequency fmk and 
another the space frequency ƒsp. The powers or amplitudes of the two filter outputs are com-
pared to determine whether the signal instantaneously falls mostly in the vicinity of the mark 
or is closer to the space. The bit synchronizer logic monitors the transitions between mark and 
space (and vice versa), using the information to determine the right instants to sample the 
thresholded difference waveform and produce binary decisions.

Figure 15 shows the block diagram of the demodulating process when extended to handle all 
24 FSK canals in an R.35 signal. Initially it appears to only be 24 parallel demodulators. On 
closer inspection however, it may be recognized that the center frequencies of all the filters 
differ by integer multiples of a single frequency increment ∆ƒ. This suggests the use of a dig-
ital filter bank to compute all of the required bandpass filters. We now proceed to see how the 
system design for this filter bank is done.

The system design of the transmultiplexer/filter bank is specified by a small set of parameters. 
We determine these parameters as follows:

• ∆ƒ: Inspection of the frequency allocations for the R.35 signal shows that all possible mark 
and space frequencies are separated by integer multiples of 60 Hz. Thus it is natural to set 
∆ƒ = 60 Hz.

• ƒs and N: With ∆ƒ determined, the choice of N, the DFT dimension, and the choice of the 
input sampling rate ƒs, are locked together. We bound N from below, by noting that at least 
48 filters are needed, two for each FSK canal. In principle, the value of N can be chosen to 
be any number higher than 48. If the use of the FFT is contemplated then N is usually cho-
sen to the first power of 2 or 4 higher than the minimum value7. Assuming the use of either 
a radix-2 or radix-4 FFT, plus the use of complex-valued input data, the prudent value of N 
is 64. This immediately leads to a complex-valued input sampling rate of 
N • ∆ƒ = 3840 Hz. If the input were real-valued instead, then the chosen sampling rate 
would be twice that, or 7680 Hz.

6. Note that this demodulator design is slightly different than the one discussed in Section 2. Both are used in 
practice.

7. Section 5 introduces some additional considerations in the design of digital systems in which the 
transmultiplexer is only a part.
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Figure 15 A Basic Two-Filter FSK Demodulator and its Filter Bank Extension
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•

 

L

 

 and 

 

Q

 

: With 

 

N

 

 determined, we find that 

 

L

 

 and 

 

Q

 

 are locked together and that they are a 
function of the exact filter design used to select the pulse response (or, equivalently, the 
window function) used to determine the shape of the bandpass filters. The issues to be con-
sidered in the design of the pulse response are discussed in Appendix A. Without reiterating 
them here, we observe that following those rules yields a minimum pulse response duration 

 

L

 

 of about 174. For this application we extend the filter pulse duration to 192, allowing 

 

Q

 

 to 
equal exactly 3.

•

 

M

 

: With the input sampling rate set, the decimation factor 

 

M

 

 determines the output sam-
pling rate at each of the filter outputs. Thus ƒ

 

out

 

 , the output sampling rate, equals  Hz. 
The required output rate depends on the types of signals present and the types of processing 
to be done to them. In the case of demodulating asynchronous FSK signals, experience has 
shown that the output sampling rate needs to exceed the highest FSK baud rate expected by 
a factor of four or more. The highest baud rate allowed by the CCITT for an R.35 canal is 
75 Hz

 

8

 

. Thus the output sampling rate ƒ

 

out

 

 must exceed 300 Hz. By choosing 

 

M

 

 = 12, we 
obtain an output sampling rate of ƒ

 

out

 

 = 320 Hz.

A demodulator using these parameters is shown in Figure 16. It is termed the 

 

filter bank

 

 card 
and is used in the Company’s Model 102T Telegraphy Demodulator to simultaneously 
demodulate 24 voice grade channels, each containing 24 R.35 FSK canals. Thus 
24 • 24 • 2 = 1152 filters needed to isolate the mark and space energy of all FSK canals. When 
demodulating R.35 signals, each filter produces outputs at a rate of 320 per second. The input 
sampled waveforms are tuned and filtered by a preceding tuner to spectrally align the filter 
bank’s bins with the mark and space frequencies of the R.35 signal.

Arrows in Figure 16 point to the key computational elements on the filter bank card. One 
1010J multiplier-accumulator handles the window-and-fold, or preprocessing, function for all 
24 voice channel inputs. The second 1010J is used to compute the needed FFTs. When pro-
cessing R.35 signals in all 24 channels, 320 • 24 = 76800 FFTs of dimension 

 

N

 

 = 64 are per-
formed per second. The third arrow points to a TRW 1022, a floating-point processor used to 
measure the instantaneous power at the bandpass filter outputs and threshold their differences 
to produce binary decisions.

In passing, we note that this design exploits the fact that the FSK demodulator only requires 
knowledge of the magnitude of each filter output. Recalling the general transmux equation 
given in equation 12 and substituting the appropriate values of 

 

N

 

, 

 

Q

 

, and 

 

M

 

 produces the 
equation:

The exponential preceding the sum has unity magnitude and therefore does not affect |

 

y

 

n

 

(r)

 

|. 
It is therefore not necessary to compute the product of the exponential and the sum. The mag-
nitude measurement is given by

 

8. The other rates are 50 and 60 Hz.
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Figure 16

 

Photograph of the Filter Bank Card Used by the Model 102T Telegraphy
Demodulator – M = 12, Q = 3, N = 64, 

 

∆

 

ƒ = 60 Hz

 

This same filter bank card is also capable of demodulating FSK signals conforming to the 
R.37 and R.38A ITU-T recommendations. The R.37 signal, for example, uses 12 canals 
instead of 24, and each of them operates at twice the rate and with twice the mark-space fre-
quency separation of the R.35 signal. Repeating the system design just performed yields the 
following:

•

 

∆

 

ƒ = 120 Hz

•

 

N

 

 = 32 and ƒ

 

s

 

 = 3840 Hz
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•

 

L

 

 = 96 and 

 

Q

 

 = 3

• ƒ

 

out

 

 = 640 Hz

Note that 

 

Q

 

 and ƒ

 

s

 

 remain the same as for R.35, and that 

 

∆

 

ƒ and ƒ

 

out

 

 double because of the 
increased mark-space separation and allowable baud rates, while 

 

L

 

 and 

 

N

 

 are halved. The 
impact of processing this additional signal can be assessed by using the formula for the num-
ber of multiply-adds required, specifically

It can be verified that the number of multiply-adds needed to perform the window-and-fold 
function for the filter bank is exactly the same as is needed for the R.35 signal, since the 
ratio  holds constant. Moreover, the amount of computation needed for the radix-2 FFT is 

of that needed for R.35, the ratio between 

 

log

 

2

 

32

 

 and 

 

log

 

2

 

64

 

. Thus a filter bank with the 
computational horsepower to handle R.35 can also handle R.37. The R.38A standard repre-
sents another factor of two in frequency separations and allowable baud rates. Once again it 
can be verified that the window-and-fold computation is the same and the FFT computation is 
smaller yet. Thus a properly designed filter bank processor capable of handling the R.35 stan-
dard can also handle R.37 and R.38A as well. A subtle difference is that the input signal must 
be tuned slightly differently for the three different standards.

N
M

5
6
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Section 5

 

The Impact of Digital Tuning on the Overall Design of 

 

an FDM-TDM Transmux

 

5.1     Problem Statement 

 

So far we have presumed that the FDM input signal to the transmux has been magically pro-
vided and that it has been sampled at the proper rate. In fact, the signal available to the pro-
cessor might not be in the desired form and signal processing may be required to convert it 
appropriately. As we shall see, the computation required for this can be significant in itself. As 
a result, these signal conditioning steps must be taken into account in the optimal design of 
the whole system. In this section, we focus on the use of digital tuners for this signal condi-
tioning and examine the tradeoffs between the parameters of a tuner and the transmultiplexer 
that follows it.

 

5.2     Total Computational Requirements

 

There are a few practical applications in which the input signal is complex-valued, sampled at 
the desired rate, and spectrally registered with the filters produced by the transmux-based fil-
ter bank. More typically, however, applications involve real-valued input signals, the signal is 
not aligned with the filters in the bank, or the signal of interest must be extracted from a wide-
band signal. It is common in these cases to use a digital tuner to select the portion of the spec-
tral band in which the transmux will operate. This tuner will usually have a block diagram 
exactly like that seen in Figure 5. The incoming sampled signal is quadrature downconverted, 
filtered using an FIR linear phase filter, and then decimated

 

9

 

. The decimated tuner output is 
applied to the preprocessor portion of the transmultiplexer. For the analysis here we assume 
that the input is real-valued (from an A/D converter, for example), that the tuner input sam-
pling rate is given by ƒ

 

in

 

, that the pulse response duration of the tuner’s filter is given by 

 

L

 

t

 

, 
and that its decimation factor is 

 

M

 

t

 

. The spectral band over which the tuner offers rated pass-
band performance and adjacent signal rejection is denoted by 

 

B

 

t

 

. The combined block dia-
gram of the tuner and FDM-TDM transmultiplexer is shown in Figure 17, along with the key 
variables needed to determine the joint optimal design.

 

9. We assume one-step decimation in this analysis. An important exception to this approach is described in 
Section 5.4.3.
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Figure 17

 

Key Variables in the Size Optimization of a Digital Tuner and Transmultiplexer

 

We obtain an equation for the total number of multiply-adds required by adding the transmux 
expression found in equation 23 with the computation requirements of the preceding tuner. 
This produces the following:

By inspection we see that = 

 

ƒ

 

s

 

 and that ƒ

 

out

 

 =  = . 

