
DISTRIBUTED DATA BASE MANAGEMENT:
SOME THOUGHTS AND ANALYSES

C. Mohan

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

ABSTRACT

The new decade will witness the widespread
usage of distributed processing systems.
Distributed data base management will turn out to
be one of the important applications of this
relatively new technology. This paper initially
presents a brief outline of the nature of
research that has been performed so far in thls
area. Next, it discusses some of the important
issues (like integrity and security constraints,
deadlocks, concurrency control, etc.) and
analyses some proposed mechanisms. Performance
and correctness issues are also addressed. Then,
a brief sketch of an adaptive architecture for
distributed data base management systems is
presented. The last section lists some future
directions for research in this area.

1.0 INTRODUCTION

With the ever increasing popularity of
distributed processing, the area of distributed
data bases (DDB) has become a "hot" topic for
research. But the work in this area has been very
scattered and individualistic. Only recently a
concerted group effort has been made to identify
some important issues and problems [Bachman
1978a, CODASYL 1978]. These efforts are still in
an embryonic stage. Much more work needs to be
done in this direction. The works of the
ANSI/X3/SPARC Study Group on Distributed Systems,
the International Telegraph and Telephone
Consultative Committee (CCITT) Study Group VII,
and the ISO Sub-Committee (IS0/TC97/SC16) on Open
System Interconneetion [ANSI 1978, Bachman 1978b,
ISO 1978, MacDonald 1978] are also relevant in

this context. As pointed out in [Adiba 1978]
decentralization of data processing could very
well lead to anarchy unless carefully controlled
by adequate communication and co-operatlon
protocols.

A coherent set of principles and methodologies
needs to be developed for the design,
implementation, administration, maintenance and
modification of distributed data base management
systems (DDBS) and distributed data bases (DDB).
While some technical problems have been attacked

Permission to copy without ~e all or part of this material is granted
provided that the copies are not made or distributed ~ r d ivot
comme~ia l advantage, the ACM copyright notice and the title of the

© 1 9 8 0 ACM 0-89791-028-1/80/1000/0399 $ 0 0 . 7 5 3 9 9

and solved, almost all the managerial and
organizational problems are yet to be even
attacked. The developments in this area have been
of a highly evolutionary nature rather than
revolutionary. One cannot accept the assertion,
made in [Schneider 1978], that from a technical
point of view the difference between centralized
data base systems and distributed data base
systems is not very big. If this assertion were
to be true we would have many working DDBS by now
(see [Rothnle 1978]). Because of the fact that,
in the DDB environment, not only the data but
also the control and status information about
which process is accessing or modifying what
information is also distributed, the solutions to
deadlock, concurrency control and resilleney
problems would turn out to be much more complex
than in the centralized environment. In addition
to these there are the data translation,
operating system coordination, efficient DDB
query decomposition (into optimal local queries)
and (possibly) distributed directory maintenance
problems, which are unique and very specific to
the former environment. Le Lann has presented, in
a formal manner, some of the characteristics of
distributed systems and has shown how they are
not simple extensions of centralized systems [Le
Lann 1977]. The existence of non-determlnistic
time references and unpredictable propagation
delays has been shown to make it impossible to
maintain the global state of a distributed
system.

As has been pointed out in [Adlba 1978] DDB are
the converging point of networking and data base
technologies. Hence those aspiring to do research
in the DDB area should undertake an in-depth
study of the developments (particularly with
respect to communication and co-operation
protocols and their verification, performance
evaluation, error detection and recovery,
resource management, optimization of design for
various metrics and so on) in the computer

networks area. Research in the areas of operating
systems [Mohan 1978a], data base management
[Mohan 1978b] and computer networks [INFOTECH
1977 1978] should be closely followed and
interrelated. Unless that is done much effort
will be expended in duplicating work that has
already been done.

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

In the following sections I have presented some
of my observations and opinions on the nature of
DDB research that has so far been performed and
some of the shortcomings of those research
activities. The aim of the analysis has been to
be very objective, pragmatic and critical, and to
point to some needed work. The desire has been to
provide a perspective different from those of
some existing survey papers [Adiba 1978,
Maryanski 1978a, Rothnie 1977, Severino 1977]. In
addition to very specific issues I have looked
into some global conceptual issues also. My
observations and analyses of some proposed DDBS
designs and multilevel architectures for DDBS can
be found in [Mohan 1979a 1979b]. Some of my ideas
on DDB design and administration can be found in
[Mohan 1979b 1979d].

2.0 ANALYSES OF PROPOSED MECHANISMS

One of the unfortunate aspects of research in
the DDB area has been that many researchers have
been studying and proposing "new and/or better"
solutions for certain problems more or less in
isolation from other related problems. The
consequence of this situation is that the impact
of the proposed solutions on the unconsidered
problems are neither brought out in the papers
proposing the solutions nor are they apparent to
the readers. The mechanisms of DDBS are so much
intertwined that changes proposed even for small
parts of the system are highly likely to have
repercussions throughout the system (for e.g.
changes in system recovery and transaction backup
mechanisms ~ requirements would affect the locking
mechanisms). Some of the tradeoffs made are not
likely to be apparent. My argument is that a
comprehensive analysis of a proposed mechanism
must be done before one could accept the claim
that the proposed mechanism is better than
existing mechanisms/solutions.

2.1 Integrity And Security Constraints

Most authors claim that one of the advantages
of DDBS is the increased security that it affords
to data stored at each of the nodes. While the
potential for this seems to exist one is yet to
see how this is achieved. Much work needs to be
done in devising mechanisms for the retention and
enforcement of integrity and security
constraints. The different choices available for
the storage of these constraints need to he
studied. This would be impacted by the level of
network transparency that is in force. Depending
on the application environment updates of the
constraints would be frequent or infrequent. A
study of the environment would influence the
choice of strategies to be employed. It would be
a non-trlvial task to decide on how to distribute
these mechanisms in the network (i.e. where would
the enforcement mechanisms reside?). Except for
some initial work on access authorization
reported in [Chang 1977] and on integrity
constraints reported in [Badal 1978a, Stonebraker
1977] practically nothing has been published on

these topics.

