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ABSTRACT 

The new decade will witness the widespread 
usage of distributed processing systems. 
Distributed data base management will turn out to 
be one of the important applications of this 
relatively new technology. This paper initially 
presents a brief outline of the nature of 
research that has been performed so far in thls 
area. Next, it discusses some of the important 
issues (like integrity and security constraints, 
deadlocks, concurrency control, etc.) and 
analyses some proposed mechanisms. Performance 
and correctness issues are also addressed. Then, 
a brief sketch of an adaptive architecture for 
distributed data base management systems is 
presented. The last section lists some future 
directions for research in this area. 

1.0 INTRODUCTION 

With the ever increasing popularity of 
distributed processing, the area of distributed 
data bases (DDB) has become a "hot" topic for 
research. But the work in this area has been very 
scattered and individualistic. Only recently a 
concerted group effort has been made to identify 
some important issues and problems [Bachman 
1978a, CODASYL 1978]. These efforts are still in 
an embryonic stage. Much more work needs to be 
done in this direction. The works of the 
ANSI/X3/SPARC Study Group on Distributed Systems, 
the International Telegraph and Telephone 
Consultative Committee (CCITT) Study Group VII, 
and the ISO Sub-Committee (IS0/TC97/SC16) on Open 
System Interconneetion [ANSI 1978, Bachman 1978b, 
ISO 1978, MacDonald 1978] are also relevant in 

this context. As pointed out in [Adiba 1978] 
decentralization of data processing could very 
well lead to anarchy unless carefully controlled 
by adequate communication and co-operatlon 
protocols. 

A coherent set of principles and methodologies 
needs to be developed for the design, 
implementation, administration, maintenance and 
modification of distributed data base management 
systems (DDBS) and distributed data bases (DDB). 
While some technical problems have been attacked 
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and solved, almost all the managerial and 
organizational problems are yet to be even 
attacked. The developments in this area have been 
of a highly evolutionary nature rather than 
revolutionary. One cannot accept the assertion, 
made in [Schneider 1978], that from a technical 
point of view the difference between centralized 
data base systems and distributed data base 
systems is not very big. If this assertion were 
to be true we would have many working DDBS by now 
(see [Rothnle 1978]). Because of the fact that, 
in the DDB environment, not only the data but 
also the control and status information about 
which process is accessing or modifying what 
information is also distributed, the solutions to 
deadlock, concurrency control and resilleney 
problems would turn out to be much more complex 
than in the centralized environment. In addition 
to these there are the data translation, 
operating system coordination, efficient DDB 
query decomposition (into optimal local queries) 
and (possibly) distributed directory maintenance 
problems, which are unique and very specific to 
the former environment. Le Lann has presented, in 
a formal manner, some of the characteristics of 
distributed systems and has shown how they are 
not simple extensions of centralized systems [Le 
Lann 1977]. The existence of non-determlnistic 
time references and unpredictable propagation 
delays has been shown to make it impossible to 
maintain the global state of a distributed 
system. 

As has been pointed out in [Adlba 1978] DDB are 
the converging point of networking and data base 
technologies. Hence those aspiring to do research 
in the DDB area should undertake an in-depth 
study of the developments (particularly with 
respect to communication and co-operation 
protocols and their verification, performance 
evaluation, error detection and recovery, 
resource management, optimization of design for 
various metrics and so on) in the computer 

networks area. Research in the areas of operating 
systems [Mohan 1978a], data base management 
[Mohan 1978b] and computer networks [INFOTECH 
1977 1978] should be closely followed and 
interrelated. Unless that is done much effort 
will be expended in duplicating work that has 
already been done. 

publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and /o r  specific permission. 



In the following sections I have presented some 
of my observations and opinions on the nature of 
DDB research that has so far been performed and 
some of the shortcomings of those research 
activities. The aim of the analysis has been to 
be very objective, pragmatic and critical, and to 
point to some needed work. The desire has been to 
provide a perspective different from those of 
some existing survey papers [Adiba 1978, 
Maryanski 1978a, Rothnie 1977, Severino 1977]. In 
addition to very specific issues I have looked 
into some global conceptual issues also. My 
observations and analyses of some proposed DDBS 
designs and multilevel architectures for DDBS can 
be found in [Mohan 1979a 1979b]. Some of my ideas 
on DDB design and administration can be found in 
[Mohan 1979b 1979d]. 

2.0 ANALYSES OF PROPOSED MECHANISMS 

One of the unfortunate aspects of research in 
the DDB area has been that many researchers have 
been studying and proposing "new and/or better" 
solutions for certain problems more or less in 
isolation from other related problems. The 
consequence of this situation is that the impact 
of the proposed solutions on the unconsidered 
problems are neither brought out in the papers 
proposing the solutions nor are they apparent to 
the readers. The mechanisms of DDBS are so much 
intertwined that changes proposed even for small 
parts of the system are highly likely to have 
repercussions throughout the system (for e.g. 
changes in system recovery and transaction backup 
mechanisms ~ requirements would affect the locking 
mechanisms). Some of the tradeoffs made are not 
likely to be apparent. My argument is that a 
comprehensive analysis of a proposed mechanism 
must be done before one could accept the claim 
that the proposed mechanism is better than 
existing mechanisms/solutions. 