We observe that the bandwidth of the signal exiting the tuner, denoted 

 

B

 

t

 

, must be less than ƒ

 

s

 

, 
the transmux input rate, in order to satisfy the Nyquist sampling theorem. Their ratio is a key 
element in the computational tradeoff between the tuner and the transmux. With 

 

B

 

t

 

 fixed, an 
increase in ƒ

 

s

 

 increases the computation needed for the transmux while decreasing that 
needed for the tuner. We make this explicit by developing a formula for the tuner’s pulse 
response duration 

 

L

 

t

 

. Again assuming one-step decimation and appealing to the design formu-
las discussed in [8], 

 

L

 

t

 

 is closely approximated by

where 

 

α

 

t

 

 is determined by the degree of stopband rejection desired

 

10

 

 and 

 

∆

 

ƒ

 

t

 

 is the tuner’s 
transition band. In this case, the transition band can be no greater than the difference between

 

B

 

t

 

 and ƒ

 

s

 

. If we assume the use of this limiting value, 

 

L

 

t

 

 is given by
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10.Specifically, 

 

α

 

t 

 

= 0.22 + 0.0366 • 

 

SBR

 

, where 

 

SBR

 

 is the minimum stopband rejection in decibels. A typical value 
for 

 

SBR

 

 is 60 dB, yielding an 

 

α

 

t 

 

of 2.42.
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Substituting this expression and expressing all sampling rates in terms of the input rate ƒin 
produces an equation for the total number of multiply-adds required.

Another useful form of this equation makes the functional dependence on ƒs more explicit. 
We do this by using the expressions 

and the assumption that a radix-2 FFT is employed to compute the DFT. With these, the 
expression for the total number of multiply-adds can be written as

5.3     Parameter Optimization

Given expressions such as those shown in equations 42 and 44 it is possible to accurately esti-
mate the total amount of multiply-add computation needed for a tuner/transmux processor. It 
is also possible to perform tradeoffs between the various parameters in order to optimize the 
resulting design. While this can in principle be done with any of the design parameters, we 
demonstrate in this section the computational implications of varying the parameter ƒs, the 
input sampling rate to the transmultiplexer. In practice, this usually turns out to be one of the 
designer’s most important parameter choices.

Figure 18 shows the computational requirements for a hypothetical transmultiplexer. In this 
case, the input sampling rate ƒin is assumed to be 6.4 MHz. The tuner must select an FDM 
telephone supergroup from the input signal and demultiplex all 60 voice channels in the 
supergroup. The tuner’s bandwidth Bt must therefore be greater than or equal to 240 kHz and 
ƒs must exceed that. For the telephone demultiplexing application, the channel spacing ∆ƒ is 
usually 4 kHz and the over-sampling factor K is typically chosen to be unity. Figure 18 shows 
five curves, one for each segment of the computation and one for the composite. The number 
of multiply-adds required by the input mixer is constant, since the input sampling rate ƒin is 
fixed. The computation required by the tuner’s filter falls as ƒs rises from 240 kHz and tends 
toward the input Nyquist frequency of 3.2 MHz. The cause of this can be ascertained by 
examining equation 40. As ƒs decreases toward Bt, the transition band decreases, Lt increases 
hyperbolically, and the amount of computation needed for the tuner’s filter grows without 
bound.

.
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Figure 18 Tradeoff between the Design Parameter ƒs and Total Computation in a 
Hypothetical Supergroup Transmultiplexer

The next two curves describe the effect of ƒs on the two components of the transmultiplexer. 
For a given value of Q, the computation required by the preprocessor is strictly proportional 
to ƒs. The FFT’s computation rises slightly faster than proportionally since the number of FFT 
bins grows as ƒs does. The sum of these constituent curves represents the total amount of mul-
tiply-add computation needed. Note that it has a broad minimum. It rises precipitously as ƒs 
decreases toward Bt and more slowly as ƒs increases toward its other limit .

The value of ƒs which leads to the minimum amount of computation is a complicated and 
nonlinear function of virtually all of the design parameters. While an exact closed form equa-
tion for this minimum point is not attainable, it is possible to develop a useful approximation. 
We now proceed to do that.

We have made various assumptions about ƒs along the way, the most important being that it is 
an integer multiple (and usually a power-of-two multiple) of the filter bank’s channel separa-
tion ∆ƒ. For this analysis, however, we temporarily release that constraint and treat it as a 
continuous variable. To find its optimal value we can then evaluate the first derivative of Gtotal 
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with respect to ƒs and then find the value of ƒs which makes the first derivative equal to zero. 
We first find that the derivative is given by

Setting the derivative to zero leads to an implicit, nonlinear expression. While it can be solved 
numerically, a practically valid assumption allows a closed form solution. We first define the 
variable γ, given

With this definition we can write the equation determining the optimum point as

For convenience, we also define the factor ρ, a function of the tuner bandwidth reduction 
ratio, by ρ = . Using this definition, equation 47 can be compactly, but deceptively, written 
as

This expression is deceptive since it proves to be implicit. The term γ depends on ƒs, keeping 
equation 48 from being easily solved exactly. However, the equation proves to be useful any-
way. Examination of the definition of γ shows that it depends on the logarithm of ƒs and, in 
fact, is often quite insensitive to the actual choice of ƒs. Once a general range of ƒs has been 
determined, a nominal value of γ can in turn be found and plugged into equation 48 to find a 
value of ƒs very close to the unconstrained optimum.

We can use the hypothetical supergroup tuner/transmux to demonstrate this procedure. Sup-
pose we guess the optimum value of ƒs to be 480 kHz, twice the required tuner bandwidth Bt 
of 240 kHz. Plugging this into the expression for γ yields 10.4 and using that in equation 48 
indicates that the optimum value for ƒs should be about 625 kHz. Figure 18 shows the curve 
to be quite flat in the vicinity of the optimum point, allowing the actual value of ƒs to be cho-
sen consistently with some of the constraints so far ignored in this analysis. In particular, we 
desire ƒs to be a power of two or four times the channel spacing of 4 kHz in this case. Thus a 
reasonable choice for ƒs in this case is 512 kHz.

We can observe some general trends affecting the optimal choice of ƒs. It grows higher as the 
tuner input sampling rate ƒin does, reflecting the associated growth in tuner computation. It 
tends to decrease with growth in Q, K, and N, all of which imply more computation in the 
transmultiplexer. We note also that this formula depends strongly on the assumption of one-
step decimation in the tuner. If a multistage tuner is used, the balance will be different. A rule 
of thumb can be developed by using equation 48. Over a broad range of practical examples, 
the optimal ratio between ƒs and Bt attains values between 1.3 and 2.3 for one-stage decima-
tion. When this ratio (that is, 1 + ) exceeds 2.5 or so, the tuner computation overwhelms 

ƒin
Bt

ρ
γ
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that of the transmux and alternative designs for the tuner should be examined. Multistage dec-
imation is only one possible alternative.

One implication of ƒs being significantly larger than Bt is that many of the channels or filters 
in the transmux-based filter bank are not useful. To visualize this, consider Figure 19. 
Figure 19(a) shows the power transfer function of the tuner filter before its output is deci-
mated to the rate ƒs. The passband of the filter is Bt Hz wide, the transition band on each side 
of the passband is ∆ƒt Hz wide, and the stopband extends from  + ∆ƒt Hz to the Nyquist 
folding frequency . Figure 19(b) shows the power transfer function of the decimated filter. 
In this case, we assume that the transition band ∆ƒt is slightly less than ƒs – Bt. With this 
choice, some energy passed by the tuner through the transition bands folds back into the out-
put, but none falls in the passband. Figure 19(c) shows the channels of the transmux-based fil-
ter bank overlaying the tuner’s power transfer function. The channels falling within the 
passband are clean, that is, the tuner’s passband ripple and stopband rejection apply there, but 
the channels falling in the transition band are subject to several degradations (for example, 
gain slope and out-of-band signal aliasing) and are therefore not useful in most cases. Thus 
even though the transmultiplexer breaks the ƒs Hz band at the output of the tuner into N chan-
nels, only C of them, where C =  = , are typically used for downstream processing.

5.4     Hardware Examples of Tuner/Transmux Tradeoffs

This Company has built a number of digital transmultiplexers for various applications and all 
of them employ some form of digital tuner. The next three sections present a few of these 
designs with the intent of demonstrating how the overall system design decisions were made. 

5.4.1 A Single-Card Supergroup Tuner/Transmux 

As a part of the IR&D program that ultimately led to the development of the Model 120 Mul-
tichannel Processor, the Company developed an FDM supergroup transmultiplexer during 
1985. Its basic requirements were to accept an FDM supergroup (that is, 60 voice grade chan-
nels spaced at regular intervals of 4 kHz over a band of 240 kHz) located at any of several 
possible spectral bands. These bands include 2–242 kHz, 12–252 kHz, 60–300 kHz, 
312–552 kHz, and 564–804 kHz. Another key goal was excellent technical performance. To 
achieve this, the transmultiplexer portion was designed to use 16-bit arithmetic and key 
design parameters of ƒs = 4 kHz, K = 1, and Q = 16.

Since a supergroup only occupies 240 kHz, a convenient choice of ƒs would be 256 kHz.

This value exceeds 240 kHz and makes N equal 64, an integer power of two and four. This 
value proves not to be globally optimum, however, as we will see after examining the tuner’s 
requirements.
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Figure 19 The Impact of the Tuner’s Transition Bandwidth on the Number of Useful
Filterbank Outputs
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The highest input frequency of interest to the tuner is 804 kHz. The sampling rate must there-
fore exceed this value by two or more. The actual rate chosen was 2.048 MHz. This was 
based on several considerations:

• It satisfies the Nyquist sampling theorem and includes some allowance for analog antialias 
filtering.

• It is a power-of-two integer multiple of ∆ƒ = 4 kHz.

• It was the highest sampling rate attainable with financially acceptable 12-bit A/D converters 
of the era. Twelve-bit digitization was desired to maximize the unit’s noise power ratio 
(NPR) and dynamic range.