A proposal for the enforcement of semantic
integrity (SI) constraints has been put forth in
[Badal 1978a]. This requires having, in addition
to the data in the DB, what is termed as SI data,
which is part of the DB data and access to which
is required to enforce SI. The SI data is updated
by triggers in transactions which update the DB.
There are some problems with this approach.
Changes in SI constraints require incorporation
of changes in existing update transactions,
modifying previously existing SI data and
(possibly) creation of new SI data. This scheme
requires the updating transactions to have
knowledge of what SI data exists in the system
and which of them need to be updated. Since the
updating transactions are user written they are
unreliable and hence may not properly update the
SI data, thus making the whole mechanism
unreliable. Hence the author's claim that the
separation of the SI data from DB data can be
expected to increase the reliability of SI
enforcement does not seem to be justified.
Depending on the SI constraint, the volume of the
SI data may be quite significant in relation to
the DB data. Hence the author's claim that the
size of SI data would be small would be true only
for certain constraints.

The mechanisms proposed for specification and

enforcement of integrity and security constraints
would have a great impact on most other
features/mechanisms/aspects of DDBS and DDB.
Hence the design of these mechanisms cannot be
done in isolation or without considering the
design of other mechanisms in the DDBS. The
realization of these fundamental facts is
essential before one could hope to come up with
viable and efficient solutions for handling these
problems.

2.2 Analysis Of Deadlock Detection Algorithms

Quite a few proposals have been published in
the literature to handle this problem (An
excellent review of the deadlock problem in
operating, data base and distributed systems can
he found in [Marsland 1978]). Recently two
apparently effective solutions have been proposed
[Isloor 1978, Menasce 1978b]. Criticism of
earlier proposals can be found in [Isloor 1978].

2.2.1 Distributed Protocols -

The authors of [Isoor 1978] have given the
following as the advantages of their scheme over
that of others':

i. Synchronization problems are minimal or
non-existent.

2. It results in reduced computation and
communication overhead.

3. It avoids message congestion.

4 0 0

4. Processes are allowed to have more than
one outstanding request for resources.
Thus more general and realistic than
previous proposals.

5. It is the only "on-line" deadlock
detection algorithm to be proposed until
now.

I have uncovered a problem in this algorithm.
The authors have stated: "In our "on-line"
detection of deadlocks, the installation which
decides whether or not to grant a request for a
data resource residing on its computer can, as a

consequence of its decision, discover a deadlock
without further delay". They have further stated
that their scheme avoids the synchronization
problems due to communication delays.

Unfortunately these statements are not correct.
The algorithm fails to detect a deadlock in the
following situation. Let us start with the
situation as depicted in Figure la. Now let us
assume that in CI (Controller i) P2 (Process 2)
requests D1 (Data item I). Ci updates its graph
by adding the PRW (process request wait) edge
(P2,Di), sends this information to C2 and checks
its graph and finds no deadlock. Cl's idea of the
system graph at this moment is depicted in Figure
lb. When the above is happening at CI, at C2 P3
requests Dd. C2 updates its graph by adding the
PRW edge (P3,Dd), sends this information to Ci,
and checks its graph and finds no deadlock. C2"s
idea of the graph at this moment is depicted in
Figure Ic. After a certain amount of time C2
receives Cl's message and Cl receives C2"s
message. Now C1 and C2 update their graphs to get
the one depicted in Figure id. Clearly this graph
has a cycle, But after this updating C1 and C2
won't check for deadlock (this follows from the
above quoted statement of the authors). Thus
although a deadlock exists it does not get
detected. This problem arises because of the
communication delays in transmitting changes to
the system graphs and because the changes are
computed and transmitted asynchronously by the
nodes.

Some approaches to overcoming this problem are:

Each controller could check for deadlock
whenever it updates its graph (not only when the
update is due to a decision made by that
controller itself). The problem with this
approach is that all the nodes would detect a
deadlock condition (almost simultaneously) when
it arises. Only one of these nodes should be
allowed to initiate recovery actions. Achieving
that is not likely to be easy.

Naturally the following question arises: Why
not maintain the graph in only one node (call it
the DD (deadlock detection) node)? Any time that
node updates its graph (due to decisions made at
other nodes or at the same node) it should check
the graph for deadlock conditions. Since updates
to the graph have to be sent to only the DD node,
the trafflc on the network would drop
tremendously (compared to the scheme of [Isloor

1978] where updates to the graph are sent to all
nodes). Of course there is a reliability problem
with this approach. There is the possibility of
the DD node crashing. To take care of this
problem, one could think of having a primary DD
node and secondary DD nodes, with the secondaries
being ordered linearly. The graph would be
maintained at the primary and secondary DD nodes.
But deadlock detection would be done only by the
primary node. If the primary goes down, the first
secondary in the linear order would become the
primary. When the crashed DD nodes are back in
service they have to copy the current graph from
the current primary.

A centralized scheme has been proposed in [Gray
1978]. In Distributed INGRES also Gray~s scheme
is to be used [Stonebraker 1978]. In [Menasce
1978b] it has been pointed out that while the
centralized method may be practical and efficient
for local networks it may impose fairly large
communication costs in geographically distributed
systems. This observation would be correct only
if in the geographically distributed system
broadcasting is not used for message
transmission. Merely distributing the DD function
does not automatically mean greatly reduced
communication costs. Many subtle problems may be
introduced due to distribution. The scheme of
[Isloor 1978] had distributed deadlock detection
and also some flavour of a centralized scheme
(since the whole graph was maintained - in fact
in all nodes). I have already illustrated the
problem with that scheme. The storage
requirements (for the graph) are going to be much
larger for the algorithms of [Isloor 1978] than
those for the protocols of [Menasce 1978b], not
only because only a part of the global graph is
maintained at each node in the latter scheme but
also because the latter scheme's graphs do not
have data nodes in them. Now let me analyze the
latter schemes and show some of the problems with
them.

[Menasce 1978b] has presented two protocols - a
hierarchical one and a distributed one - for DD.
Gray's scheme is a degenerate case - a single
level hierarchy with only one non-leaf controller
- of this hierarchical protocol. In fact, Gray
mentions, in passing, the possibility of
developlng the more general version of his
scheme. In the hierarchical protocol each process
is permitted to wait for more than one resource
simultaneously. It is not definite if this is
allowed in the distributed protocol. If it is

allowed then a problem arises in using this
protocol. It is possible for the same deadlock
condition to be detected by more than one node.
This is a highly undesirable feature of this
protocol (I have already pointed out that one way
of improving the scheme of [Isloor 1978] would
also lead to this type of a situation). The
following sequence of events would illustrate my
observation about this protocol. Let us consider
a network of 4 nodes - Si, $2, $3 and $4 - and 3
transactions - Ti, T2 and T3. Sorg(Ti) is the
node (site) of origin of Ti.