2.1 Integrity And Security Constraints 

Most authors claim that one of the advantages 
of DDBS is the increased security that it affords 
to data stored at each of the nodes. While the 
potential for this seems to exist one is yet to 
see how this is achieved. Much work needs to be 
done in devising mechanisms for the retention and 
enforcement of integrity and security 
constraints. The different choices available for 
the storage of these constraints need to he 
studied. This would be impacted by the level of 
network transparency that is in force. Depending 
on the application environment updates of the 
constraints would be frequent or infrequent. A 
study of the environment would influence the 
choice of strategies to be employed. It would be 
a non-trlvial task to decide on how to distribute 
these mechanisms in the network (i.e. where would 
the enforcement mechanisms reside?). Except for 
some initial work on access authorization 
reported in [Chang 1977] and on integrity 
constraints reported in [Badal 1978a, Stonebraker 
1977] practically nothing has been published on 

these topics. 

A proposal for the enforcement of semantic 
integrity (SI) constraints has been put forth in 
[Badal 1978a]. This requires having, in addition 
to the data in the DB, what is termed as SI data, 
which is part of the DB data and access to which 
is required to enforce SI. The SI data is updated 
by triggers in transactions which update the DB. 
There are some problems with this approach. 
Changes in SI constraints require incorporation 
of changes in existing update transactions, 
modifying previously existing SI data and 
(possibly) creation of new SI data. This scheme 
requires the updating transactions to have 
knowledge of what SI data exists in the system 
and which of them need to be updated. Since the 
updating transactions are user written they are 
unreliable and hence may not properly update the 
SI data, thus making the whole mechanism 
unreliable. Hence the author's claim that the 
separation of the SI data from DB data can be 
expected to increase the reliability of SI 
enforcement does not seem to be justified. 
Depending on the SI constraint, the volume of the 
SI data may be quite significant in relation to 
the DB data. Hence the author's claim that the 
size of SI data would be small would be true only 
for certain constraints. 

The mechanisms proposed for specification and 

enforcement of integrity and security constraints 
would have a great impact on most other 
features/mechanisms/aspects of DDBS and DDB. 
Hence the design of these mechanisms cannot be 
done in isolation or without considering the 
design of other mechanisms in the DDBS. The 
realization of these fundamental facts is 
essential before one could hope to come up with 
viable and efficient solutions for handling these 
problems. 

2.2 Analysis Of Deadlock Detection Algorithms 

Quite a few proposals have been published in 
the literature to handle this problem (An 
excellent review of the deadlock problem in 
operating, data base and distributed systems can 
he found in [Marsland 1978]). Recently two 
apparently effective solutions have been proposed 
[Isloor 1978, Menasce 1978b]. Criticism of 
earlier proposals can be found in [Isloor 1978]. 

2.2.1 Distributed Protocols - 

The authors of [Isoor 1978] have given the 
following as the advantages of their scheme over 
that of others': 

i. Synchronization problems are minimal or 
non-existent. 

2. It results in reduced computation and 
communication overhead. 

3. It avoids message congestion. 
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4. Processes are allowed to have more than 
one outstanding request for resources. 
Thus more general and realistic than 
previous proposals. 

5. It is the only "on-line" deadlock 
detection algorithm to be proposed until 
now. 

I have uncovered a problem in this algorithm. 
The authors have stated: "In our "on-line" 
detection of deadlocks, the installation which 
decides whether or not to grant a request for a 
data resource residing on its computer can, as a 

consequence of its decision, discover a deadlock 
without further delay". They have further stated 
that their scheme avoids the synchronization 
problems due to communication delays. 

Unfortunately these statements are not correct. 
The algorithm fails to detect a deadlock in the 
following situation. Let us start with the 
situation as depicted in Figure la. Now let us 
assume that in CI (Controller i) P2 (Process 2) 
requests D1 (Data item I). Ci updates its graph 
by adding the PRW (process request wait) edge 
(P2,Di), sends this information to C2 and checks 
its graph and finds no deadlock. Cl's idea of the 
system graph at this moment is depicted in Figure 
lb. When the above is happening at CI, at C2 P3 
requests Dd. C2 updates its graph by adding the 
PRW edge (P3,Dd), sends this information to Ci, 
and checks its graph and finds no deadlock. C2"s 
idea of the graph at this moment is depicted in 
Figure Ic. After a certain amount of time C2 
receives Cl's message and Cl receives C2"s 
message. Now C1 and C2 update their graphs to get 
the one depicted in Figure id. Clearly this graph 
has a cycle, But after this updating C1 and C2 
won't check for deadlock (this follows from the 
above quoted statement of the authors). Thus 
although a deadlock exists it does not get 
detected. This problem arises because of the 
communication delays in transmitting changes to 
the system graphs and because the changes are 
computed and transmitted asynchronously by the 
nodes. 

Some approaches to overcoming this problem are: 

Each controller could check for deadlock 
whenever it updates its graph (not only when the 
update is due to a decision made by that 
controller itself). The problem with this 
approach is that all the nodes would detect a 
deadlock condition (almost simultaneously) when 
it arises. Only one of these nodes should be 
allowed to initiate recovery actions. Achieving 
that is not likely to be easy. 

Naturally the following question arises: Why 
not maintain the graph in only one node (call it 
the DD (deadlock detection) node)? Any time that 
node updates its graph (due to decisions made at 
other nodes or at the same node) it should check 
the graph for deadlock conditions. Since updates 
to the graph have to be sent to only the DD node, 
the trafflc on the network would drop 
tremendously (compared to the scheme of [Isloor 

1978] where updates to the graph are sent to all 
nodes). Of course there is a reliability problem 
with this approach. There is the possibility of 
the DD node crashing. To take care of this 
problem, one could think of having a primary DD 
node and secondary DD nodes, with the secondaries 
being ordered linearly. The graph would be 
maintained at the primary and secondary DD nodes. 
But deadlock detection would be done only by the 
primary node. If the primary goes down, the first 
secondary in the linear order would become the 
primary. When the crashed DD nodes are back in 
service they have to copy the current graph from 
the current primary. 