By inspection it would appear that the proper value of 1og2( ) = 1og2N is 8, 9, or 10. Assum-
ing a nominal value of 9, we can use equation 48 to accurately estimate the optimum value of 
ƒs. Performing this calculation yields 437 kHz. In the actual design, this value was rounded 
up to 512 kHz, the next-higher power-of-two integer multiple of 4 kHz. The choice of ƒs = 
512 kHz in turn means that the tuner decimation Mt must equal 4 and the tuner’s pulse 
response duration Lt must equal at least 20.

The resulting tuner/transmultiplexer, shown in Figure 20 and described in [4], was built on a 
single 6U400 circuit card. The 12-bit A/D module was mounted separately in the chassis. One 
multiplier chip operating at 4.096 megamultiplies/sec performs the tuner’s quadrature down-
conversion. Two 1010J multiplier-accumulators (MACs) filter and decimate the downcon-
verted signal, preserving the center 248 kHz. Two more 1010J MACs perform the window-
and-fold preprocessing for the transmultiplexer while a single 1010J is used to compute the 
radix-2 FFT. Seven stages are used to compute the 128-point FFT and an additional one is 
used to perform sideband inversion on those voice channels designated by the user. This 
transmultiplexer also happens to use the so-called offset-bin DFT instead of the usual DFT. 
The motivation for this and the method for implementing it are discussed in Appendix B.2.

5.4.2 Design of the Mode 102T Telegraphy Demodulator

Section 4 discussed the use of an FDM-to-TDM transmultiplexer as an integral part of a 
demodulator capable of handling all 24 FSK signals present in an FDM voice frequency 
telegraphy (VFT) system. The analysis developed in that section showed that, in absence of 
other system-level factors, the best input sampling rate to the transmux-based filter bank was 
3840 Hz, 64 times the 60 Hz fundamental tone spacing in the R.35 standard. In this section, 
we re-examine that choice in terms of the tuner required to provide the VFT signal to the 
transmultiplexer.

To pass all 24 FSK components of an R.35 VFT signal, the tuner must have a passband Bt of 
slightly more than 2880 Hz. The system must be able to accept real-valued digital samples 
from a commercial PCM link. These are provided at a rate of 8000 samples/sec11. From 
Section 4 we recall that the other key parameters in the filter bank’s design are: Q = 3, M = 12 
(assuming the input rate is 3840 Hz), K = , and N = 64. Using the values in equation 48, and 
assuming a nominal value of 2.5 for αt, yields 3920 Hz as the optimal value of ƒs. This is very 
close to the best choice without taking the tuner into account. We therefore fix on 3840 Hz as 
the overall best choice.

11.The Model 102T Telegraphy Demodulator is also capable of digitizing real-valued analog inputs at a rate of 
16 kHz.

ƒs
∆ƒ

16
3
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Figure 20 Photograph of a Practical Supergroup Tuner and Transmultiplexer [3] – M = 32,
Q = 16, N = 128, ∆ƒ = 4 kHz
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The next problem encountered, however, is that the choice of ƒin as 8000 Hz and ƒs as 
3840 Hz means that the tuner’s decimation factor Mt is not an integer. In particular, with these 
sampling rate choices, Mt is given by . As a result, a simple one-step decimating tuner of 
the type shown in Figure 5 cannot be used directly.

The solution to this problem comes with the use of digital interpolation and decimation tech-
niques. These are described in [2] and we refer to it here as digital resampling, the process of 
creating new digital samples at the desired rate from a sequence sampled at a different rate. 
The block diagram of this process is shown in the top portion of Figure 21. The incoming 
real-valued signal is first quadrature downconverted to move the band of interest into the 
passband of the digital lowpass filter and to register the filter bank’s filters with the mark and 
space frequencies of the VFT signal. Conceptually, the downconverted quadrature signal is 
then zero-filled12 by a factor of 12, lowpass filtered, and then decimated by a factor of 25. The 
zero-filling artificially increases the sampling rate to 96 kHz, creating 11 extra images of the 
input signal in the process. The lowpass filter removes these images and bandlimits the zero-
filled signal to just the 2880 Hz band of interest. The decimation leads to an output rate of 

 = 3840 Hz, exactly the desired value. In fact, the signal is never physically zero-filled. 
Pointers in the hardware keep track of where the non-zero data points lie and use that infor-
mation to avoid doing unnecessary multiplication.

The bottom portion of Figure 21 shows the circuit card assembly in the Model 102T, which 
performs the downconversion and resampling processes for 24 input voice channels. An 
MPY16 multiplier chip is used for the downconversion of all 24 channels and a pair of 1010J 
MACs performs the filtering needed to resample all 24 inputs. Programmable ROMs are used 
to generate the sequencing signals needed for the resampler. The extra 1010J and ALU visible 
on the card are used to spectrum-analyze all 24 input channels with 60 Hz resolution at about 
40 times a second. This spectral data is D/A-converted and provided to an oscilloscope for 
use by the equipment’s operator.

Note that even though resampling is being performed, the equations used to choose the opti-
mum value of ƒs are still valid. The fundamental reason for this is that the filter segment of the 
tuner is still of the FIR variety and that one-step decimation is still employed. As a result, the 
average computation for the tuner remains as predicted by equation 42.

We might note in passing that the resampler used in the Model 102T is termed a synchronous 
resampler since the ratio of the number of input samples to output samples is rigidly fixed. It 
is also possible to employ a so-called asynchronous resampler to produce the desired sam-
ples. This is usually done when the input sampling rate varies slightly over time and it is 
desired to have the output rate locked to some frequency standard. The control of such resam-
plers is more complicated than the synchronous variety but the amount of computation 
needed for the downconversion and filtering is essentially the same.

12.The zero-filling factor is 6 for input signals sampled at 16 kHz.

25
12

96000
25
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Figure 21 The Use of a Resampling Tuner to Provide the Inputs to the Model 102T Filter
Bank Card

b) The Model  102T Tuner Card, Which Performs Digital Resampling on
24 Simultaneous Inputs

a) Block Diagram of the Synchronous Digital Resampler Used in the Model  102T 
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5.4.3 VLSI Implementation of FDM Group Tuning
and Transmultiplexing

 

A number of apparently inoffensive assumptions were made in the development of the 
tradeoff formulas used in the previous examples. One was that one-step (also called 

 

single 
stage

 

) decimation is used in the tuner’s filtering and the other is that the number of multiplica-
tions and additions forms good basis for comparing the complexity of various designs. This 
example demonstrates some counterexamples along the way to the description of a system 
that represents the current state of the art in tuner and transmultiplexer design.

Suppose that our goal is to accept a full 2700-channel FDM telephone baseband, select an 
FDM group with a tuner, and then demultiplex the constituent 12 voice grade channels with a 
transmultiplexer. In the now-familiar way, we develop the certain specifications for the trans-
multiplexer and tuner separately and then jointly optimize the shared parameters.

• Transmultiplexer: To achieve the desired channel shaping, we select 

 

Q

 

 to be 16. To mini-
mize the amount of computation, we set 

 

K

 

 to unity. The window/tuner pulse response cho-
sen provides an adjacent channel rejection of better than 55 dB and an NPR of about 55 dB.

• Tuner: A 2700-channel baseband extends up to 12388 kHz. Leaving a transition band for an 
analog antialias filter and looking for a power of two times 4 kHz leads to the selection of 
32768 kHz as ƒ

 

in

 

, the baseband digitization rate. The tuner output bandwidth 

 

B

 

t

 

 must be at 
least 48 kHz to pass an FDM group. Owing the high tuner decimation required, we assume 
that 

 

αt must be on the order of 3.

We now turn to equation 48 to determine the optimum value of ƒs, and with it, Mt, Lt, and N. 
Plugging in to this equation yields an optimal ƒs of about 490 kHz, more than ten times 
greater than the FDM group’s bandwidth. In analyzing this result, we find that the amount of 
computation needed by a single-step FIR decimating tuner is so high that it dominates that 
needed by the transmultiplexer. Clearly another approach is needed.

In response to this problem, the Company has developed a pair of custom VLSI chips for 
selecting FDM groups from digitized basebands and another chip for transmultiplexing four 
FDM groups. The tuner chips are described at length in [10]. The block diagram is essentially 
the same as that shown in Figure 5 except that a multistage decimating filter is used. In all, 
nine filter stages are employed. Each bandlimits the incoming signal sufficiently that a deci-
mation by two is possible. The first few stages, the ones that must operate at very high rates, 
use pulse responses so simple (for example, h(k) = [1, 2, 1]) that only shifting and addition 
are needed. The effect of nine divisions by 2 is the reduction of the sampling rate ƒs to 
64 kHz. The 48-kHz-wide FDM group is thus represented at the output of the tuner chips as 
complex-valued samples at a rate of 64 kHz.

The transmultiplexer chip, designated the ASIG-04, accepts four FDM groups, each quadra-
ture-sampled at 64 kHz, and demultiplexes all 48 voice grade channels. A block diagram of a 
single path through the device is shown in Figure 22. The window-and-fold circuit is imple-
mented by using onboard weighting coefficients and serial multipliers. The partial sums are 
stored in off-chip RAM. The output of the window-and-fold circuit is then transformed using 
a 16-point DFT. The complex-valued bin outputs, produced at a 4 kHz rate, are sent out over 
a serial interface.
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Figure 22 Block Diagram of the ASIG-04 Quad Group Transmux VLSI Chip
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Several of the design choices made with these chips are different that those seen earlier in the 
technical note. The first, seen in the tuner chips, is the use of multistage decimation. As [2] 
shows, this can almost always reduce the total amount of multiply-add computation needed 
for the tuner, at a certain cost in design simplicity. The other issue, evident in the design of 
both the tuner and the transmultiplexer, is that memory and control are at least as costly com-
modities in a VLSI design as are multiplications and additions. A vivid example is that the 
ASIG-04 uses direct computation of the DFT rather than using an FFT. Even though the 
amount of multiplication is on the order of four times as much using the DFT, the overall 
DFT design used less silicon than the equivalent FFT.

