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Bandwidth-efficient data transmission over telephone and radio 
channels is made possible by  the use of adaptive equalization to 
compensate  for  the  time dispersion introduced by the channel. 
Spurred by practical  applications,  a steady research effort over the 
last two decades has produced  a  rich  body of literature in adaptive 
equalization  and  the related more general fields of reception of 
digital signals, adaptive  filtering, and system identification. This 
tutorial paper gives an overview  of  the  current state of  the art in 
adaptive  equalization.  In  the first part of the paper, the  problem of 
intersymbol  interference ( 1 9 )  and the basic concept of transversal 
equalizers are introduced  followed by a  simplified  description  of 
some  practical  adaptive equalizer structures and  their  properties. 
Related applications of adaptive filters and implementation a p  
proaches are discussed. Linear and nonlinear receiver structures, 
their  steadystate  performance  and sensitivity to  timing phase  are 
presented in some depth  in the next part.  It is shown that a 
fractionally spaced equalizer can  serve as the  optimum receive filter 
for any receiver. Decision-feedback equalization,  decision-aided IS1 
cancellation,  and adaptive filtering for maximum-likelihood se 
quence  estimation are presented in  a  common  framework. The next 
two parts of  the paper are devoted to a discussion of the conver- 
gence  and  steadystate properties of least mean-square (LMS) adap 
tation  algorithms,  including  digital  precision considerations, and 
three classes of rapidly converging adaptive equalization al- 
gorithms:  namely,  orthogonalized LMS, periodic or cyclic, and re- 
cursive least  squares algorithms.  An  attempt is made throughout 
the paper to describe important  principles and results in a heuristic 
manner, without formal proofs, using simple mathematical notation 
where possible. 

I .  INTRODUCTION 

The rapidly increasing  need  for  computer  communica- 
tions has been  met  primarily by  higher speed  data transmis- 
sion  over the widespread network  of  voice-bandwidth 
channels  developed  for  voice  communications.  A  modula- 
tor-demodulator (modem) is required to carry digital sig- 
nals  over  these  analog passband (nominally 300- to 3000-Hz) 
channels by translating  binary data to voice-frequency sig- 
nals and  back (Fig. 1). The thrust  toward common carrier 
digital transmission  facilities has also resulted in application 
of  modem  technology  to  line-of-sight terrestrial  radio  and 
satellite  transmission,  and  recently to subscriber loops. 

Analog channels  deliver  corrupted  and  transformed  ver- 
sions of  their  input waveforms.  Corruption  of  the  waveform 
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-usually  statistical-may be additive  and/or  multiplica- 
tive, because of possible  background  thermal noise, im- 
pulse  noise,  and fades. Transformations  performed by  the 
channel are frequency  translation,  nonlinear  or  harmonic 
distortion,  and  time dispersion. 

In telephone  lines,  time  dispersion results when  the 
channel  frequency response  deviates from  the ideal  of 
constant  amplitude and linear phase (constant delay). 
Equalization, which dates back to the use of  loading  coils to 
improve  the characteristics  of  twisted-pair  telephone cables 
for  voice  transmission, compensates for these nonideal 
characteristics by  filtering. 

A  synchronous  modem  transmitter  collects an integral 
number  of  bits  of data at a time and encodes them  into 
symbols  for  transmission at the  signaling rate. In pulse 
amplitude  modulation (PAM),  each  signal is a pulse whose 
amplitude  level is determined  by  the  symbol, e.g., ampli- 
tudes of -3, -1,  1, and 3 for  quaternary  transmission. In 
bandwidth-efficient  digital  communication systems, the ef- 
fect  of each symbol  transmitted over a  time-dispersive 
channel  extends  beyond  the time interval used to represent 
that  symbol. The distortion caused by  the  resulting  overlap 
of  received  symbols is called  intersymbol  interference ( 6 1 )  
[54]. This distortion is one of the  major obstacles to reliable 
high-speed  data  transmission over low-background-noise 
channels of  limited  bandwidth.  In its broad sense, the  term 
“equalizer”  applies to any  signal processing  device  de- 
signed to deal with ISI. 