A centralized scheme has been proposed in [Gray 
1978]. In Distributed INGRES also Gray~s scheme 
is to be used [Stonebraker 1978]. In [Menasce 
1978b] it has been pointed out that while the 
centralized method may be practical and efficient 
for local networks it may impose fairly large 
communication costs in geographically distributed 
systems. This observation would be correct only 
if in the geographically distributed system 
broadcasting is not used for message 
transmission. Merely distributing the DD function 
does not automatically mean greatly reduced 
communication costs. Many subtle problems may be 
introduced due to distribution. The scheme of 
[Isloor 1978] had distributed deadlock detection 
and also some flavour of a centralized scheme 
(since the whole graph was maintained - in fact 
in all nodes). I have already illustrated the 
problem with that scheme. The storage 
requirements (for the graph) are going to be much 
larger for the algorithms of [Isloor 1978] than 
those for the protocols of [Menasce 1978b], not 
only because only a part of the global graph is 
maintained at each node in the latter scheme but 
also because the latter scheme's graphs do not 
have data nodes in them. Now let me analyze the 
latter schemes and show some of the problems with 
them. 

[Menasce 1978b] has presented two protocols - a 
hierarchical one and a distributed one - for DD. 
Gray's scheme is a degenerate case - a single 
level hierarchy with only one non-leaf controller 
- of this hierarchical protocol. In fact, Gray 
mentions, in passing, the possibility of 
developlng the more general version of his 
scheme. In the hierarchical protocol each process 
is permitted to wait for more than one resource 
simultaneously. It is not definite if this is 
allowed in the distributed protocol. If it is 

allowed then a problem arises in using this 
protocol. It is possible for the same deadlock 
condition to be detected by more than one node. 
This is a highly undesirable feature of this 
protocol (I have already pointed out that one way 
of improving the scheme of [Isloor 1978] would 
also lead to this type of a situation). The 
following sequence of events would illustrate my 
observation about this protocol. Let us consider 
a network of 4 nodes - Si, $2, $3 and $4 - and 3 
transactions - Ti, T2 and T3. Sorg(Ti) is the 
node (site) of origin of Ti. 
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Let Sorg(Tl) = Si 
Sorg(T2) = S2 
Sorg(T3) = $3 

Initially T3 is executing. T2 gets some 
resource at $2, executes for a while and then 
sends requests to $3 and $4. The resource 
required at $3 is being currently used by T3. The 
resorce request at $4 is granted. Now $3 creates 
the arc T2 -> T3 in its graph and sends the pair 
(T2,T3) to $2 (meaning that T2 is waiting for 

T3). Now the graphs are: 

At $2:T2 -> T3 
$3:T2 -> T3 

Now let us assume T1 starts at S1 and sends 
requests to $2 and $4. $2 finds that the resource 
required by Ti is being used by T2. So it adds 
the arc Ti -> T2 to its graph, and sends the pair 
(Ti,T3) to SI and $3. So the graphs now become: 

At Si: TI -> T3 
S2: Ti -> T2 -> T3 
$3:T2 -> T3 

Ti -> T3 

While Tl's request to $4 is being processed it 
is found that the required resource is being used 
by T2. So $4 creates the are T1 -> T2 and sends 
the pair (Ti,T2) to S1 and $2. Now the graphs 

are: 

At Sl: TI -> T3 
TI -> T2 

$2: Ti -> T2 -> T3 
$3:T2 -> T3 

TI -> T3 

$4:T1 -> T2 

Now T3 sends a request to $4. $4 finds that the 
required resource has been locked by T2. So it 
creates the arc T3 -> T2 and sends the pair 
(T3,T2) to $3 and $2. When the pair is received 
at $2 and $3, both nodes discover a cycle in 
their graph and thus both detect the same 
deadlock situation. Whatever mechanism may be 
used tO resolve deadlock situations, it is not at 
all desirable for a deadlock to be detected 
independently by more than one node in the 
network. Distribution of the DD mechanism should 
not result in these kinds of situations. 

The above type of situation can be avoided if a 
transaction is allowed to wait for only one 
resource at a time. This would mean that a 
transaction has to send a lock request, get the 
response and only if the request is granted send 
the next lock request. This is too great a 
restriction and too great a price to pay for 
achieving distributed DD. This would decrease 
response time of transactions greatly, if it is 
ever implemented. Decrease in response time would 
occur even for local transactions. This 
restriction would not reflect the way the 
distributed query algorithms published in the 
literature are meant to be implemented. Any 

practical and effective DD scheme should permit 
more than one lock request to be dispatched 
simultaneously. There is a greater need for this 
flexibility if updates to redundant data are to 
be handled efficiently. 