An illustration of the net effect of the use of these advanced VLSI devices can be seen by 
comparing supergroup tuner/transmux shown in Figure 20 with the circuit card shown in 
Figure 23. The former accepts a 800 kHz segment of an FDM baseband, selects one super-
group, and demultiplexes all 60 channels. The card shown in Figure 23, about half the size of 
the one shown in Figure 20, combines the ASIG-01, -02, -03, and -04 chips to build a proces-
sor capable of accepting a 15-MHz segment of an FDM baseband, independently selecting 
four FDM groups, and demultiplexing all 48 channels. Not only does this card demultiplex 
about the same number of voice channels with about the same quality as the older supergroup 
tuner/transmux, it does it in about half the card surface area, it tunes over a much wider range, 
and has several additional features, such as nonblocking input baseband switching, output 
channel selection, and channel-level gain control.
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Figure 23 A Fully Digital Group-Oriented FDM Demultiplexer
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Section 6 General Design Procedures

There is a very large number of considerations that affect the selection of the best method of 
frequency-division demultiplexing signals in a particular application. As a result, it is virtu-
ally impossible to provide a simple cookbook methodology that always produces the best 
design. Even so, it is useful to systematically describe the design issues and choices evaluated 
so far in this technical note. Such a description, condensed into a design flowchart, is dis-
cussed in this section. Comparison of it with the design examples provided in Section 4 and 
Section 5 shows excellent agreement. But while it is intended to be helpful, it must be used 
with care since relatively small differences in the application-dependent assumptions can 
influence the resulting choices quite considerably.

The decision flowchart presented in Figure 24 assumes that the generalized demultiplexer has 
the block diagram shown in Figure 25. The system accepts Nin digitized FDM signals, all 
sampled at ƒin Hz. These are made available to Nt digital tuners. All of these tuners are of the 
same design, employ the same decimation factor Mt, and produce output samples at the same 
rate of ƒs Hz. The tuner outputs are transmultiplexed, sending their output channel samples to 
a bus, which up to Nu user processes have access to. Since each transmux is fed by a tuner, 
there are Nt transmuxes, each parameterized by Q, N, and M.

On the one hand, this architecture is not perfectly general, since parameters such as filter 
bandwidths are assumed to be identical, but it is representative of a very complex transmulti-
plexer-based system. On the other hand, it can be simplified considerably, by allowing Nin or 
Nt to be unity for instance, and still be reasonably described by the flowchart.
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Figure 24 Flowchart for Determining the Applicability of Transmultiplexing to a
Frequency-Division Demultiplexing Problem
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Figure 25 Generic Block Diagram of an FDM Demultiplexer Requiring Digital Input
Switching, Tuning, and Demultiplexing

The flowchart is shown in Figure 24. While perhaps self-explanatory, some commentary is 
provided for the faint-hearted.

• The first step is to determine whether an FDM-TDM transmultiplexer is really needed for 
the application. Generalizing wildly, a transmultiplexer is the right choice if three condi-
tions are met:

a. It is desired to simultaneously demultiplex a reasonably large (for example, 10 or more) 
number of contiguous channels from an FDM signal

b. They are regularly spaced in frequency

c. The same filter can be used for all of them without harm to the signals

If these conditions aren’t met, then alternative schemes, such as separate tuners for the 
desired channels, should be considered.

• Once it is determined that a transmultiplexer is needed, the next question is whether some 
form of digital tuner is needed to precede it. As a rule, no tuner is needed if:

a. It is desired to demultiplex all of the channels seen in the full bandwidth of the input

b. The input signal is sampled at a suitable rate

If resampling is needed, or if only a subband of the input signal’s bandwidth is to be 
dechannelized, then a tuner is called for. Usually the use of a digital tuner leads to the use of 
a transmultiplexer that accepts complex-valued data while the absence of a tuner implies 
the use of a transmux that accepts real-valued data.

• The last major question is whether the outputs of the transmultiplexer should be real- or 
complex-valued. This usually depends completely on the processes using the transmulti-
plexer outputs. In some cases, such as commercial telephony (see the example in 
Appendix C), the outputs are desired to be in real-valued form so that they can be switched 
or formatted for TDM/PCM transmission. In other applications, however, particularly those 
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that involve signal processing (for example, spectrum analysis), the use of complex-valued 
outputs is desired.

• With these fundamental system-level questions answered, the preliminary design of the 
transmultiplexer itself can begin. Based on the channel spacing, the desired filter frequency 
response, and the nature of the follow-on processing, such parameters as ∆ƒ, B, Q, and ƒout 
can be determined by using the rules presented in Section 3.

• If no tuners are needed, then the design of the transmux can be completed by determining 
M, N, L, and the pulse response h(k). If tuners are needed, then the tradeoffs between the 
tuner and transmultiplexer design must be performed in order to know enough to finish the 
design of the transmux itself. The first step in this tradeoff is to determine the number of 
tuners Nt and their bandwidths Bt. The second step, given Bt, is the tradeoff identified in 
Section 5, which leads to the choice of the transmux input sampling rate ƒs, and hence Lt 
and Mt.

Of these two steps, the first is often the more difficult since the optimization may be based 
on nonmathematical considerations. An example of this is the case in which a large number 
of contiguous FDM channels need to be demultiplexed from an even larger input band. 
Should there be a few tuners of large bandwidth or more with narrower bandwidth? A 
purely mathematical optimization using an objective function such as the number of multi-
ply-adds will conclude that the former is better, while a user might prefer the selectivity (for 
example, cherry picking) afforded by a multitude of narrower tuners.

An example of this design process should help clarify its use. Suppose that the functional 
objective is to accept four 2700-channel digitized FDM inputs, to demultiplex 2400 channels 
from them, and provide those channels, via a bus, to several downstream acquisition proces-
sors. Suppose further that the design objective is to minimize the size and power required for 
this processing.

Proceeding through the flowchart we make the following choices:

• Use of transmultiplexers is appropriate due to a large number of equally-spaced, identi-
cally-shaped, contiguous channels to be demultiplexed.

• Tuners are needed since each of the FDM inputs has more channels than the entire, required 
capacity of the demultiplexer. This also implies that the transmux inputs will usually be 
complex-valued.

• The presence of multiple DSP-based follow-on users of the dechannelized signals militates 
toward providing complex-valued outputs from the transmultiplexer.

• The preliminary design of the required transmux produces ∆ƒ = 4 kHz, B = 3700 Hz, 
Q = 16, and ƒout = 4 kHz. See also Table 4 (in Appendix C) for other examples of the 
parameters used for telephone-channel-oriented transmultiplexers.

• Since tuners are needed, it is necessary to determine how many should be used. If done 
mathematically on the basis of the required amount of computation, it can be shown that 
eight tuners with bandwidth of approximately 1.3 MHz each (each one wide enough for a 
300-channel CCITT mastergroup) is the best choice. Since VLSI-based designs often find 
their design optima at points different than the pure computational minima, a relatively 
detailed VLSI sizing was done for this problem. The resulting estimates of the number of 
chips, the required power consumption, and the physical size of the unit are shown in 
Table 2.
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From this table we see that the design based on mastergroup tuners is the best of those 
examined, agreeing, but only fortuitously, with the optimization based on multiply-adds. 
Note also the high price in size and power paid for increasing the user’s selectivity by using 
supergroup or group tuners.

The block diagram of the optimum design is shown in Figure 26. A four-by-eight nonblock-
ing digital switch allows any of the eight digital mastergroup tuners to accept samples from 
any of the four digitized FDM inputs. Each tuner selects a 1.3 MHz band from any of the four 
inputs and supplies it to the transmux. The optimized output sampling rate of the tuner is 
2.048 MHz. The transmux parameters can then be determined to be ƒs = 2.048 MHz, N = 512, 
L = QN = 8192, and M = N = 512. In this case, the transmultiplexer design with the lowest 
size and power consumption uses a common weighting circuit for all tuner outputs and a 
common radix-4 FFT. Applications requiring high reliability or the ability to power down 
unused processing paths might elect instead to use separate, but somewhat less efficient, 
transmultiplexers for each path rather than concentrating all of the processing in one high-
speed, highly efficient processor.

Table 2 Comparison Between VLSI-Based Demultiplexing Frontends as a Function of the 
Tuner Bandwidth

Approach 
Attributes

12-Chan Group 
Oriented
(N=200)

60-Chan 
Supergroup 
Oriented (N=40)

300-Chan 
Mastergroup 
Oriented (N=8)

Full 2700 Chan 
Baseband
(No Tuner)

Size (in2) 952 266 131 138

Power (W) 448 113 70 84
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Figure 26 Design Example of a High-Capacity VLSI-Based Digital FDDM
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Section 7 Conclusions

The FDM-TDM digital transmultiplexer has become an important building block in a variety 
of signal processors. The main goal of this technical note is to explain how the equations for it 
are derived and to provide some information about how its parameters are chosen in practical 
application.

In addition to fulfilling this role, additional information has been included about the design 
tradeoffs that must occur between the transmultiplexer and the processing steps preceding 
and succeeding it. In particular, we focused on the computational tradeoffs between the trans-
multiplexer and the digital tuner which frequently precedes it.

Several appendices are attached that describe variations of the basic FDM-TDM transmux, 
such as the offset-bin transmux, and related design issues, such as some of the considerations 
involved in the design of the weighting function h(k).

A final warning is in order. This technical note focuses on a fairly narrow topic, that is, 
radix-2 and radix-4 FFT-based, single-stage, FIR FDM-TDM transmultiplexers. While this 
subclass of transmultiplexers is widely used, it is by no means the only one. The referenced 
paper by Schuermann and Göckler [1] presents a broad overview of FDM-TDM and TDM- 
FDM transmultiplexers and should be consulted by the serious engineer or student.
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Appendix A Impulse Response Design Issues

Section 3 showed the FDM-TDM transmultiplexer can be viewed as an efficient implementa-
tion of a bank of digital tuners, and that the data-weighting function h(k) is just the pulse 
response of the FIR lowpass filter used in these equivalent tuners. We therefore approach the 
design of h(k) by designing the proper tuner pulse response.