It was recognized early in the quest for  high-speed 
( W - b i t / s  and  higher rate)  data transmission over tele- 
phone channels  that  rather precise compensation, or 
equalization, is required to reduce  the  intersymbol  inter- 
ference introduced by  the  channel. In addition, in most 
practical  situations  the  channel  characteristics are not 
known beforehand. For medium-speed  (up to 2400-bit/s) 
modems, which  effectively transmit 1 bit/Hz, i t  is usually 
adequate to design  and use a compromise  (or  statistical) 
equalizer which compensates for  the average of  the range 
of expected  channel  amplitude  and delay  characteristics. 
However, the variation in the  characteristics within a class 
of channels as in the  lines found in the  switched tele- 
phone  network, is large enough so that  automatic  adaptive 
equalization is  used nearly  universally  for speeds higher 
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Fig. 1. Data  transmission  system. 

than 2400 bits/s. Even 2400-bit/s modems now  often 
incorporate  this feature. 

Voice-band  telephone  modems may  be classified into 
one  of  three categories  based on intended  application: 
namely,  for two-wire  public  switched telephone network 
(PSTN), four-wire  point-to-point leased  lines, and four-wire 
multipoint leased lines. PSTN modems can achieve 2400- 
bit/s  two-wire  full-duplex transmission by sending 4 
bits/symbol  and  using  frequency  division to separate the 
signals in the two directions of transmission. Two-wire 
full-duplex modems  using  adaptive  echo  cancellation are 
now available for 2400- and W - b i t / s  transmission.  Adap- 
tive  echo  cancellation in  conjunction  with coded  modula- 
tion  will pave the way to %Oo-bit/s full-duplex  operation 
over two-wire PSTN circuits in the near future.  At  this  time, 
commercially available  leased-line  modems  operate at  rates 
up  to 16.8 kbits/s over conditioned  point-to-point circuits, 
and up to 9.6 kbits/s over unconditioned  multipoint  cir- 
cuits.  An  adaptive  equalizer is an  essential component  of all 
these  modems. (See [27] for a historical  note on  voice-band 
modem development.) 

In radio  and undersea  channels, IS1 is due to  multipath 
propagation [87],  [%I, which may be  viewed as transmission 
through a group  of channels with  differing relative ampli- 
tudes  and  delays.  Adaptive  equalizers are capable  of  cor- 
recting for IS1 due to multipath in the same  way as IS1 from 
linear  distortion  in telephone channels. In radio-channel 
applications, an array of  adaptive equalizers  can  also be 
used to perform djversity combining and  cancel inter- 
ference  or jamming sources [6],  [72]. One special require- 
ment  of radio-channel equalizers is  that  they  be able to 
track the  time-varying  fading characteristics typically  en- 
countered. The convergence rate of  the  adaptation al- 
gorithm  employed  then becomes important  during  normal 
data  transmission [87]. This is particularly  true  for 3-kHz-wide 
ionospheric  high-frequency (HF), 3- to 30-MHz,  radio  chan- 
nels which suffer from severe time  dispersion  and  relatively 
rapid  time  variation and  fading.  Adaptive  equalization has 
also been  applied  to  slowly  fading tropospheric scatter 
microwave  digital radios, in the 4- to 11-GHz bands,  at  rates 
up  to 200 Mbits/s [82]. 

In the last decade  there has been  considerable  interest in 
techniques  for  full-duplex data transmission at  rates up to 
144 kbits/s  over two-wire  (nonloaded  twisted-copper pair) 
subscriber  loops [2],  [22],  [69], [I&], [112]. Two  competing 
schemes for  achieving  full-duplex  transmission are time- 
compression  multiplex or burst  mode  and  adaptive  echo 
cancellation. Some form  of adaptive  equalization is desir- 
able, i f  not indispensible,  for these  baseband modems  due 
to a  number  of factors:  high transmission rates specially  for 
the  burst-mode scheme, attenuation  distortion based on 
the desired  range of subscriber loop lengths  and gauges, 
and  the presence of  bridged taps, which cause additional 
time dispersion. 