4 0 1

Let Sorg(Tl) = Si
Sorg(T2) = S2
Sorg(T3) = $3

Initially T3 is executing. T2 gets some
resource at $2, executes for a while and then
sends requests to $3 and $4. The resource
required at $3 is being currently used by T3. The
resorce request at $4 is granted. Now $3 creates
the arc T2 -> T3 in its graph and sends the pair
(T2,T3) to $2 (meaning that T2 is waiting for

T3). Now the graphs are:

At $2:T2 -> T3
$3:T2 -> T3

Now let us assume T1 starts at S1 and sends
requests to $2 and $4. $2 finds that the resource
required by Ti is being used by T2. So it adds
the arc Ti -> T2 to its graph, and sends the pair
(Ti,T3) to SI and $3. So the graphs now become:

At Si: TI -> T3
S2: Ti -> T2 -> T3
$3:T2 -> T3

Ti -> T3

While Tl's request to $4 is being processed it
is found that the required resource is being used
by T2. So $4 creates the are T1 -> T2 and sends
the pair (Ti,T2) to S1 and $2. Now the graphs

are:

At Sl: TI -> T3
TI -> T2

$2: Ti -> T2 -> T3
$3:T2 -> T3

TI -> T3

$4:T1 -> T2

Now T3 sends a request to $4. $4 finds that the
required resource has been locked by T2. So it
creates the arc T3 -> T2 and sends the pair
(T3,T2) to $3 and $2. When the pair is received
at $2 and $3, both nodes discover a cycle in
their graph and thus both detect the same
deadlock situation. Whatever mechanism may be
used tO resolve deadlock situations, it is not at
all desirable for a deadlock to be detected
independently by more than one node in the
network. Distribution of the DD mechanism should
not result in these kinds of situations.

The above type of situation can be avoided if a
transaction is allowed to wait for only one
resource at a time. This would mean that a
transaction has to send a lock request, get the
response and only if the request is granted send
the next lock request. This is too great a
restriction and too great a price to pay for
achieving distributed DD. This would decrease
response time of transactions greatly, if it is
ever implemented. Decrease in response time would
occur even for local transactions. This
restriction would not reflect the way the
distributed query algorithms published in the
literature are meant to be implemented. Any

practical and effective DD scheme should permit
more than one lock request to be dispatched
simultaneously. There is a greater need for this
flexibility if updates to redundant data are to
be handled efficiently.

2.2.2 Hierarchical Protocol -

After reading the above analysis and the
referenced papers one may feel that probably the
best approach to DD is the hierarchical protocol
of [Menasce 1978h]. There are some problems with
this protocol too. Firstly, according to the
authors, this protocol is to be used only when
there is no redundant storage of data (To me it
is not clear as to why this restriction is being
imposed - it appears that the protocol would work
even otherwise). Secondly, if a deadlock is
detected by the algorithm of [Isloor 1978], it is
very easy to identify the processes responsible
for the deadlock (since the reachability sets are
maintained at all nodes). But in the hierarchical
protocol direct identification of the processes
is possible only when a deadlock is detected by a

leaf controller (LK). When a deadlock is
identified by a non-leaf controller (NLK), the
LKs of the subtree with that NLK as the root must
be examined (since the NLKs maintain only the lOP
graph and not the full graph of the LKs) to
determine the processes involved in the deadlock.
This identification, it appears, would he more
difficult for the distributed protocol.
Potentially all nodes may have to be enquired to
achieve that. The problems in the last two cases
are caused because in these cases the cycles in
the transaction wait for (TWF) graph would be a
condensation of the global TWF graph. The authors
have not considered the identification problem at
all. This is an important problem and the authors
of future proposals should not neglect it. Some
additional message traffic would be generated to
achieve this identification.

Thirdly, the reliability of the hierarchical
protocol is very had. The authors have not
discussed it. One could get into serious trouble
if the LKs or NLKs crash. Depending on the level
of the crashed nodes in the hierarchy, DD,
identification of involved processes and deadlock
resolution may become impossible. The authors
have stated that the design of the distributed
protocol was motivated by the desire to support
reliable operation in environments subject to
failures. I find the reliability of the
distributed protocol also to be not very good.
While node failures may not seriously Jeopardize
DD, the identification and deadlock resolution
capabilities may he seriously impaired. The
consequences of network partitioning would be
worse (for both the protocols) than those of node
failures. If we ignore for a moment the
previously mentioned problem with the algorithms
of [Isloor 1978], one would find that those
algorithms provide the maximum reliability (since
the complete graph is maintained at all nodes).

Neither have the authors of [Menasce 1978b]
done a complete job in specifying the protocols.
They have not stated as to how the TWF graphs and

4 0 2

particularly the lOP graphs would be modified
when a resource is released (as a result of the
completion of a transaction or due to its
preemption to break a deadlock). Atleast the
changes to be made to the lOP graphs would be
non-trivial. The algorithms of [Isloor 1978] take
care of resource releases also. In the
description of the distributed protocol, it has
been stated that if there are multiple copies of
data, lock requests have to be sent to all

controllers which keep a copy of the data. I
cannot understand why this requirement must be
placed on even read lock requests.

2.2.3 Centralized Protocol -

As already pointed out the designers of
Distributed INGRES propose to use a centralized
DD scheme (the DD node is termed the SNOOP). Each
site has a concurrency controller (CC) for local
transactions. Only the SNOOP needs to be informed
of "wait for" conditions. This means that each CC
sends "wait for" conditions to the SNOOP. It has
been stated that when a master completes a
transaction, it sends a "done" to the SNOOP, who
can appropriately update his "wait for" graph.
This last one is not the right action to perform.
The master should not send a "done". Each CC
should send a "done" as soon as a resource is
released. Otherwise problems would arise, since
the graph would be updated pretty late - as a
result some non-existing deadlocks may be
detected by the SNOOP. Moreover the master merely
sending a "done" to the SNOOP would not furnish
the SNOOP with enough information to update the
graph. Only the CCs can tell which of the
currently waiting transactions has been granted
the resource released by a terminating
transaction. These arguments also apply to the
"reset" message that a master is supposed to send
the SNOOP if it finds that some sites have not
responded. For these reasons, the ALGORITHM
MASTER and ALGORITHM SLAVE given in [Stonebraker
1978] must be modified to reflect the required
changes.