The perfect filter pulse response would pass the signal of interest with no gain or phase distor-
tion, would completely suppress all other FDM channels, and would require little computa-
tion. These are not all simultaneously achievable, of course, and the design of the actual filter 
is a compromise between these issues. It is further complicated by the fact that software pack-
ages are not generally available to perform some of the types of optimization needed to 
design these filters. We proceed first by examining how an optimal equal-ripple linear phase 
FIR filter performs.

A.1     Use of Optimal, Linear Phase, Equal-Ripple Design Techniques

The filter design problem at hand can be understood by examining Figure 27. The perfect fil-
ter, shown in Figure 27(a), passes the channel of interest with unity gain and zero phase shift 
across its bandwidth of B Hz, centered at DC, and completely attenuates energy at all other 
frequencies between  and .

In fact, it is not necessary to suppress all out-of-band energy to protect the signal of interest. 
The principal reason for this filtering is to suppress the out-of-band components that alias into 
the band of interest when the output of the tuner (that is, transmultiplexer) is decimated by the 
factor M. These bands are shown in Figure 27(b) for the general case in which M ≠ N, while 
Figure 27(c) shows the important special case of the basic FDM-TDM transmux in which 
N = M. In the latter case, the FDM channels not of interest alias directly onto the signal of 
interest while, in the former, the channels not of interest may be spread around the band more.

As alluded to earlier, practical FIR filters of finite duration cannot pass the signal interest per-
fectly and suppress all other energy completely. The response shown in Figure 27(d) is the 
generalized response of a good practical approximation, the response provided by an optimal 
FIR linear-phase, equal-ripple filter of the sort designed by the Parks-McClellan software 
package. These filters provide flat differential group delay and allow the designer to optimally 
trade between passband ripple, stopband suppression, and transition band as a function of the 
filter order L. A description of this general filter design methodology can be found in [8].

–ƒs

2
ƒs

2
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Figure 27 Frequency Responses of Perfect and Realizable Tuner Filters

(a) Model of the perfect lowpass filter

(b) Tuner frequency response highlighting spectral bands that alias into the signal of interest 
when N ≠≠≠≠ M

(c) Tuner frequency response highlighting spectral bands that alias into the signal of interest 
when N = M

(d) Generalized frequency response of an optimal equal-ripple FIR filter, again highlighting 
spectral bands that alias into the signal of interest
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Superimposing Figure 27(c) with the optimal response shown in Figure 1 of [8] to produce 
Figure 28 shows that we must specify the channel bandwidth B, the transition bandwidth δƒ, 
the input sampling rate ƒs, the degree of passband ripple tolerable, denoted PBR, and the min-
imum tolerable stopband attenuation in dB, denoted SBR. A multi-term empirical formula can 
be found in [7] which determines the filter L quite accurately for a given set of design param-
eters. Reference [8] simplifies the Rabiner and Gold formula considerably to produce the 
design equation

where L, ƒs, and δƒ are as just defined, and α is given by

The validity of these simplified formulas depends on a number of assumptions, detailed in 
[8], but all of them are sufficiently satisfied in this case to permit accuracy in the estimation of 
L within 5% or so.

Examination of Figure 28 shows that δƒ, the filter transition band, can be no larger than 
∆ƒ – B, the difference between the channel spacing and the bandwidth of each channel. 
Recalling also that N • ∆ƒ = ƒs, we find that

Thus, to first order, the pulse response duration of the required filter is proportional to the 
number of channels N and is hyperbolic in the percentage bandwidth, the ratio of the channel 
bandwidth B to the channel spacing ∆ƒ. The effect of the proportionality to α will be exam-
ined shortly.

Figure 28 Overlay of the Required Tuner Filter with the Generalized Response of an 
Optimal Linear Phase Equal-Ripple FIR Filter

A.2     Relationship to the Design Parameter Q 

The development presented in Section 3 defined the integer variable Q as the ratio of L and N. 
It was pointed out there without proof that in fact Q was an important design parameter, not 
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just the artifact of two others. This can now be seen by combining the relationship L ≡ QN 
with equation 51 to produce an expression for Q:

Since N depends strictly on the number of channels into which the input band is divided, Q 
contains all of the information about the impact of the desired filter characteristics. 

A.3     Continuation of the Telegraphy Demodulation Example

Consider again the example of demodulating R.35 FDM FSK VFT canals discussed in 
Section 4. In that section, we determined that the following parameters would be appropriate: 
ƒs = 3840 Hz, N = 64, and ∆ƒ = 60 Hz. To determine Q, and hence the rate of computation 
needed for the data weighting segment of the transmultiplexer, we need to specify B and SBR, 
the degree of stopband suppression required.

Generally speaking, the filters in an FSK demodulator need to have unity gain at the mark or 
space frequency and zero gain at the space or mark frequency, respectively. A computer sim-
ulation used to verify the design of the demodulator showed that suppression of 50 dB was 
more than enough to provide the needed performance. At first glance it might appear that the 
transition band δƒ can be allowed to equal the tone spacing ∆ƒ = 60 Hz, making the percent-
age bandwidth equal to zero. Actual FSK VFT systems, however, sometimes experience bulk 
frequency shifts of several Hertz. In order to maintain full performance in the presence of 
such frequency offsets, the tuner filters need to be designed with a passband bandwidth of 
15 Hz or so. Using SBR = 50 dB in equation 50, we find with equation 52 that the required 
value of Q for this application is about 2.71. The actual value chosen for this application was 
3, producing a pulse response duration of L = QN = 192, with the remaining degrees of free-
dom in the filter design used to widen the filter still more, allowing for even more frequency 
offset.

A.4     Implications of the Filter Design on Signal-to-Noise Ratio and Noise 
Power Ratio

The pulse response h(k) chosen for the transmultiplexer determines many of the transmux’s 
key technical performance parameters, including:

• passband bandwidth, gain, and gain ripple

• passband differential group delay (constrained to zero by using an FIR linear phase design 
approach)

• adjacent channel rejection (also known as intelligible crosstalk)

• channel signal-to-noise ratio (SNR) (also know as unintelligible crosstalk and noise power 
ratio (NPR), name based on one method of measurement)

We focus here on the last two. At first it might seem that these two are equivalent, but in fact 
the second is usually the more demanding of the two. This may be demonstrated by re-exam-
ining Figure 27(a). An adjacent channel rejection specification of 55 dB, say, means that no 
signal appearing anywhere in the input bandwidth of ƒs Hz can appear in the band of interest 
at any level higher than 55 dB below the signal of interest. If the signal of interest and the one 
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not of interest have the same power levels, then this specification implies that the filter pulse 
response should suppress the signal not of interest by at least 55 dB before it is potentially 
aliased into the band of interest. Thus the adjacent channel rejection specification treats each 
interferer separately and forces each of them to be suppressed to a level below intelligibility. 
Typical specifications for voice channel demultiplexers, for example, are 55 dB of suppres-
sion for any signal more than 300 Hz above or below the channel of interest.

The last specification limits the total noise that enters the band of interest from other chan-
nels. These channels are assumed to be statistically independent, implying that whatever 
energy that aliases into the band of interest from each of the channels is uncorrelated with the 
others, that their powers add, and that none of them is individually intelligible.

The channel SNR can be quantified by using the expression

where B is the bandwidth of the channel of interest, C is the number of channels with signals 
present, c is the index of the band of current interest, H(ω) is the frequency response of the 
pulse response h(k), and Pn(ω) is the power spectrum of the n-th signal.

If we assume that all C channels have the same average power P, that the power gain of the 
filter is unity for the channel of interest, and that all other channels are suppressed by exactly 
S dB, then equation 53 simplifies to

The implications of equation 54 can be seen with an example. Suppose that the application at 
hand requires the demultiplexing of 60 FDM voice channels, that the adjacent channel rejec-
tion is specified to be 60 dB, and that the unintelligible crosstalk or SNR specification is 
55 dB. Evaluation of equation 50 shows that α, on which Q and L depend, needs to be about 
2.42 to suppress any single component by 60 dB. Equation 54, however, shows that to satisfy 
the unintelligible noise specification, all channels not of interest need to be suppressed by an 
extra 10 • log1059 = 17.8 dB13. To meet this specification, the pulse response needs to sup-
press the other input channels by 55 + 17.8 = 72.8, with the associated growth in α from 2.42 
to 2.88 and some additional design concern in hardware using finite word length arithmetic.

Combining equations 51, 50, and 54, we find that L is given by

where α(C) is given by

and SNRr is the required SNR performance in dB. Note that when C is a large fraction of N, 
which is usually the case, the pulse response duration L actually grows faster than proportion-
ally to the number of bins N.

13.For a 960-channel transmultiplexer this extra suppression goes up to 29.8 dB.
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A warning is in order here. While accurate in principle and generally accurate numerically, 
this section presents a simplified view of the filter optimization problem and the implications 
of each of the technical requirements. Each actual application requires a careful evaluation of 
the specifications appropriate to it and the impact to each of the transmultiplexer’s design 
parameters. In addition, note that we used equation 54 to reach some of these conclusions 
when, in fact, equation 53 is really the right one to use. To illustrate how this might affect the 
resulting design, observe that equation 54 implicitly assumes a pulse response of the type 
shown in Figure 28, which suppresses all channels not of interest about equally. Consider 
then the frequency responses shown in Figure 29. The first is a standard Parks-McClellan 
design in which the stopband ripple objective is the same over the whole stopband. The sec-
ond two are alternative designs that use similar or less amounts of computation. The one 
shown in Figure 29(b) slowly increases the stopband suppression with higher frequency, 
essentially removing those channels from the SNR calculation. Another scheme, shown in 
Figure 29(c), obtains added suppression in the bands known to alias into the band of interest 
by releasing control in the bands that will not alias in. In passing, it should be noted that the 
Parks-McClellan software package can be modified to perform both of these filter designs. To 
summarize, the equations presented in this section serve as a good guide to the selection of 
the pulse response h(k) and its duration L, but skillful use of equation 53 and the full design 
formulas for FIR linear phase filters can reduce L and the implied required real-time computa-
tion level by 10 to 40%.