2.2.2 Hierarchical Protocol - 

After reading the above analysis and the 
referenced papers one may feel that probably the 
best approach to DD is the hierarchical protocol 
of [Menasce 1978h]. There are some problems with 
this protocol too. Firstly, according to the 
authors, this protocol is to be used only when 
there is no redundant storage of data (To me it 
is not clear as to why this restriction is being 
imposed - it appears that the protocol would work 
even otherwise). Secondly, if a deadlock is 
detected by the algorithm of [Isloor 1978], it is 
very easy to identify the processes responsible 
for the deadlock (since the reachability sets are 
maintained at all nodes). But in the hierarchical 
protocol direct identification of the processes 
is possible only when a deadlock is detected by a 

leaf controller (LK). When a deadlock is 
identified by a non-leaf controller (NLK), the 
LKs of the subtree with that NLK as the root must 
be examined (since the NLKs maintain only the lOP 
graph and not the full graph of the LKs) to 
determine the processes involved in the deadlock. 
This identification, it appears, would he more 
difficult for the distributed protocol. 
Potentially all nodes may have to be enquired to 
achieve that. The problems in the last two cases 
are caused because in these cases the cycles in 
the transaction wait for (TWF) graph would be a 
condensation of the global TWF graph. The authors 
have not considered the identification problem at 
all. This is an important problem and the authors 
of future proposals should not neglect it. Some 
additional message traffic would be generated to 
achieve this identification. 

Thirdly, the reliability of the hierarchical 
protocol is very had. The authors have not 
discussed it. One could get into serious trouble 
if the LKs or NLKs crash. Depending on the level 
of the crashed nodes in the hierarchy, DD, 
identification of involved processes and deadlock 
resolution may become impossible. The authors 
have stated that the design of the distributed 
protocol was motivated by the desire to support 
reliable operation in environments subject to 
failures. I find the reliability of the 
distributed protocol also to be not very good. 
While node failures may not seriously Jeopardize 
DD, the identification and deadlock resolution 
capabilities may he seriously impaired. The 
consequences of network partitioning would be 
worse (for both the protocols) than those of node 
failures. If we ignore for a moment the 
previously mentioned problem with the algorithms 
of [Isloor 1978], one would find that those 
algorithms provide the maximum reliability (since 
the complete graph is maintained at all nodes). 

Neither have the authors of [Menasce 1978b] 
done a complete job in specifying the protocols. 
They have not stated as to how the TWF graphs and 
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particularly the lOP graphs would be modified 
when a resource is released (as a result of the 
completion of a transaction or due to its 
preemption to break a deadlock). Atleast the 
changes to be made to the lOP graphs would be 
non-trivial. The algorithms of [Isloor 1978] take 
care of resource releases also. In the 
description of the distributed protocol, it has 
been stated that if there are multiple copies of 
data, lock requests have to be sent to all 

controllers which keep a copy of the data. I 
cannot understand why this requirement must be 
placed on even read lock requests. 

2.2.3 Centralized Protocol - 

As already pointed out the designers of 
Distributed INGRES propose to use a centralized 
DD scheme (the DD node is termed the SNOOP). Each 
site has a concurrency controller (CC) for local 
transactions. Only the SNOOP needs to be informed 
of "wait for" conditions. This means that each CC 
sends "wait for" conditions to the SNOOP. It has 
been stated that when a master completes a 
transaction, it sends a "done" to the SNOOP, who 
can appropriately update his "wait for" graph. 
This last one is not the right action to perform. 
The master should not send a "done". Each CC 
should send a "done" as soon as a resource is 
released. Otherwise problems would arise, since 
the graph would be updated pretty late - as a 
result some non-existing deadlocks may be 
detected by the SNOOP. Moreover the master merely 
sending a "done" to the SNOOP would not furnish 
the SNOOP with enough information to update the 
graph. Only the CCs can tell which of the 
currently waiting transactions has been granted 
the resource released by a terminating 
transaction. These arguments also apply to the 
"reset" message that a master is supposed to send 
the SNOOP if it finds that some sites have not 
responded. For these reasons, the ALGORITHM 
MASTER and ALGORITHM SLAVE given in [Stonebraker 
1978] must be modified to reflect the required 
changes. 

There is also a problem in the case of the 
failure of the current SNOOP. ALGORITHM 
RECONFIGURE states that a new SNOOP is calculated 
by a prearranged algorithm and that the local 
conflict graph is sent by each node to that site. 
If in addition to the SNOOP (which itself would 
most likely be a data node also) some other nodes 
have also crashed or if there is a network 
partitioning then the new SNOOP would not be able 
to get a complete copy of the global "wait for" 
graph (since it would not be able to communicate 
with some nodes). The consequences of trying to 
detect deadlocks with a partial global graph 
would be bad. Hence I find the reliability of the 
DD mechanism of Distributed INGRES to be not 
good. 

2.3 Performance And Correctness Of Mechanisms 

In the past not much attention has been given 
to the evaluation of the performance of the 
various mechanisms proposed for dealing with 

different DDBS problems. This has been taken note 
of, recently, by some researchers. [Bernsteln 
1978b] has stated that formal models for 
measuring the amount of concurrency allowed by 
and the amount of communications traffic 
generated by a synchronization mechanism would 
provide a sounder basis for comparing and 
selecting concurrency controls. [Edelberg 1978] 
has stated that further research is needed for 
the performance evaluation of proposed 
concurrency control and global data manipulation 
mechanisms via simulation, analysis or 
experimentation. Chandy, in his survey [Chandy 
1977] of performance models in distributed 
systems, has characterized the modeling efforts 
in the DDB area as being in the first stage of 
development. This stage is characterized by 
models which focus on relatively narrow 
subproblems - those that do not generally 
consider the "big picture". He has noted that 
there seems to be a great need to combine 
correctness (logical) models and predictive 
(analysis) models, and to include these models in 
the process of synthesis (optimization). 