There is also a problem in the case of the
failure of the current SNOOP. ALGORITHM
RECONFIGURE states that a new SNOOP is calculated
by a prearranged algorithm and that the local
conflict graph is sent by each node to that site.
If in addition to the SNOOP (which itself would
most likely be a data node also) some other nodes
have also crashed or if there is a network
partitioning then the new SNOOP would not be able
to get a complete copy of the global "wait for"
graph (since it would not be able to communicate
with some nodes). The consequences of trying to
detect deadlocks with a partial global graph
would be bad. Hence I find the reliability of the
DD mechanism of Distributed INGRES to be not
good.

2.3 Performance And Correctness Of Mechanisms

In the past not much attention has been given
to the evaluation of the performance of the
various mechanisms proposed for dealing with

different DDBS problems. This has been taken note
of, recently, by some researchers. [Bernsteln
1978b] has stated that formal models for
measuring the amount of concurrency allowed by
and the amount of communications traffic
generated by a synchronization mechanism would
provide a sounder basis for comparing and
selecting concurrency controls. [Edelberg 1978]
has stated that further research is needed for
the performance evaluation of proposed
concurrency control and global data manipulation
mechanisms via simulation, analysis or
experimentation. Chandy, in his survey [Chandy
1977] of performance models in distributed
systems, has characterized the modeling efforts
in the DDB area as being in the first stage of
development. This stage is characterized by
models which focus on relatively narrow
subproblems - those that do not generally
consider the "big picture". He has noted that
there seems to be a great need to combine
correctness (logical) models and predictive
(analysis) models, and to include these models in
the process of synthesis (optimization).

In the following subsections I have made a
critical evaluation of some of the proposed
concurrency control and crash recovery mechanisms
in terms of their performance, correctness, etc.
Some of the analytical and simulation efforts,
reported in the literature, have also been
reviewed. The previous two subsections (2.1 and
2.2) also contain material relevant to this
subsection's subject matter. The DDBS SDD-I's
mechanisms have been evaluated in [Mohan 1979a].

2.3.1 Analytical And Simulation Results -

One of the significant contributions on this
topic is the work reported in [Gelenbe 1978]. A
formal model and certain performance measures
(like promptness, coherence, etc.) have been
designed to analyze the trade-offs involved in
choosing update control protocols in fully
redundant data base environments. That paper
contains a good description of different
performance measures for a DDBS. Two families of
update control techniques have been analyzed,

with respect to the promptness and coherence
measures. The first parameterized family of
policies is based on postponing the application
of each update for a fixed time (R) with the
intention of waiting notice of any nearly
simultaneous updates. The second family of
policies avoids undoing updates entirely by
incorporating an update only when it is known to
be the oldest update not yet applied at the
center. A parameter S, of the latter family, is
the time between broadcasts of status messages
(about the update activity during a certain
period of time) by each center. The analysis
gives the trends in the variation of promptness
and coherence as S/R is varied (excepting for
these, the rest of the results are ones that are
very intuitive). It has been stated that S should
be closer to the mean transit delay (the time
between dispatch of an update message and its
subsequent receival) than to the mean time
between update originations at a center. If this

4 0 3

policy were to be followed then the resulting
message traffic would be enormous. An assumption,
of the whole analysis, which is very difficult to
justify is that the system reaches equilibrium.
The authors have made no attempt to do that.

Since the analysis was done under very
restrictive (unreallstlc) assumptions it is not
at all obvious as to how the results would change
when the restrictions are relaxed to reflect a
real life system's characteristics. Further,
promptness and coherence are not the only
tradeoffs to be considered in choosing an update
control policy. Time to confirm succesful update
application (i.e. response time) and traffic
induced on the network by the mechanisms are also
some of the other factors that need to be
considered.

Similar in flavour to the above is the work on
analytical and simulation evaluations of update
control algorithms (for fully redundant data)
reported in [Garcla-Mollna 1978]. The algorithms
that have been considered are the ones described
in [Ellis 1977, Thomas 1978] and a centralized
one. This work has been directed at comparing the
performance of different algorithms and not at
predicting the exact performance of a given
system. This is a consequence of the extensive
number of restrictive assumptions that have been
made in building the simulator.

Response time has been used as the primary

performance measure. It is defined to be the
difference between the finish time and the time
when the update arrived at the originating node
(where finish time is the time when the
originating node has finished all work on the
update; notice that at that time other nodes
might still not be done with that update). The
results indicate that the centralized algorithm
performs considerably better than the distributed
voting algorithm [Thomas 1978], in most cases.
Further, the Ellis ring algorithm [Ellis 1977]
and its variants are shown to perform worse than
the distributed voting algorithm under most
circumstances. These results must be interpreted
with great caution since the reliability aspects
of the algorithms have not been considered. The
results are valid only when there are no
llnk/node failures or message losses.

Garcla-Molina has also analyzed the stability
characteristics of what are termed deferring and
rejection algorithms. In a deferring algorithm,
when a transaction is attempting to obtain its
locks and finds an item that is locked, the
transaction is deferred until the item becomes
available. When the item becomes available, the
transaction obtains the lock and continues the
locking process. In the case of the rejecting
algorithm, transactions are rejected whenever
they encounter a locked item. When the
transaction is rejected, it releases all the
locks it holds, waits for some time and then
restarts the locking process from scratch again.
The centralized and Ellis algorithms are examples
of the deferring algorithm, while the distributed
voting algorithm could be considered to be an
example of the rejecting algorithm. It has been

shown that with finite number of users the
deferring algorithm would always be stable,
whereas the rejecting algorithm might be unstable
(i.e. the response time may become infinite).

In general the aim of the above efforts has
been to understand the functioning of some
algorithms rather than to carry out a parameter
study, with a view towards optimizing certain
aspects of their operation. A comparison of the
update algorithms of [Thomas 1978] and [Ellls
1977] can be found in [Pardo 1977] also.

Message Count as Performance Measure

In the DDBS literature there has been a
tendency to evaluate concurrency control
mechanisms by comparing the number of messages

generated in executing a transaction using the
various mechanisms under consideration (see
[Badal 1978b, Rothnle 1977, Stonebraker 1978]).
While the number of messages do have a great
impact on the message traffic in the network, the
lengths of the messages are also of more or less
equal importance (this importance depends on the
message transmission characteristics - whether it
is packet or message switched - of the underlying
network). This fact must be borne in mind while
comparing different schemes. Scheme A requiring
lesser number of messages than Scheme B does not
necessarily imply that the time spent in message
transmission in the former is definitely smaller
than that in the latter. In view of this
ohservatlon I cannot accept, without question,
the assertion made in [Badal 1978b] that their
distributed concurrency control (for partially
redundant data bases) protocols" overall
performance is considerably improved over other
proposed protocols.