Figure 29 Filter Design Alternatives to Reduce the Required Filter Order
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A.5     Example of a Voice Channel Demultiplexer

Several of the examples presented in Section 5 and listed in Appendix C.4 concern the use of 
FDM-TDM transmultiplexers to demultiplex the voice channels found in an FDM telephone 
baseband. In this section, we examine briefly an example of the design of such a transmulti-
plexer. For the purpose of this example, we focus on the design of the pulse responses for the 
group transmultiplexer VLSI chip shown in Figure 22.

Repeating from Section 5, the general design parameters for the group transmultiplexer are: 
ƒs = 64 kHz, N = 16, ∆ƒ = 4 kHz, C = 12, and the 3-dB bandwidth B = 3700 Hz. We desire the 
passband to be as flat as possible, that the adjacent channel rejection meet or exceed 55 dB at 
300 Hz into adjacent channels, and that the SNR and NPR meet or exceed 52 dB. We also 
strongly desire that Q equal 16, since such a power-of-two value would simplify the design of 
the hardware.

We do a first cut by evaluating δƒ to be 450 Hz, the difference between the edge of the equal-
ripple passband and the point 300 Hz into the adjacent channel. Suppose that we optimisti-
cally assume that only 55 dB of suppression is needed in the stopband. Using these values, 
plus the fact that ƒs = 64 kHz, in equation 49 yields L = 318, which implies a value of 
Q = 19.85. This is close to, but exceeds, a nice power of two, that is, 16. By working the filter 
design problem carefully it is possible to design pulse responses that do meet the require-
ments. Two of these are shown in Figure 30. One has a wide passband, at the expense of 
greater passband ripple, while the other trades bandwidth for ripple performance. The 
ASIG-04 chip uses integral ROM to hold these pulse responses and allows the user to control 
which is to be employed at a given time.

A.6     Other Criteria for Filter Design

The focus of this section has been on the design of the transmultiplexer pulse response when 
viewed as a single tuner. In fact, most are designed this way. There are other applications, 
however, that require that other considerations enter the design process. An example is the 
interference canceller discussed in Appendix C.4. In this case, the filter pulse response is 
designed to bandlimit, as before, but in addition, constraints are introduced that have the 
effect of guaranteeing good broadband behavior as well.
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Figure 30 Frequency Response of FIR Filter Designed for a Voice Channel 
Transmultiplexer

a) Narrower Passband with Lower Passband Ripple

b) Wider Passband with Greater Passband Ripple
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Appendix B Variations of the Basic FDM-TDM Transmux

B.1     Production of Real-valued Outputs

It is frequently the case that the best system-wide choice is the use of a transmultiplexer pro-
ducing complex-valued outputs even though some of the system outputs need to be real-val-
ued. An example of this is when a transmultiplexer is used to supply all transmuxed signals to 
an acquisition processor plus a few selected signals for a downstream processor or transmis-
sion system. If the acquisition processing is best done with complex-valued data (and it often 
is), then the best system-level choice is often to use a complex-output transmux and then to 
convert the relatively few system outputs to a real-valued representation. This appendix 
describes how this can be done.

Producing a real-valued signal from a complex-valued one is as simple as taking its real part, 
but for this to be valid, the complex-valued signal must be sampled frequently enough. In 
actual practice, this condition is not usually met and it is necessary to increase the complex-
valued signal’s sampling rate by a factor of two before extracting the real part. Another com-
plication is that the user may desire to choose the spectral orientation of the resulting real-val-
ued signal.

Figure 31 shows the spectral implications of the steps usually taken to interpolate the com-
plex-valued signal, specify its sideband orientation, and produce a real-valued representation.

Figure 31(a) shows the assumed spectrum of the complex-valued input signal z(r). The signal 
z(r) is assumed to be the output of a complex-valued FDM-TDM transmultiplexer. It is sam-
pled at the rate ƒ and is spectrally oriented so that an increasing input frequency results in a 
higher output frequency. We’ll term this upper sideband. Note that the bandwidth of z(r) is 
less than ƒ.

We now upconvert z(r) by  Hz by multiplying it by (–1)r. This is shown in Figure 31(b). The 
signal is now centered around  instead of 0 Hz. The sampling rate is doubled by zero-filling 

(r), that is, (k) is created by setting (k = 2r) = z(r)(–l)r for even values of k and (k) = 0 
for odd values of k. The spectral effects of this zero-filling are shown in Figure 31(c). The 
sampling rate is now 2ƒ and two upper sideband images of the original signal are present, one 
centered at  and the other at – .

The next step is to bandpass filter the desired image. Two filter transfer functions are shown in 
Figure 31(d). We focus first on the one drawn with the solid line for now. When the zero-filled 
input signal (k) is convolved with the filter having this response, the higher of the two 
images is preserved and the lower one suppressed. This is shown in Figure 31(e).
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Figure 31 Spectral Implications of Each Step of the Sample-Rate Doubling Used 
to Produce Real-Valued Outputs
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Obviously, the use of a filter with transmission characteristics shown in the dashed lines in 
Figure 31(d) would have the effect of selecting the other image, the one shown in dashed 
lines in Figure 31(e).

As a result of the filtering, only one image remains and which image it is depends on the 
bandpass filter chosen. The last step is the production of the real-valued output by simply tak-
ing the real part of the complex-valued signal that appears at the filter’s output. Since real-
valued signals must have spectral symmetry about the origin, this extraction of the real part 
has the effect of producing an another image of the input, only this one has the opposite side-
band orientation. If the upper image is selected by the bandpass filter, then spectrum of the 
output signal is as shown in Figure 31(f). We term this as upper sideband since the positive 
frequency image has the same orientation as the original complex-valued input signal. Choos-
ing the lower image with the bandpass filter has the effect of producing the spectral relation-
ship shown in Figure 31(g), the so-called lower sideband or inverted case.

To summarize, we produce the real-valued signal by

1. Upconverting by 

2. Zero-filling by a factor of 2

3. Bandpass filtering one of the two images created by the zero-filling

4. Taking the real part of the complex filter output

The sideband orientation of the output is determined by which image is selected by the filter. 
We now develop the equations that describe these processing steps.

We define the bandpass filter output to be (k), given by

where the zero-filled input (k) is as earlier defined. We recognize h(l)jls as the pulse response 
of the bandpass filter and L as its duration14. The factor s has the value of 1 or –1 to determine 
which of the two bandpass filters is desired, and, with it, which output sideband orientation is 
selected. The pulse response is written in this curious fashion to emphasize that h(l) is the 
real-valued pulse response of a lowpass filter. It is converted into the pulse response of a 
bandpass filter centered at ±  by multiplying it point by point by a sampled complex-valued 
sinusoid of frequency , if s = 1, or – , if s = –1, that is, jls.

With no loss of generality we assume that L is an integer factor of two. Suppose now that k is 
even. If so, k = 2r and

f
2

y

14.We use the generic notation h(k) and L as the pulse response and its duration just as we did in Section 3, although 
they are distinct. They are not completely independent, however, since the design of this filter is usually impacted 
by the design of the transmultiplexer weighting function.
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Now suppose that k is odd. If so, then it can be represented as k = 2r + 1 and the expression 
for the output becomes

Using the assumption that the filter pulse response function h(k) is real-valued, then y(k), the 
desired real-valued output, is given

This set of equations can be written in a shorthand form by using vector notation. To do this 
we define Xk, Yk, He, and Ho by the expressions

where the superscript t indicates the transpose of a vector. Using these definitions, the real-
valued output y(k) can be written compactly as

Note that if FIR filters are employed, each output requires  multiply-adds. Thus the produc-
tion of each real-valued output signal uses ƒL multiply-adds per second.

L
2
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Now consider the case in which the signal of interest is supplied by an offset-bin transmulti-
plexer. If so, the initial multiplication by (–1)r is not needed. The effect of this can be seen by 
re-examining the equation for (k) when k is even.

where (2u) is defined by the equation (2u) = h(2u)(–1)u, 0 ≤ u ≤  –1.

Suppose that we similarly define (2u+1) by the expression (2u+1) = h(2u+1)(–l)u, and then 

e and o as in equation 70. If we do this, we find that the expression for y(k) becomes sim-
pler yet:

A block diagram of the processing needed to implement these equations appears in Figure 32. 

Figure 32 Block Diagram of the Processing Required to Produce Real-Valued Outputs with 
Complete Sideband Control for an Offset-Bin Input
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B.2     Offset Bin Operation

The analysis presented to this point assumes that the tuning frequencies are integer multiples 
of some fundamental step size ∆ƒ. This implies that the 0-  bin or channel is centered at 
0 Hz. While this is true in some applications, there are others in which the bin or channel cen-
ters are offset in frequency by . An example is shown in Figure 33. For this example, we 
suppose that an FDM group of twelve channels is digitally tuned and filtered, that is, it is 
quadrature downconverted so as to center the group at 0 Hz. VLSI chips such as those dis-
cussed in Section 5 can perform this function. Figure 33 shows the group centered at DC, 
which places channels 1–6 below DC and channels 7–12 above. The channels are still sepa-
rated by 4 kHz but their center frequencies are offset from DC by 2 kHz.

There are several solutions to this problem, the most obvious being to off-tune the tuner by 
2 kHz. As this appendix will show, however, the FDM-TDM transmultiplexer equations can 
be easily modified to introduce the desired offsets.