In the following subsections I have made a 
critical evaluation of some of the proposed 
concurrency control and crash recovery mechanisms 
in terms of their performance, correctness, etc. 
Some of the analytical and simulation efforts, 
reported in the literature, have also been 
reviewed. The previous two subsections (2.1 and 
2.2) also contain material relevant to this 
subsection's subject matter. The DDBS SDD-I's 
mechanisms have been evaluated in [Mohan 1979a]. 

2.3.1 Analytical And Simulation Results - 

One of the significant contributions on this 
topic is the work reported in [Gelenbe 1978]. A 
formal model and certain performance measures 
(like promptness, coherence, etc.) have been 
designed to analyze the trade-offs involved in 
choosing update control protocols in fully 
redundant data base environments. That paper 
contains a good description of different 
performance measures for a DDBS. Two families of 
update control techniques have been analyzed, 

with respect to the promptness and coherence 
measures. The first parameterized family of 
policies is based on postponing the application 
of each update for a fixed time (R) with the 
intention of waiting notice of any nearly 
simultaneous updates. The second family of 
policies avoids undoing updates entirely by 
incorporating an update only when it is known to 
be the oldest update not yet applied at the 
center. A parameter S, of the latter family, is 
the time between broadcasts of status messages 
(about the update activity during a certain 
period of time) by each center. The analysis 
gives the trends in the variation of promptness 
and coherence as S/R is varied (excepting for 
these, the rest of the results are ones that are 
very intuitive). It has been stated that S should 
be closer to the mean transit delay (the time 
between dispatch of an update message and its 
subsequent receival) than to the mean time 
between update originations at a center. If this 
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policy were to be followed then the resulting 
message traffic would be enormous. An assumption, 
of the whole analysis, which is very difficult to 
justify is that the system reaches equilibrium. 
The authors have made no attempt to do that. 

Since the analysis was done under very 
restrictive (unreallstlc) assumptions it is not 
at all obvious as to how the results would change 
when the restrictions are relaxed to reflect a 
real life system's characteristics. Further, 
promptness and coherence are not the only 
tradeoffs to be considered in choosing an update 
control policy. Time to confirm succesful update 
application (i.e. response time) and traffic 
induced on the network by the mechanisms are also 
some of the other factors that need to be 
considered. 

Similar in flavour to the above is the work on 
analytical and simulation evaluations of update 
control algorithms (for fully redundant data) 
reported in [Garcla-Mollna 1978]. The algorithms 
that have been considered are the ones described 
in [Ellis 1977, Thomas 1978] and a centralized 
one. This work has been directed at comparing the 
performance of different algorithms and not at 
predicting the exact performance of a given 
system. This is a consequence of the extensive 
number of restrictive assumptions that have been 
made in building the simulator. 

Response time has been used as the primary 

performance measure. It is defined to be the 
difference between the finish time and the time 
when the update arrived at the originating node 
(where finish time is the time when the 
originating node has finished all work on the 
update; notice that at that time other nodes 
might still not be done with that update). The 
results indicate that the centralized algorithm 
performs considerably better than the distributed 
voting algorithm [Thomas 1978], in most cases. 
Further, the Ellis ring algorithm [Ellis 1977] 
and its variants are shown to perform worse than 
the distributed voting algorithm under most 
circumstances. These results must be interpreted 
with great caution since the reliability aspects 
of the algorithms have not been considered. The 
results are valid only when there are no 
llnk/node failures or message losses. 

Garcla-Molina has also analyzed the stability 
characteristics of what are termed deferring and 
rejection algorithms. In a deferring algorithm, 
when a transaction is attempting to obtain its 
locks and finds an item that is locked, the 
transaction is deferred until the item becomes 
available. When the item becomes available, the 
transaction obtains the lock and continues the 
locking process. In the case of the rejecting 
algorithm, transactions are rejected whenever 
they encounter a locked item. When the 
transaction is rejected, it releases all the 
locks it holds, waits for some time and then 
restarts the locking process from scratch again. 
The centralized and Ellis algorithms are examples 
of the deferring algorithm, while the distributed 
voting algorithm could be considered to be an 
example of the rejecting algorithm. It has been 

shown that with finite number of users the 
deferring algorithm would always be stable, 
whereas the rejecting algorithm might be unstable 
(i.e. the response time may become infinite). 

In general the aim of the above efforts has 
been to understand the functioning of some 
algorithms rather than to carry out a parameter 
study, with a view towards optimizing certain 
aspects of their operation. A comparison of the 
update algorithms of [Thomas 1978] and [Ellls 
1977] can be found in [Pardo 1977] also. 

Message Count as Performance Measure 

In the DDBS literature there has been a 
tendency to evaluate concurrency control 
mechanisms by comparing the number of messages 

generated in executing a transaction using the 
various mechanisms under consideration (see 
[Badal 1978b, Rothnle 1977, Stonebraker 1978]). 
While the number of messages do have a great 
impact on the message traffic in the network, the 
lengths of the messages are also of more or less 
equal importance (this importance depends on the 
message transmission characteristics - whether it 
is packet or message switched - of the underlying 
network). This fact must be borne in mind while 
comparing different schemes. Scheme A requiring 
lesser number of messages than Scheme B does not 
necessarily imply that the time spent in message 
transmission in the former is definitely smaller 
than that in the latter. In view of this 
ohservatlon I cannot accept, without question, 
the assertion made in [Badal 1978b] that their 
distributed concurrency control (for partially 
redundant data bases) protocols" overall 
performance is considerably improved over other 
proposed protocols. 