The authors of [Badal 1978b], in their attempts
to reduce the number of messages to be sent to
achieve synchronization, seem to have introduced
the possibility of lot of information being sent
more than once to a particular site. This happens
in the case of SUM messages. Under normal
conditions these duplicate message transmissions
cause a wastage of network transmission
capacities. Also, they make the message sizes
unpredictable. Something that is very crucial to
the efficient working of these protocols, in
real-life, is being able to determine the proper
value of Tmax (Tmax is the maximum average delay
between a sender and several destinations). This
would be very difficult for the following
reasons: There would be a very great varlabillty
in the sizes of messages (as already pointed
out), particularly those of the REQ, REQ-ACK and
READ COMMAND messages (since each of them would
include variable amounts of different pieces of
information llke acknowledgements, write
messages, llst of rejected transactions,
duplicate SUM messages, etc.). Hence the time
taken for sending each Of those messages would
vary tremendously. Thus the variance of the delay
in sending a message could conceivably be quite
high.

Tmax is not a function only of the distance
between the different sltes. A low estimate of
Tmax could lead to a heavy amount of repeated

4 0 4

sending of messages (particularly REQ messages),
since the sending sites would time out fast -

even before the intended recipient gets a chance
to acknowledge. This leads to inefficient usage
of the communication network and the processing
capacities at the different sites, and to lower
transaction throughput. A high estimate of Tmax
could lead to delayed detection of failures, and
the consequent delay in the already initiated
transactions" execution completion or rejection,
initiation of recovery mechanisms and processing
of new transactions. This could again lead to
lower throughput. Finding an optimal value for
Tmax, even through simulation, would be a
difficult proposition because of the difficulties
involved in being able to characterize the
lengths of the messages mentioned above.

The choice of preferred read sites should be
made Judiciously. If only a small fraction of the
existing sites are chosen as preferred read
sites, then these sites would become a
bottleneck, since enormous number of messages
(mainly REQ-ACKs) would be sent to these few
sites and they would have to process them fast.
This would result in decreased throughput.
Somehow all the sites should be made to receive
more or less equal number of messages.

2.3.2 Correctness And Other Considerations -

Read-Drlven Protocols

One of the positive aspects of the proposal of
[Badal 1978b] is that it does not require the
storage of time stamps along with data items (the
latter requirement imposes a heavy overhead in
most of the other protocols proposed in the
literature). The described protocols are "read
driven', in the sense that the transmission of
updates is demanded by subsequent reads (There is
no notion of expllcit locking of data resources).
The consequence of this is that the processing of
read requests gets delayed considerably, in order
to complete the incorporation of the previous
updates. In an on-line enquiry and update
environment these delays to answer queries may be
intolerable. There may be situations where such a
degraded response time is unacceptable.

One of the properties of the above protocols is
that, if there are no crashes (link/slte
failures) then no transaction would ever be
rejected. On the contrary, SDD-i's protocols may
have to reject transactions (READ messages), even

under those perfect conditions. In the event of
link/slte failures the former protocols would
permit non-serlallzable execution of
transactions. This may be a very undesirable
feature of these protocols. In deciding to reject
a transaction the protocols seem to be doing some
unnecessary work. If a preferred read site of a
transaction is found to be non-respondlng I don't
see any reason as to why the other read sites
should try to select a new preferred read site,
instead of them informing the initiating site and
(probably) each other that that transaction is
being rejected. Since one of the read sites of

the transaction (namely the original preferred
read site) is not responding, there is no way
that the transaction could be executed. So there
is no point in selecting a new preferred read
site.

While discussing recovery actions that need to
be taken on partition reconnectlon, the authors
have not stated as to how exactly the local logs
(generated during the time the network was
partitioned) would be compared, what comparison
really means, how to determine what transactions
would have to be rerun and what would be the
criterion for deciding how far the data base
state should be rolled back in order to restore
consistency. The protocols to be followed to
achieve global roll back have not been described.
Until these are clearly spelt out and are found
to be correct one cannot support the claim that
the proposed protocols provide automatic recovery
to a consistent state in case of network
partitioning. Being able to restore a consistent
state is critically dependent on the correctness
of these, as of now unspelt, procedures.

Further, the authors have stated that a

transaction can determine whether any of its Read
or Write events would be executed using
potentially inconsistent data due to missing Read
or Write events from non-respondlng sites. My
contention is that a transaction cannot determine
that fact. A transaction would have to assume
that potentially all its Read and Write sites are
inconsistent. This is because a non-respondlng
site's write messages might have been sent to
some nodes but might not have been sent to the
other nodes to which they were supposed to have
been sent. The transaction in question cannot
determine what the intentions (in terms of write
sites) of the parially executed transaction in
the non-respondlng site were. It is quite
possible that the partially executed transaction

had intended to send write messages to all the
other sites in the network.

Another matter that has not been discussed is
the generation of time stamps for transactions
(Nothing similar to the Time Stamp Generation
Rule of [Thomas 1978] has been given). It has
been implicitly assumed (without being stated in
the paper) that once a site (say Si) responds to
a REQ message (whose time stamp is TSJ) from
another site (say SJ) with a REQ-ACK, then any
transaction initiated in the future by Si would
be given a TS value greater than TSj (this means
that the clock at every site would be advanced to
the TS of an acknowledged REQ, if the latter is
greater than the current clock time at that
site). It is very important to recognize this
assumption because, when network partitioning
occurs this clock synchronization would be highly
Jeopardized and that would have a great impact on
the ability to restore consistency after
partition reconnectlon (A discussion regarding
this point with respect to SDD-i, can be found in
[Mohan 1979a]).

Distributed INGRES Protocols

The concurrency control mechanisms for
Distributed INGRES have been oresented ~n

4 0 5

[Stonebraker 1978]. A set of performance
algorithms (which have some data consistency
problems) and a set of so called reliable
algorithms (which have low performance) have been
proposed. No time stamps are used by these
mechanisms. In comparing these mechanisms with
some others, Stonebraker has used the number of
messages generated for each transaction and
estimates of response time as the measures of
comparison. While the Distributed INGRES
mechanisms may appear to be superior to the
others with respect to these measures, what is
not obvious is the amount of concurrency
permitted by the former. Further, there is no
discussion of how the local concurrency
controllers (at the different sites) perform
their functions. Unless information about that is
available, one cannot be sure (even in the
absence of crashes) that the interleaved
concurrent execution of different transactions
(accessing or modifying distributed data) would
be seriallzable. In addition, it has not been
demonstrated that the reliable algorithms do not
avoid the third data inconsistency problem that
the performance algorithms have. The emphasis
seems to have been to guarantee the incorporation
of updates at all sites or its rejection by all
sites, by using a two-phase protocol.
Synchronization to achieve serializability does
not seem to have been given the needed importance
(in contrast to, for e.g., in SDD-i).