The first part of this paper, intended  primarily  for those 

not familiar with the field, is a simplified  introduction  to 
intersymbol  interference  and transversal  equalizers,  and  an 
overview  of some practical  adaptive  equalizer  structures. In 
the  concluding sections  of  the first part, we  briefly  mention 
other  related  applications  of  adaptive filters (such as echo 
cancellation,  noise  cancellation,  and  prediction)  and discuss 
past and  present  implementation approaches. 

Before  presenting  the  introductory  material,  however, i t  
seems appropriate to summarize the major areas of  work in 
adaptive  equalization, with reference to key  papers and to 
sections of  this article  where these topics are discussed. 
(The  interested reader should  refer to Lucky [59] and Price 
[83] for  a comprehensive survey of  the literature  and  exten- 
sive bibliographies  of  work up  to the early 1970s.) Unfor- 
tunately, use of some as yet undefined  technical terms in 
the  following paragraphs is  unavoidable at this stage. 

Nyquist’s  telegraph  transmission  theory [I151 in 1928 laid 
the  foundation  for pulse  transmission over band-limited 
analog  channels. In 1960, Widrow and Hoff [I091 presented 
a least mean-square (LMS) error adaptive filtering scheme 
which has been  the workhorse  adaptive  equalization  al- 
gorithm  for  the last  decade and a half. However, research 
on adaptive  equalization  of  PAM systems in the early 1960s 
centered on the basic theory  and  structure  of  zero-forcing 
transversal or  tapped-delay-line  equalizers with symbol in- 
terval  tap  spacing [SS],  [56]. In parallel,  the  theory  and 
structure  of linear receive  and transmit  filters [116],  [I171 
were  developed  which  minimize mean-square error  for 
time-dispersive  additive Gaussian  noise channels [31]. By 
the late I%Os, LMS adaptive  equalizers  had  been  described 
and understood [33],  [54],  [&I]. It was recognized  that over 
highly dispersive channels  even the best linear  receiver falls 
considerably  short  of  the  matched  filter  performance  bound, 
obtained  by considering  the  reception  of an isolated trans- 
mitted pulse [54]. Considerable research followed  on  the 
theory  of  optimum nonlinear receiver structures  under  vari- 
ous optimality  criteria related to error probability [I], [59], 
[87]. This culminated in the  development  of  the  maximum- 
likelihood sequence  estimator [24] using  the  Viterbi al- 
gorithm [25] and  adaptive versions of such a  receiver [17], 
[51],  [61],  [62], [MI, [89],  [103]. Another  branch of research 
concentrated on a  particularly  simple  suboptimum  receiver 
structure known as the  decision-feedback  equalizer [3],  [4], 
[12],  [32],  [71],  (831,  [93]. Linear  feedback,  or infinite impulse 
response (IIR), adaptive  filters [47] have not been  applied as 
adaptive  equalizers  due to lack of guaranteed  stability,  lack 
of  a  quadratic performance surface, and  a  minor  perfor- 
mance  gain  over transversal equalizers [87]. As the ad- 
vantages of  double-sideband suppressed-carrier quadrature 
amplitude  modulation (QAM) over single-sideband (SSB) 
and vestigial-sideband (VSB) modulation  were  recognized, 
previously known PAM  equalizers  were  extended to com- 
plex-valued  structures  suitable  for  joint  equalization of  the 
in-phase  and  quadrature signals in a QAM receiver [IS],  [16], 
[49], [ a ] ,  [119]. Transversal and  decision-feedback  equalizers 
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with forward-filter tap spacing that is less than  the  symbol 
interval  were suggested in the  late 1960s and early 1970s [6], 
[58], [71].  These fractionally spaced equalizers  were first 
used in commercial  telephone  line  modems [26],  [53] and 
military  tropospheric scatter radio systems [I141 in the  mid 
1970s. Their  theory  and many performance advantages  over 
conventional “symbol-spaced”  equalizers have been  the 
subject of several articles [39],  [45], [W], (1041. The timing 
phase  sensitivity  of  the mean-square error  of  symbol-spaced 
[64], fractionally spaced [45], [W], [104], and  decision-feed- 
back  [94]  equalizers has also been a research topic  in  the 
1970s. Recently,  interest in a nonlinear  decision-aided  re- 
ceiver  structure  [85] now  known as an IS1 canceller has been 
revived  by  using  a  fractionally spaced equalizer as a  matched 
filter [34], [W]. 