The authors of [Badal 1978b], in their attempts 
to reduce the number of messages to be sent to 
achieve synchronization, seem to have introduced 
the possibility of lot of information being sent 
more than once to a particular site. This happens 
in the case of SUM messages. Under normal 
conditions these duplicate message transmissions 
cause a wastage of network transmission 
capacities. Also, they make the message sizes 
unpredictable. Something that is very crucial to 
the efficient working of these protocols, in 
real-life, is being able to determine the proper 
value of Tmax (Tmax is the maximum average delay 
between a sender and several destinations). This 
would be very difficult for the following 
reasons: There would be a very great varlabillty 
in the sizes of messages (as already pointed 
out), particularly those of the REQ, REQ-ACK and 
READ COMMAND messages (since each of them would 
include variable amounts of different pieces of 
information llke acknowledgements, write 
messages, llst of rejected transactions, 
duplicate SUM messages, etc.). Hence the time 
taken for sending each Of those messages would 
vary tremendously. Thus the variance of the delay 
in sending a message could conceivably be quite 
high. 

Tmax is not a function only of the distance 
between the different sltes. A low estimate of 
Tmax could lead to a heavy amount of repeated 
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sending of messages (particularly REQ messages), 
since the sending sites would time out fast - 

even before the intended recipient gets a chance 
to acknowledge. This leads to inefficient usage 
of the communication network and the processing 
capacities at the different sites, and to lower 
transaction throughput. A high estimate of Tmax 
could lead to delayed detection of failures, and 
the consequent delay in the already initiated 
transactions" execution completion or rejection, 
initiation of recovery mechanisms and processing 
of new transactions. This could again lead to 
lower throughput. Finding an optimal value for 
Tmax, even through simulation, would be a 
difficult proposition because of the difficulties 
involved in being able to characterize the 
lengths of the messages mentioned above. 

The choice of preferred read sites should be 
made Judiciously. If only a small fraction of the 
existing sites are chosen as preferred read 
sites, then these sites would become a 
bottleneck, since enormous number of messages 
(mainly REQ-ACKs) would be sent to these few 
sites and they would have to process them fast. 
This would result in decreased throughput. 
Somehow all the sites should be made to receive 
more or less equal number of messages. 

2.3.2 Correctness And Other Considerations - 

Read-Drlven Protocols 

One of the positive aspects of the proposal of 
[Badal 1978b] is that it does not require the 
storage of time stamps along with data items (the 
latter requirement imposes a heavy overhead in 
most of the other protocols proposed in the 
literature). The described protocols are "read 
driven', in the sense that the transmission of 
updates is demanded by subsequent reads (There is 
no notion of expllcit locking of data resources). 
The consequence of this is that the processing of 
read requests gets delayed considerably, in order 
to complete the incorporation of the previous 
updates. In an on-line enquiry and update 
environment these delays to answer queries may be 
intolerable. There may be situations where such a 
degraded response time is unacceptable. 

One of the properties of the above protocols is 
that, if there are no crashes (link/slte 
failures) then no transaction would ever be 
rejected. On the contrary, SDD-i's protocols may 
have to reject transactions (READ messages), even 

under those perfect conditions. In the event of 
link/slte failures the former protocols would 
permit non-serlallzable execution of 
transactions. This may be a very undesirable 
feature of these protocols. In deciding to reject 
a transaction the protocols seem to be doing some 
unnecessary work. If a preferred read site of a 
transaction is found to be non-respondlng I don't 
see any reason as to why the other read sites 
should try to select a new preferred read site, 
instead of them informing the initiating site and 
(probably) each other that that transaction is 
being rejected. Since one of the read sites of 

the transaction (namely the original preferred 
read site) is not responding, there is no way 
that the transaction could be executed. So there 
is no point in selecting a new preferred read 
site. 

While discussing recovery actions that need to 
be taken on partition reconnectlon, the authors 
have not stated as to how exactly the local logs 
(generated during the time the network was 
partitioned) would be compared, what comparison 
really means, how to determine what transactions 
would have to be rerun and what would be the 
criterion for deciding how far the data base 
state should be rolled back in order to restore 
consistency. The protocols to be followed to 
achieve global roll back have not been described. 
Until these are clearly spelt out and are found 
to be correct one cannot support the claim that 
the proposed protocols provide automatic recovery 
to a consistent state in case of network 
partitioning. Being able to restore a consistent 
state is critically dependent on the correctness 
of these, as of now unspelt, procedures. 

Further, the authors have stated that a 

transaction can determine whether any of its Read 
or Write events would be executed using 
potentially inconsistent data due to missing Read 
or Write events from non-respondlng sites. My 
contention is that a transaction cannot determine 
that fact. A transaction would have to assume 
that potentially all its Read and Write sites are 
inconsistent. This is because a non-respondlng 
site's write messages might have been sent to 
some nodes but might not have been sent to the 
other nodes to which they were supposed to have 
been sent. The transaction in question cannot 
determine what the intentions (in terms of write 
sites) of the parially executed transaction in 
the non-respondlng site were. It is quite 
possible that the partially executed transaction 

had intended to send write messages to all the 
other sites in the network. 