Ticket-Based Protocols

[Le Lann 1978] has presented some algorithms
for data sharing, which use the notion of
"tickets ~. These algorithms are discussed in the
context of what the author terms as integrated
and partitioned architectures. Unfortunately the
differences between the two types of
architectures are not well explained. I have been
informed (by Le Lann in a personal communication)
that integrated is equivalent to fully-redundant
and partitioned to either strictly partitioned or
partially redundant. Le Lann has stated that In
an integrated architecture deadlock avoidance or
detection is to be performed locally by every
controller and that conventional (centralized)
techniques can be used for that purpose. I don~t
see as to how the conventional techniques would
be sufficient in the case of the integrated
architecture. Since, even in the latter
architecture, locking would need to be done to
update the copies, a distributed algorithm would
be needed to implement deadlock detection or
avoidance mechanisms.

Further, it has been stated that in a
partitioned architecture if only one controller
at a time is issuing allocation requests, there
is no potential for deadlocks. This would permit
only static claiming of data. The author has
chosen to avoid deadlocks rather than detecting
them, if and when they occur. This choice may not
be an advisable one, considering the fact that in
[Isloor 1978] it has been stated that to maintain
the operational fidelity of any DDBS with respect
to the problem of deadlock, detection techniques
are may be more advantageous than prevention or
avoidance methods (This view has been expressed
in [Peebles 1978] also). As a result the achieved

parallelism would be much less than the potential
parallelism that would be existing.

While Le Lann has described how sequential
identification of user requests is achieved (even
in the presence of message losses), he has not
explained well as to how the storage processors
would make use of the identification in achieving
internal consistency and mutual consistency, and
in avoiding deadlocks. The discussion is very
sketchy and is difficult to follow. Since the
author has not compared his scheme with the other
researchers" schemes, one encounters more
difficulty In understanding this scheme.

[Gelenbe 1978] has listed some of the secondary
goals that need to be considered in selecting an
update control technique for a specific data base
environment. They are: (I) reducing delays in
applying updates, (2) avoiding favoring updates
from some centers, (3) giving similar response to
identical queries submitted simultaneously at
different nodes, (4) minimizing the need to undo
updates, and (5) insuring that the order in which
updates are applied conforms with their actual
order of submission.

With regard to deadlocks [Isloor 1978] has
stated: "It is difficult to estimate the
performance effects of deadlock detection or
prevention In DDBS, since communication time is
the critical factor. Once DDBS become a
commercial reality experimental data can be
gathered to measure the performance". See the
previous subsection (2.2) for an evaluation of
the performance and correctness of some recent
deadlock detection schemes.

3.0 PARAMETERIZABLE ADAPTIVE FUTURE ARCHITECTURE

The pursuit for new and novel architectures
needs to be encouraged. In this section I would
like to present the salient features of a future
DDBS architecture which is highly parameterized
and adaptive to different environments. The
motivations for this architecture proposal have
also been presented.

3.1 Motivations And The Proposal

In the literature one finds many solutions to
different DDBS problems. If one looks at the
solutlons/algorlthms proposed for a particular
system problem, it would be obvious that the
degree to which the problem is solved by the
solutions varies and there is a corresponding
variation in the overhead/cost involved in
adopting the solution also (see Section 2.3 for
references on performance evaluation which
illustrate this remark for the case of update
synchronization algorithms). As a result, it is

likely that one solution would be appropriate for
a particular DDB environment, while another
solution would be more appropriate for a
different environment (see [Badal 1978b,
Bernsteln 1978a, Chu 1979, Garcla-Molina 1978,

4 0 6

Gelenbe 1978, Hammer 1978, Hevner 1978, Isloor
1978, Le Lann 1978, Maryanskl 1978b, Menasee
1978a 19785, Pelagattl 1978, Shapiro 1978,
Stonebraker 1978, Thomas 1978, Yeh 1978a] for the
variety of environments assumed while the authors
propose certain algorlthms/solutions).

It may not be advisable at all, to use the most
general solutlons/algorlthms in all environments.
Invariably generality would bring with it certain
amount of inefficiency. Efficiency would be an
overriding requirement in most DDB applocations.
Hence I feel that the DDBS of the future should
be designed and implemented so that they would be
able to use many solutlons/algorithms for solving
a particular problem (like deadlock detection,
concurrency control, query processing,
resilency/reliability, etc.). The data base
designer or enterprise administrator using such a
system should be able to select (by setting
values for certain parameters while installing a
DDB using the DDBS) algorithms that are most
appropriate (in terms of their performance
characteristics and the extent to which they
solve the DDBS problems) for his particular
envlronment/application. This means that I am
proposing that the future DDBS should have a
parameterlzable architecture. This approach is
much more desirable than the one in which the
designers of the DDBS select (based, probably, on
their own perception of the environment in which
the DDBS would be used) and implement one
particular algorithm for each DDBS problem,
thereby forcing the users (i.e. the enterprise
administrators) of such DDBS to llve with those
solutions without any choice or flexibility.

The conjucture is that architectures based on
the above concept would be much more adaptive and
hence very efficient for different types of
environments. Even in a given environment, the
adaptability of the architecture would help to
satisfy the changes in requirements that may
occur in that environment over a period of time.
Systems built with this type of architecture
would not only be able to adapt to different
environments but also to the
characterlstics/architecture of different
communication networks. One would be able to take
advantage of the peculiarities of the underlying

network or the application environment and
thereby optimize the performance of the DDBS.
Figure 2 conveys in a simple minded manner the
basic idea of my proposal. Since the architecture
is adaptive, it would be highly portable.

3.2 Implications Of The Architecture

The result of this parameterizatlon of the
architecture is that what we get is essentlally a
family of distributed data base systems, each
with sllghtly different characteristics. This
type of an architecture can be realized by
building the software in a highly modular
fashion, with the software divided into
components on the basis of functionality.