Figure 33 Use of an Offset-Bin Channel Bank to Separate the Channels in an FDM Group

To produce the desired set of equations, we have to repeat some of the formulation developed 
in Section 3. Frequency steps of ∆ƒ are still employed. The fundamental difference is that 
each tuner frequency is not an integer multiple of ∆ƒ but rather is a half-integer multiple, for 
example, ω = 2π(n + )∆ƒ, where n is an integer. The effects of this substitution can be seen 
by joining the analysis in Section 3 at equation 5. Substituting this new expression for the 
tuning frequency yields

As before, we subscript the decimate output y(r) by the parameter n but in this case it indi-
cates that the tuning frequency is given by ƒo = (n + ) • ∆ƒ.
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As before, we define the integer indices q and p by the expressions

yielding

Suppose we now define the variable (r, p) by the expression

and the pulse response (qN + p) by the expression

Substituting (r,p) into the equation for the decimated output yn(r) of the tuner tuned to fre-
quency ƒo = (n + ) • ∆ƒ yields

In Section 3, we defined the basic FDM-TDM transmultiplexer as the special case of general 
transmultiplexer in which we set the decimation factor M to equal the number of channels N. 
This implies directly that K = 1. This assumption leads to the corresponding basic transmux 
equations for the offset-bin case:

and IDFTo{.} indicates the offset-bin inverse DFT.
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While not immediately obvious, it can be shown that the offset-bin DFT can be computed 
with an FFT-like algorithm. A listing of one is shown in Table 3. It results from a simple 
modification (that is, the initialization of U) in the FFT routine appearing on page 367 of [7].

When an offset-bin transmux is performed, it is common not to premultiply by  as 
shown in equation 90. This has the effect of frequency-converting the output signal by 

 = . When M = N (hence K = 1), the spectral effect of this is as shown in Figure 31(a) 

Table 3 FORTRAN Subroutine for an N-Point Offset-Bin FFT (Modified from DIT FFT
shown in [7], pg. 367)

SUBROUTINE OFFSET-FFT (X,N,M)
C OFFSET_FFT - computes the half-bin offset version of an N-point
C decimation-in-frequency (DIF) FFT. The array X is complex-valued
C and must have length N = 2**M.
C The subroutine is entered with data in X and
C exits with the DFT stored there.
C

COMPLEX X(1), U, W, T
NV2 = N/2
NM1 = N-1
J = 1

C
DO 7 I=1,NM1
T = X(J)
X(J) = X(I)
X(I) = T

5 K = NV2
6 IF (K .GE. J) GO TO 7

J = J - K
K = K/2
GO TO 6

7 J = J + K
C

PI = 3.14159265358979
C

DO 20 L=1,M
LE = 2**L
LE1 = LE/2
U = CMPLX(COS(PI/FLOAT(LE)),SIN(PI/FLOAT(LE)))
W = CMPLX(COS(PI/FLOAT(LE1)),SIN(PI/FLOAT(LE1)))

C
DO 20 J=1,LE1
  DO 10 I=J,N,LE
    IP=I+LE
    T = X(IP)*U
    X(IP) = X(I) - T

10     X(I) = X(I) + T
20  U = U*W
C

  RETURN
END

(–1)r

ƒout

2
ƒs

2M
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and (b). Instead of producing a complex signal centered at DC, not premultiplying by (–1)r 
centers the signal at . In addition to obviating the need for a multiplication, this has the 
effect of moving the signal away from DC. This tends to improve signal quality since many 
finite-word length effects arising from hardware implementations (for example, truncation) 
produce spurious signals at DC.

B.3     Operation with Real-Valued Inputs

There are practical applications of FDM-TDM transmultiplexers in which the designer wants 
to extract all channels from a real-valued input. Such a signal can be applied directly to an 
FFT-based transmux of the variety described in Section 3 but, since such a transmux is 
designed for use with complex-valued data, it might appear that unneeded computation is 
being performed. That is in fact the case. This section shows how the real-valued nature of the 
input can be exploited to reduce the required computation by slightly less than a factor of two.

Assume for this discussion that the input signal x(k) is real-valued and sampled at a rate of 
ƒs = 2N∆ƒ, where ∆ƒ, as before, is the frequency spacing between channels, and N is the max-
imum number of unique channels. The Nyquist theorem requires that ƒs be twice N∆ƒ since 
the input is real-valued. Half of the 2N channels present in the real-valued input are sideband-
reversed images of the other N channels. Thus we work to find an expression for those N 
unique channels. Using the basic equation for the FDM-TDM transmux (see equation 19), the 
n-th output is given by

where v(r,p) is given by

Since both the input x(k) and the pulse response h(k) are real-valued, so is v(r,p). Thus the 
DFT in equation 92 is taken over real-valued data. We now pursue a two-step approach to 
exploiting the reality of the data.

The first step is to decompose the 2N-point DFT into the sum of two N-point DFTs. This is 
exactly the same operation as is used to start the development of the decimation-in-time (DIT) 
FFT. Doing this produces the expression

ƒout

2
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where WL is defined by the expression WL = ej . The n-th output is now described by the sum 
of two N-point DFT taken over real-valued data.

The second step is to use well-known relationships [7] concerning the spectral symmetries of 
purely real and purely imaginary data. The former has Hermitian symmetry15 while the latter 
is anti-Hermitian. We exploit this by constructing a new N-point complex sequence 
z(i), 0 ≤ i ≤N –1 for each sample instant r according to the rule

This corresponds to packing the 2N points of v(r,p) into the real and imaginary parts of an 
N-point complex-value sequence. Suppose now that we evaluate the DFT of the sequence 
z(i), yielding Zn. We can break Zn into the portions, say Zn = Rn + jIn, where Rn is the real part 
of the transform and In is the imaginary part. The transforms of v(r,2i), 0 ≤ i ≤N –1, and 
v(r,2i + 1), 0 ≤ i ≤ N – 1, are determined by using these Hermitian symmetry properties. In 
particular, it can be shown that

Note that only one N-point DFT plus one additional stage of sums and differences was 
required to produce both transforms. We can then evaluate equation 96 to obtain

Observe that this computation is essentially the same as one stage of a radix-2, 2N-point 
IFFT. Each desired output yn(r) is a bin value of this FFT.

These steps can be summarized follows:

• Compute the v(r,p) according to equation 93

• Form the N-point complex-valued sequence z(i) according to equation 97

• Perform the N-point DFT (using an FFT, usually) to obtain Zn

• Use equation 99 to obtain the transforms of the two real-valued sequences

• Use equations 100 and 101 to valuate equation 96

A computational audit of this procedure shows that it requires essentially two more radix-2 
stages following the DFT. The first involves only sums and differences while the second, 

15.A sequence has Hermitian symmetry if the real parts are symmetrical about the midpoint of the sequence while 
the imaginary parts are antisymmetrical.

2π
L
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involving the twiddle factors used in a 2N-point FFT, requires actual multiplication. A com-
parison between the multiply-add computation needed for an N-channel FDM-TDM trans-
multiplexer that accepts complex-valued data at ƒs Hz and one that uses the techniques 
described here and accepts real-valued data at a rate of 2ƒs Hz shows that the only difference 
is these last two stages. If the transform size is large and/or Q is large, then the computation 
associated with these two stages may prove negligible, and will almost always be less than 
that required for a fullband digital tuner. Thus this approach is usually the best if virtually all 
of the channels in a real-valued signal need to be demultiplexed.

Two other notes in passing:

• The pulse response h(l) used for weighting the input data must have a duration of 2NQ 
points for the real-valued case, versus NQ for the complex-valued case.

• The analysis used for real-valued inputs can be combined with that used for obtaining an 
offset-bin transmultiplexer of the type discussed in Appendix B.2 to obtain an offset-bin 
design that accepts real-valued data.
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Appendix C Equations for the Basic TDM-FDM Transmultiplexer

C.1     Structure and Spectral Description

The focus of this technical note is on the decomposition of an FDM signal into its constituent 
narrowband components. As we have seen, the use of the right assumptions allows digital 
implementation of this operation to be done very efficiently with an FDM-to-TDM transmul-
tiplexer. In practice, there are applications in which it is desirable to perform the converse 
operation – combine multiple narrowband signals into an FDM composite. As might be 
expected, if suitable simplifying assumptions are made, some of the same efficiencies that 
lead to the FDM-to-TDM transmultiplexer allow the formulation of a TDM-to-FDM trans-
multiplexer. This appendix demonstrates how this is done. For simplicity, the architecture 
shown here uses complex-valued input signals and produces a complex-valued output signal.

The block diagram of a digitally implemented frequency-division multiplexer is shown in 
Figure 34. Each input signal, denoted xn(r), is complex-valued and sampled at a rate of . It 
is zero-filled by the factor M to produce the sequence n(k) and then lowpass-filtered to pro-
duce the interpolated sequence ρn(k). This interpolated sequence is then upconverted by ωn 
and then added with other similarly processed inputs to produce the FDM output y(k).

Figure 34 Analytical View of a TDM-FDM Transmultiplexer

The spectral implications of these steps are shown in Figure 35. We start by assuming that the 
narrowband input signal’s spectrum is as shown in Figure 35(a). The zero-filling process cre-
ates M –1 additional images of the input spectrum and expands the sampling rate to ƒs Hz. A 
properly designed lowpass filter removes the images created by the zero-filling, leaving only 
the original image centered at DC, shown in Figure 35(d). Multiplication by e  translates 
the signal so that it is centered at ωn Hz. If the other translation frequencies are chosen so that 
the other upconverted input signals do not overlap, then the situation shown in Figure 35(f) 
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results, that is, the separate input narrowband signals all appear in the single composite output 
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), but in disjoint spectral bands.