Another matter that has not been discussed is 
the generation of time stamps for transactions 
(Nothing similar to the Time Stamp Generation 
Rule of [Thomas 1978] has been given). It has 
been implicitly assumed (without being stated in 
the paper) that once a site (say Si) responds to 
a REQ message (whose time stamp is TSJ) from 
another site (say SJ) with a REQ-ACK, then any 
transaction initiated in the future by Si would 
be given a TS value greater than TSj (this means 
that the clock at every site would be advanced to 
the TS of an acknowledged REQ, if the latter is 
greater than the current clock time at that 
site). It is very important to recognize this 
assumption because, when network partitioning 
occurs this clock synchronization would be highly 
Jeopardized and that would have a great impact on 
the ability to restore consistency after 
partition reconnectlon (A discussion regarding 
this point with respect to SDD-i, can be found in 
[Mohan 1979a]). 

Distributed INGRES Protocols 

The concurrency control mechanisms for 
Distributed INGRES have been oresented ~n 
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[Stonebraker 1978]. A set of performance 
algorithms (which have some data consistency 
problems) and a set of so called reliable 
algorithms (which have low performance) have been 
proposed. No time stamps are used by these 
mechanisms. In comparing these mechanisms with 
some others, Stonebraker has used the number of 
messages generated for each transaction and 
estimates of response time as the measures of 
comparison. While the Distributed INGRES 
mechanisms may appear to be superior to the 
others with respect to these measures, what is 
not obvious is the amount of concurrency 
permitted by the former. Further, there is no 
discussion of how the local concurrency 
controllers (at the different sites) perform 
their functions. Unless information about that is 
available, one cannot be sure (even in the 
absence of crashes) that the interleaved 
concurrent execution of different transactions 
(accessing or modifying distributed data) would 
be seriallzable. In addition, it has not been 
demonstrated that the reliable algorithms do not 
avoid the third data inconsistency problem that 
the performance algorithms have. The emphasis 
seems to have been to guarantee the incorporation 
of updates at all sites or its rejection by all 
sites, by using a two-phase protocol. 
Synchronization to achieve serializability does 
not seem to have been given the needed importance 
(in contrast to, for e.g., in SDD-i). 

Ticket-Based Protocols 

[Le Lann 1978] has presented some algorithms 
for data sharing, which use the notion of 
"tickets ~. These algorithms are discussed in the 
context of what the author terms as integrated 
and partitioned architectures. Unfortunately the 
differences between the two types of 
architectures are not well explained. I have been 
informed (by Le Lann in a personal communication) 
that integrated is equivalent to fully-redundant 
and partitioned to either strictly partitioned or 
partially redundant. Le Lann has stated that In 
an integrated architecture deadlock avoidance or 
detection is to be performed locally by every 
controller and that conventional (centralized) 
techniques can be used for that purpose. I don~t 
see as to how the conventional techniques would 
be sufficient in the case of the integrated 
architecture. Since, even in the latter 
architecture, locking would need to be done to 
update the copies, a distributed algorithm would 
be needed to implement deadlock detection or 
avoidance mechanisms. 

Further, it has been stated that in a 
partitioned architecture if only one controller 
at a time is issuing allocation requests, there 
is no potential for deadlocks. This would permit 
only static claiming of data. The author has 
chosen to avoid deadlocks rather than detecting 
them, if and when they occur. This choice may not 
be an advisable one, considering the fact that in 
[Isloor 1978] it has been stated that to maintain 
the operational fidelity of any DDBS with respect 
to the problem of deadlock, detection techniques 
are may be more advantageous than prevention or 
avoidance methods (This view has been expressed 
in [Peebles 1978] also). As a result the achieved 

parallelism would be much less than the potential 
parallelism that would be existing. 

While Le Lann has described how sequential 
identification of user requests is achieved (even 
in the presence of message losses), he has not 
explained well as to how the storage processors 
would make use of the identification in achieving 
internal consistency and mutual consistency, and 
in avoiding deadlocks. The discussion is very 
sketchy and is difficult to follow. Since the 
author has not compared his scheme with the other 
researchers" schemes, one encounters more 
difficulty In understanding this scheme. 

[Gelenbe 1978] has listed some of the secondary 
goals that need to be considered in selecting an 
update control technique for a specific data base 
environment. They are: (I) reducing delays in 
applying updates, (2) avoiding favoring updates 
from some centers, (3) giving similar response to 
identical queries submitted simultaneously at 
different nodes, (4) minimizing the need to undo 
updates, and (5) insuring that the order in which 
updates are applied conforms with their actual 
order of submission. 

With regard to deadlocks [Isloor 1978] has 
stated: "It is difficult to estimate the 
performance effects of deadlock detection or 
prevention In DDBS, since communication time is 
the critical factor. Once DDBS become a 
commercial reality experimental data can be 
gathered to measure the performance". See the 
previous subsection (2.2) for an evaluation of 
the performance and correctness of some recent 
deadlock detection schemes. 

3.0 PARAMETERIZABLE ADAPTIVE FUTURE ARCHITECTURE 

The pursuit for new and novel architectures 
needs to be encouraged. In this section I would 
like to present the salient features of a future 
DDBS architecture which is highly parameterized 
and adaptive to different environments. The 
motivations for this architecture proposal have 
also been presented. 

3.1 Motivations And The Proposal 

In the literature one finds many solutions to 
different DDBS problems. If one looks at the 
solutlons/algorlthms proposed for a particular 
system problem, it would be obvious that the 
degree to which the problem is solved by the 
solutions varies and there is a corresponding 
variation in the overhead/cost involved in 
adopting the solution also (see Section 2.3 for 
references on performance evaluation which 
illustrate this remark for the case of update 
synchronization algorithms). As a result, it is 

likely that one solution would be appropriate for 
a particular DDB environment, while another 
solution would be more appropriate for a 
different environment (see [Badal 1978b, 
Bernsteln 1978a, Chu 1979, Garcla-Molina 1978, 
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Gelenbe 1978, Hammer 1978, Hevner 1978, Isloor 
1978, Le Lann 1978, Maryanskl 1978b, Menasee 
1978a 19785, Pelagattl 1978, Shapiro 1978, 
Stonebraker 1978, Thomas 1978, Yeh 1978a] for the 
variety of environments assumed while the authors 
propose certain algorlthms/solutions). 