All possible combinations of the different
parameters" values are not likely to be

compatible. A particular value for one parameter
may require that certain other parameter(s)
should not have certain values. This could be the
result of our previous observation (in Section 2)
that solutions for a certain problem affect the
solutions for other problems. Hence a handbook
may have to be prepared to tell the DBA what
combinations of the parameter values are valid.
The preparation of this handbook would require a
thorough analysis of the properties of
algorlthms/solutions denoted by the different
parameter values.

Some parameters could be meant for specifying:

i. Degree of reliability (e.g. number of
spoolers used to guarantee delivery of a
message in [Hammer 1978]).

2. Crash recovery (e.g. number of recent
updates to be remembered in [Shapiro
1 9 7 8]) .

3 . L e v e l o f n e t w o r k t r a n s p a r e n c y (s h o u l d
d i s t r i b u t i o n be v i s i b l e o r i n v i s i b l e a t
t h e q u e r y l e v e l ?) .

4 . S p e e d o f d e t e c t i o n o f f a i l u r e s .

5 . Time t o r e c o v e r f r o m f a i l u r e s .

6. Level of consistency to be maintained
(see [Gray 1978] for discussion on the
possible levels).

7. Should redundant storage of data be
allowed?

8. Whether each query would access data in
more than one node.

9. Whether deadlock avoidance or prevention
or detection algorithms should be
activated or not.

i0. Whether the type of communication is
point to point or broadcast.

ii. Time between the receipt of an update
message and its subsequent incorporation
(see [Gelenbe 1978] for more details).

12. If the hierarchical protocol of [Menasce
1978b] is used for periodic deadlock
detection, then the frequency at which
information about input and output port
connection is sent by the leaf
controllers to non-leaf controllers.

4.0 CONCLUSIONS/FUTURE DIRECTIONS

To summarize, research needs to be done to
aceomplish the following:

I. Study relationships amongst algorithms
and protocols proposed for query
processing, update synchronization,
resiliency mechanisms, integrity &

4 0 7

security enforcement mechanisms, data
distribution and directory management,
and the communications network and
application characteristics (similar to
the analysis done in [Mohan 1979a]).

2. Evaluate the performance of the various
algorithms in terms of their execution
overhead, amount of inter-node
communication, etc.

3. Design of integrity and authorization
enforcement mechanisms.

4. Elucidate the facilities that should be
provided by data dictionary systems.

5. Define responsibilitles of Global
Enterprise Administrator (GEA) and Local

Enterprise Administrator (LEA).

6. Development of integrated tools for
helping the GEA and LEAs.

7. Development of integrated methodologies
for DDB and DDBS design.

8. Development of methodologles and tools
for collection of statistics about data
base usage, and network and host
utilization, etc.

5.0 ACKNOWLEDGEMENT

This work was partially supported by the Air
Force Office of Scientific Research under Grant
AFOSR77-3409.

6.0 REFERENCES

i. Adiba, M., et. al. [1978] Issues in
Distributed Data Base Management
Systems: A Technical Overview, Proc. IV
Int. Conf. on VLDB, September.

2. ANSI [1978] Distributed Systems
"Reference Model" (Draft 4),
ANSI/X3/SPARC Study Group - Distributed
Systems, February.

3. Bachman, C. [1978a] Commentary on the
CODASYL Systems Committee's Interim
Report on Distributed Data Base
Technology, Proc. NCC, June.

4. Bachman, C. [1978b] Domestic and
International Standard Activities for
Distributed Systems, Proc. COMPCON'78
Fall, September.

5. Badal, D. Z. [1978a] Data Base System
Integrity, Proc. COMPCON'78 Spring,
March.

6. Badal, D. Z., Popek, G. [1978b] A
Proposal for Distributed Concurrency

Control for Partlally Redundant
Distributed Data Base Systems, Proc. III
Berkele__yWorkshop on Distributed Data

Managm_____ement and Computer Networks,
August.

7. Bernsteln, P., Shipman, D. [1978a] A
Formal Model of Concurrency Control
Mechanism for Database Systems, Proc.
III Berkeley Workshop on Distributed
Data Management and Computer Networks,
AugusT. --

8. Bernsteln, P. [1978b] A Note on
Theoretlcal Problems in Distributed
Database Management, IV Int. Conf. on
VLDB Proceedings Sup~ement: Panelists"
Statements, September.

9. Chandy, K. M. [1977] Models of
Distributed Systems, Proc. III Int.
Con f! on VLDB , October. - -

I0. Chang, S.K., McCormick, B.H. [1977]
Intelligent Coupling of the User to
Distributed Data Bases, Tech. Rep.
KSL-S, Univ. of llllnols at Chicago
Circle.

II. Chu, W., Hurley, P. [1979] A Model for
Optimal Query Processing for Distributed
Data Bases, Proc. COMPCON'79 Spring,
March.

12. CODASYL [1978] Distributed Data Base
Technology: An Interim Report of the
CODASYL Systems Committee, Proc. NCC,
June.

13. Edelberg, M. [1978] Statement for VLDB
Session 9: Distributed Data Bases, IV
Int. Conf. on VLDB Proceeding-~
Supplement: Panelists S Statements,
September.

14. Ellis, C. [1977] A Robust Algorithm for
Updating Duplicate Data Bases, Proc. II
Berkeley Workshop on Distributed Data
Management and Computer Networks, May.

15. Garcla-Mollna, H. [1978] Performance
Comparison of Update Algorithms for
Distributed Databases, Technical Note
143, Stanford University, June.

16. Gelenbe, E., Sevclk, K. [1978] Analysis
of Update Synehronlzatlon for Multiple
Copy Data Bases, Proc. III Berkeley

Wo___rkshop on Distributed Data Management
an_d Computer Networks, August.

17. Gray, J. [1978] Notes on Database
Operating Systems, In Operating Systems
- An Advanced Course, R. Bayer, et. al.
~E~s.), Lecture Notes in Computer
Science - Volume 60, Springer Verlag,
New York (Also IBM Tech. Rep. RJ 2188).

18. Hammer, M., Shipman, D. [1978] An
Overview of Reliability Mechanisms for a

4 0 8

19.

20.

21.

22.

23.

24.

25.

Distributed Data Base System,
COMPCON'78 Spring, March.

P r o c .

Hevner, A. R., Yao, S. B. [1978] Query
Processing in a Distributed System,
Proc. III Berkeley Workshp on
Distributed Data Management and Computer
Networks, August.