 

Figure 35

 

Spectral Implications of Passing a Signal Through a TDM-to-FDM 
Transmultiplexer
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C.2     Mathematical Description

We now develop a set that describes the block diagram shown in Figure 34. The zero-filled 
input n(k) is given by

that is, n(k) equals xn(r) when k = Mr but equals 0 otherwise. If we write k as k ≡ rM + p, 
with p ranging from 0 to M–1, then we see that n(k) equals zero unless p = 0.

The next step is the lowpass filtering of the zero-filled sequence. Denote the pulse response of 
this filter, as usual, by h(l), where l runs from 0 to L –1, and L is the pulse response duration. 
With no loss of generality we can assume that L is an integer multiple of M, the interpolation 
factor, and therefore that there exists some positive integer Q that satisfies the equation 
L ≡ M. This in turn allows l, the running index of the pulse response, to be written as 
l = qM + v, where the integer q runs from 0 to  – 1 and the integer v runs from 0 to M –1.

The output of the lowpass interpolation filter ρn(k) is given by the expression

Substituting the decomposition of k as rM + p yields

Note that n(k) has the sifting property, that is, it is non-zero only when p–v = 0, because of 
its zero-filling. Using this, we can write ρ(k) ≡ ρ(r,p) as 

Note the close relationship of this expression to the ones developed for v(r,p) in previous sec-
tions. It is a weighted combination of the input data and, so far, does not depend on the fre-
quency to which the signal will be upconverted.

Now we produce the multiplexer output by upconverting each interpolated input, indexed by 
n, to its desired center frequency ωn and then summing them. This sum is given by

where N is the number of components to be multiplexed.

x

x
x

Q
Q

x
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If we substitute the expression of ρn(k) = ρn(r,p) into equation 106, decompose k in the expo-
nential’s argument into r an p, and reverse the order of summation, we obtain a general 
expression for a digital frequency-division multiplexer:

This equation assumes that all of the N constituent input signals are sampled at the same rate 
and that the same lowpass interpolating filter is used for each. The upconversion frequencies 
(the {ωn}) are arbitrary, however.

Suppose now that we choose the upconversion frequencies to be regularly spaced in the spec-
trum between –  and  . Mathematically, we do this by assuming that ωn is given by

We also define K by the familiar ratio = K. With these assumptions, the expression for 
y(k) = y(r,p) further reduces to

the general form of the DFT-based TDM-to-FDM transmultiplexer.

An important special case of the general equation is the one in which the interpolation factor 
M is chosen to equal the potential number of upconversion carriers N. In this case, K = 1. For 
this case to be practical, the bandwidth of the input processes {xn(r)} must all be less than 

Hz and the pulse response h(k) must be properly designed. When it is true, equation 110 
reduces to 

The sum inside the braces can be recognized as the N-point inverse discrete Fourier trans- 
form of all N inputs xn(r) at time r. To make this clear, we define Dp(t) by the expression

ƒs
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ƒs
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for integer time index t. With this definition, the equation for the basic TDM-to-FDM trans-
multiplexer becomes

Thus each sample of the FDM output y(k) is a weighted combination of the current and  – 1 
past DFTs of the N channel inputs.

A block diagram of the processor implied by equation 113 is shown in Figure 36. At each 
input sampling instant r, all N inputs to the transmultiplexer are Fourier transformed and the 
resulting N-point DFT stored in a buffer. The transmultiplexer output for each interpolated 
time instant k = rN + p is computed with a dot product of the  points of the pulse response 
h(qN+p), for 0 ≤q ≤  –1, and the stored DFT points Dp(r –q), for q over the same range. 
Thus 2  real multiplies are needed for each output, assuming that h(k) is real-valued, and 
therefore 2 ƒs multiply-adds/sec are needed for this weighting operation.

Figure 36 Block Diagram of the Computational Steps Needed for a Basic TDM-FDM
Transmultiplexer

C.3     Relationship between the Basic TDM-FDM and FDM-TDM
Transmultiplexers

We immediately observe that this computation is exactly that required to demultiplex all N 
channels in a basic FDM-to-TDM transmux. In fact, the FDM-TDM and TDM-FDM trans-
multiplexers are mathematical duals of each other and virtually any manipulation feasible 
with one has its analog in the other. They are not precisely the same, however. An example is 
the definition of Q and . The former depends on ƒs and N, the number of channels, while the 
latter depends on ƒs and M, the interpolation factor. For the basic transmux equations N = M 
and the two are identical, but the fundamental relationship is duality, not equality.

Practically, however, many things are the same. The computation rate has already been shown 
to be the same (when the pulse response durations are the same) and the block diagrams are 
reversed forms of each other. A few other practical observations can be made:

• Picking M is tantamount to choosing ƒs.

• Making M = N is equivalent to making the channel tuning frequencies equal to the centers 
of the images created by the zero-filling.

• The pulse response h(l) controls how much of xn(r) leaks into other FDM channels. The 
design of h(l) is a compromise between the degree of acceptable passband amplitude distor-

Q

Q
Q

Q
Q

DFT of Order N

at Rate fs
M

Buffer Q Most
Recent DFT

Output Vectors

Compute HTpDp(r)
for each ρ for

Every r

y(r,p) = y(k)

at Rate fs

p = N–1

Complex Sampled
Channel Inputs

x0(r)
x1(r)

xN–1(r)

900755

p = 0

Q



TN-073R2 A Pair of Examples 

81

tion, the degree to which the images of the input signal must be suppressed, and the filter 
order L, which proportionally influences the computation needed for the transmultiplexer.

C.4     A Pair of Examples

Section 2 describes several general uses for the FDM-TDM transmultiplexer and Section 5 
examined several case histories of such transmultiplexers when used to solve practical prob-
lems. Such depth is not appropriate here, but it useful to see ways in which the TDM-FDM 
transmultiplexer is used.

Figure 37(a) shows a telephone switching application. Several FDM signals enter the system 
and are demultiplexed by using FDM-TDM transmultiplexers. The demultiplexed channels 
are presented in a TDM form to the digital switch that reorganizes the voice, channel samples 
in the TDM stream based on the customer’s dialled number. The output TDM data is then 
converted back to FDM form by using TDM-to-FDM transmultiplexers. While it may seem 
curious to convert to TDM form to perform the switching, it is commonly done owing to the 
low cost of digital switching, the high cost of direct switching (for example, translating) of 
FDM channels, and the large number of existing analog transmission systems. The Granger 
transmultiplexer listed in Table 4 is an example of hardware built for this purpose.

Figure 37 Two Applications of TDM-FDM Transmultiplexers
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Figure 37(b) shows another example of a TDM-to-FDM transmultiplexer, this one also paired 
with an FDM-TDM transmultiplexer. The objective of this architecture is to form an easily 
controlled, high-resolution digital FIR filter. The input signal is decomposed into N unique 
bins centered at multiples of Hz, where ƒs is the input sampling rate. The output of each bin 
is scaled by its own gain wn then applied to a TDM-FDM transmultiplexer, whose output is 
the filter output. If the weighting functions for the two transmultiplexers, hf(l) and ht(l), 
respectively, are chosen so that each equivalent tuner has bandwidth of about , then it can 
be seen that this structure resembles a graphic equalizer of the type used in stereo equipment. 
If all gains {wn} are equal to unity, then the input signal is decomposed and then recomposed 
without significant change. If energy at a specific frequency needs to be removed from the 
output, then all weights except the one corresponding to the bin with the offending energy are 
set to unity while that one is lowered, potentially to zero. The concept carries forward to the 
design of filters with rather general amplitude and phase responses with the proper choice of 
the weights. The pulse response of the structure has duration of about Lƒ + Lt = (Qƒ + Qt)N, 
depending on how hƒ and ht are selected, and the filter has N degrees of freedom.

Why is this filter structure attractive if it offers the user fewer degrees of freedom in pulse 
response selection than the effective length of the filter pulse response? The answer comes in 
its ease of control. A single change in a single coefficient of a conventional transversal FIR 
filter changes the frequency response of the filter at all frequencies. Conversely, with the 
transmultiplexer/channel bank approach, the change of one coefficient affects only a spectral 
band known a priori to the user.

This type of behavior makes it well suited to use in adaptive digital filters, and particularly in 
those whose purpose is to remove spectrally concentrated interfering signals from the signal 
of actual interest to the user. An FDM-TDM/TDM-FDM transmultiplexer pair used to build 
such an adaptive filter is described in [6] and [5] and its parameters are listed in Table 4.

ƒs
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Table 4 Design Parameters for a Variety of FDM-TDM Transmultiplexers

Transmux Characteristics Tuner Characteristics

ƒs

real/
complex N Q L

Transform
Type K

R/C
Output? ƒin

Net
Decimation

Resample
? Comments

FACC 
SILKWORTH Telephony 512 kHz R 2 C — Analog —

Granger
TRANSMUX®

Commercial
Telephony 112 kHz R 14 20 561 14-pt DCT 1 R — None —

ARGOSystems 
AS-900 Telephony 512 kHz C 128 8 1024 3R4+1R2

FFT 1 C 1.024 MHz 2 Fixed

AST100/
AST102T

FDM FSK 
VFT 3840 kHz C 64 3 192 6•R2 FFT 16/3 C 16 kHz

8 kHz
25/6
25/12 Fixed

AST SG 
Tuner/Demux Telephony 512 kHz C 128 16 2048 7•R2 FFT 1 C 2.048 MHz 4 Fixed

ESL TMIC Interference
Cancelling 6.25 MHz R 4096 3 24776 6•R4 FFT 1 R

25
12.5
10

BTE Tuner
4
2
8/5

Variable

AST GTT Telephony 64 kHz C 16 16 256 4•R2 FFT 1 C 32.768 MHz 512 Fixed ASIG-01/02 
tuners

ASIG-04 Telephony 64 kHz C 16 16 256 16-pt DFT 1 C 32.768 MHz 512 Fixed ASIG-01/02 
tuners
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