It may not be advisable at all, to use the most 
general solutlons/algorlthms in all environments. 
Invariably generality would bring with it certain 
amount of inefficiency. Efficiency would be an 
overriding requirement in most DDB applocations. 
Hence I feel that the DDBS of the future should 
be designed and implemented so that they would be 
able to use many solutlons/algorithms for solving 
a particular problem (like deadlock detection, 
concurrency control, query processing, 
resilency/reliability, etc.). The data base 
designer or enterprise administrator using such a 
system should be able to select (by setting 
values for certain parameters while installing a 
DDB using the DDBS) algorithms that are most 
appropriate (in terms of their performance 
characteristics and the extent to which they 
solve the DDBS problems) for his particular 
envlronment/application. This means that I am 
proposing that the future DDBS should have a 
parameterlzable architecture. This approach is 
much more desirable than the one in which the 
designers of the DDBS select (based, probably, on 
their own perception of the environment in which 
the DDBS would be used) and implement one 
particular algorithm for each DDBS problem, 
thereby forcing the users (i.e. the enterprise 
administrators) of such DDBS to llve with those 
solutions without any choice or flexibility. 

The conjucture is that architectures based on 
the above concept would be much more adaptive and 
hence very efficient for different types of 
environments. Even in a given environment, the 
adaptability of the architecture would help to 
satisfy the changes in requirements that may 
occur in that environment over a period of time. 
Systems built with this type of architecture 
would not only be able to adapt to different 
environments but also to the 
characterlstics/architecture of different 
communication networks. One would be able to take 
advantage of the peculiarities of the underlying 

network or the application environment and 
thereby optimize the performance of the DDBS. 
Figure 2 conveys in a simple minded manner the 
basic idea of my proposal. Since the architecture 
is adaptive, it would be highly portable. 

3.2 Implications Of The Architecture 

The result of this parameterizatlon of the 
architecture is that what we get is essentlally a 
family of distributed data base systems, each 
with sllghtly different characteristics. This 
type of an architecture can be realized by 
building the software in a highly modular 
fashion, with the software divided into 
components on the basis of functionality. 

All possible combinations of the different 
parameters" values are not likely to be 

compatible. A particular value for one parameter 
may require that certain other parameter(s) 
should not have certain values. This could be the 
result of our previous observation (in Section 2) 
that solutions for a certain problem affect the 
solutions for other problems. Hence a handbook 
may have to be prepared to tell the DBA what 
combinations of the parameter values are valid. 
The preparation of this handbook would require a 
thorough analysis of the properties of 
algorlthms/solutions denoted by the different 
parameter values. 

Some parameters could be meant for specifying: 

i. Degree of reliability (e.g. number of 
spoolers used to guarantee delivery of a 
message in [Hammer 1978]). 

2. Crash recovery (e.g. number of recent 
updates to be remembered in [Shapiro 
1 9 7 8 ] ) .  

3 .  L e v e l  o f  n e t w o r k  t r a n s p a r e n c y  ( s h o u l d  
d i s t r i b u t i o n  be v i s i b l e  o r  i n v i s i b l e  a t  
t h e  q u e r y  l e v e l ? ) .  

4 .  S p e e d  o f  d e t e c t i o n  o f  f a i l u r e s .  

5 .  Time t o  r e c o v e r  f r o m  f a i l u r e s .  

6. Level of consistency to be maintained 
(see [Gray 1978] for discussion on the 
possible levels). 

7. Should redundant storage of data be 
allowed? 

8. Whether each query would access data in 
more than one node. 

9. Whether deadlock avoidance or prevention 
or detection algorithms should be 
activated or not. 

i0. Whether the type of communication is 
point to point or broadcast. 

ii. Time between the receipt of an update 
message and its subsequent incorporation 
(see [Gelenbe 1978] for more details). 

12. If the hierarchical protocol of [Menasce 
1978b] is used for periodic deadlock 
detection, then the frequency at which 
information about input and output port 
connection is sent by the leaf 
controllers to non-leaf controllers. 

4.0 CONCLUSIONS/FUTURE DIRECTIONS 

To summarize, research needs to be done to 
aceomplish the following: 

I. Study relationships amongst algorithms 
and protocols proposed for query 
processing, update synchronization, 
resiliency mechanisms, integrity & 
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security enforcement mechanisms, data 
distribution and directory management, 
and the communications network and 
application characteristics (similar to 
the analysis done in [Mohan 1979a]). 

2. Evaluate the performance of the various 
algorithms in terms of their execution 
overhead, amount of inter-node 
communication, etc. 

3. Design of integrity and authorization 
enforcement mechanisms. 

4. Elucidate the facilities that should be 
provided by data dictionary systems. 

5. Define responsibilitles of Global 
Enterprise Administrator (GEA) and Local 

Enterprise Administrator (LEA). 

6. Development of integrated tools for 
helping the GEA and LEAs. 

7. Development of integrated methodologies 
for DDB and DDBS design. 

8. Development of methodologles and tools 
for collection of statistics about data 
base usage, and network and host 
utilization, etc. 
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