INFOTECH [1977] Distributed Processing,
INFOTECH State of the Art Report,
Infotech International.

INFOTECH [1978] Future Networks,
INFOTECH State of the Art Report,
Infotech International.

Isloor, S., Marsland, T. [1978] An
Effective "On-Llne" Deadlock Detection
Technique for Distributed Data Base
Management Systems, Proc. COMPSAC'78,
November.

ISO [1978] Provisional Model of
Open-Systems Architecture, ACM SIGCOMM's
Computer Communications Review, July.

Le Lann, G. [1977] Distributed Systems -
Towards a Formal Approach, Proc.
IFIP'77, August.

Le Lann, G. [1978] Algorithms for
Distributed Data-Sharlng Which Use
Tickets, Proc. III Berkeley Workshop on
Distributed Data Management and Computer
Networks, August.

26. MacDonald, V. [1978] Domestic and
Internatlonal Standards Activities for
Data Communications, Proc. COMPCON'78
Fall, September.

27. Marsland, T., Isloor, S. [1978] A Review

of the Deadlock Problem in Operating,
Database, and Distributed Systems, Tech.
Rep. TR 78-5, Univ. of Alberta, Canada,
December.

28. Maryanski, F.J. [1978a] A Survey of
Developments in Distributed Data Base
Management Systems, Computer, February.

29. Maryanskl, F. J. [1978b] The Management
of Redundant Data in a Distributed Data
Base, Tech. Rep. TR CS 78-21, Kansas
State University, September.

30. Menasce, D., et. al. [1978a] A Locking
Protocol for Resource Coordination in
Distributed Databases, Proc. ACM-SIGMOD
Int. Conf. on Management of Data,

31.

32.

May-June.

Menasce, D., Muntz, R. [1978b] Locking
and Deadlock Detection in Distributed
Databases, Proc. III Berkeley Workshop
on Distributed Data Management and
Computer Networks, August.

Mohan, C. [1978a] Survey of Recent
Operating Systems Research, Designs and

Implementations, ACM SIGOPS" Operating
Systems Review, January (Also Tech. Rep.
TR-75, Univ. of Texas at Austin).

33. Mohan, C. [1978b] An Overview of Recent
Data Base Research, ACM SIGBDP's Data
Base I0, 2, Fall (Also Tech. Rep.
SDBEG-5, Univ. of Texas at Austin, April
1978).

34. Mohan, C. [1979a] An Analysls of the
Design of SDD-I: A System for
Distributed Data Bases, In Distributed
Data Bases, INFOTECH State of the Art
Report, Infotech International (Also
Teeh. Rep. SDBEG-iI, Software and Data
Base Engineering Group, Univ. of Texas
at Austin, April).

35. Mohan, C., Yeh, R. T. [1979b]
Distributed Data Base Systems - A
Framework for Data Base Design, In
Distributed Data Bases, INFOTECH State
of the Art Report, Infotech
International (Also Tech. Rep. SDBEG-IO,
Software and Data Base Engineering
Group, University of Texas at Austin,

April).

36. Mohan, C. [1979c] Some Notes on
Multi-Level Data Base Design, Technical
Report TR-128, Department of Computer
Sciences, Univ. of Texas at Austin, May.

37. Mohan, C. [1979d] Data Base Design in
the Distributed Environment, Technical
Report TR-131, Department of Computer
Sciences, University of Texas at Austln~
May.

38. Mohan, C. [1980] A Perspective of
Distributed Computing: Models,
Languages, Issues & Applications,
Working Paper DSG-8001, Distributed
Systems Group, Department of Computer
Sciences, Univ. of Texas at Austin,
April.

39. Pardo, R., et. al. [1977] Distributed
Services in Computer Networks: Designing
the Distributed Loop Data Base System
(DLDBS), Proc. Computer Networks
Symposium, December.

40. Peebles, R., Manning, E. [1978] System
Architecture for Distributed Data
Management, Computer, January.

41. Pelagattl, G., Schrelber, F. A. [1978]
Comparison of Different Access
Strategies in a Distributed Database,
Proc. Int. Conf. on Data Bases:

42.

Improving Usability and Responslveness,
August.

Rothnle, J., Goodman, N. [1977] A Survey
of Research and Development in
Distributed Database Management, Proc.
III Int. Conf. on VLDB, October.

4 0 9

43.

44.

Rothnle, J. [1978] Remarks in Response
to: "Issues in Distributed Data Base
Management Systems: A Technical
Overview", IV Int. Conf. on VLDB
Proceedings --Supplement: Panelist
Statements, September.

Schneider, ft. [1978] Some Remarks on a
Paper by Adiba, et. al. on "Issues in
Distributed Data Base Management
Systems: A Technical Overview", IV Int.
Conf. on VLDB Proceedings Supplement:

45.

46.

47.

Panelists" Statements, September.

Severino, E. F., Hannan, J. [1977]
Operational and Technological Issues in
On-Line Data Bases, In On-Llne Data
Bases, Infotech State of the Art Report,
Infotech International.

Shapiro, R., Mlllsteln, R. [1978]
Failure Recovery in a Distributed Data
Base System, Proc. COMPCON'78 Spring,
March.

Stonebraker, M., Neuhold, E. [1977] A
Distributed Data Base Version of INGRES,
Proc. II Berkeley Workshop on
Distributed Data Management and Compute-r

48.

Networks, May.

Stonebraker, M. [1978] Concurrency
Control and Consistency of Multiple
Copies of Data In Distributed INGRES,
Proc. III Berkeley Workshop o_n
Distribute--Data Management and Computer

49.

50.

Networks, August.

Thomas, R. H. [1978] A Solution to the
Concurrency Control Problem for Multiple
Copy Data Bases, Proc. COMPCON'78
Spring, March.

Yeh, R., Chandy, K.M. [1978a] On the
Design of Elementary Distributed
Systems, Proe. III Berkeley Workshop on
Distributed Data Management and Computer

51.

Networks, August.

Yeh, R., Chang, P., Mohan, C. [1978b] A
Multl-Level Approach to Data Base
Design, Proc. COMPSAC'78, November.

C.L C2

~cs. £a.

Cl CZ

F~S. J.k

c i cl

~ . J.C

C J- CZ

P~. J.zl

~DBS

3

° ' Pn

pn <;~..o~s PoxA.~v n

FLg. Z

EnU'lilreneW.Jt~ ' (Rp~./,~tCm ~ I~'tuar~)

4 1 0