In the second  part  of  the paper we  develop  the  various 
receiver  structures mentioned above  and  present  their im- 
portant steady-state  properties. The first two sections are 
devoted  to  the  definition  of the baseband equivalent  chan- 
nel  model  and  the development  of an optimum receive 
filter  which must  precede  further  linear  or  nonlinear 
processing at the symbol rate. The next  section on linear 
receivers  shows  that while the  conventional,  matched-filter 
plus  symbol-spaced  equalizer,  and  fractionally spaced forms 
of a linear  receiver are equivalent when each is unrestricted 
(infinite in length),  a finite-length  fractionally spaced 
equalizer has significant advantages compared with a prac- 
tical  version of  the conventional  linear  receiver.  Nonlinear 
receivers are presented in the  fourth section with a discus- 
sion  of  decision-feedback equalizers, decision-aided IS1 
cancellation,  and  adaptive versions of the  maximum-likeli- 
hood sequence  estimator. The final  section  of  this part of 
the paper addresses timing phase sensitivity.  A  few im- 
portant  topics  which have been  excluded  due to space 
limitations are: adaptive  equalization  of  nonlinearities [SI, 
[21], diversity-combining adaptive  equalizer arrays to  com- 
bat  selective fades and  interference in radio  channels [6], 
[72],  [114], and  a  particular passband equalizer  structure [ I l l ,  
[ 771. 

Until the early 1970s most  of the  equalization  literature 
was devoted  to equalizer  structures  and steady-state  analy- 
sis [59], partly  due  to the difficulty  of analyzing the transient 
performance  of practical  adaptive  equalization  algorithms. 
Since then some  key  papers  [38],  [65], [102], [ I l l ]  have 
contributed  to  the understanding  of  the  convergence  of  the 
L M S  stochastic  update  algorithm  for transversal  equalizers, 
including  the  effect  of channel  characteristics on the rate of 
convergence.  The third part  of  this paper is  devoted to this 
subject  and  a  discussion  of  digital  precision  considerations 
[7],  [13],  [36],  [38].  The important  topic  of  decision-directed 
convergence [60],  I661 and  self-recovering  adaptive  equal- 
ization  algorithms [42], [95] has been omitted. 

The  demand  for  polled data communication systems using 

multipoint modems [26] which require fast setup at the 
central  site  receiver has led to the  study  of fast converging 
equalizers  using  a  short  preamble  or  training sequence.  The 
fourth  part  of  this paper  summarizes three classes of fast- 
converging  equalization  algorithms. Some of  the early work 
on this  topic was directed  toward  orthogonalized LMS 
algorithms  for  partial response  systems [8], [75], [MI. Peri- 
odic  or  cyclic sequences for  equalizer training and  methods 
for fast startup based on such  sequences  have been  widely 
used in practice [43],  [70],  [76],  [90], [9l]. The third class of 
fast converging  algorithms are self-orthogonalizing [37]. In 
1973, Godard [41] described how the  Kalman filtering al- 
gorithm can  be used to estimate  the LMS equalizer coeffi- 
cient vector at each symbol  interval. This was later  recog- 
nized [20] to be a form  of recursive least  squares (RLS) 
estimation  problem. Development  of  computationally effi- 
cient RLS algorithms has recently  been  a  subject  of  intense 
research activity [46],  [73],  [78],  [79],  (871 leading to transver- 
sal [IO], [ I l l ,  [20] and  lattice [52],  [63],  [74], [%I, [97], [I271 
forms of  the  algorithm. Some of these algorithms have been 
applied  to adaptive equalizers for HF radio  modems [87], 
[I261 which need to track a  relatively  rapidly  time-varying 
channel.  However,  the extra complexity  of these algorithms 
has so far prevented  application to the  startup  problem  of 
telephone  line modems  where  periodic  equalization [43] 
and other  cost-effective  techniques, e&, [26],  [125],  are 
applicable. 

Block least  squares methods are widely used in speech 
coding [46], [I221 to derive new adaptive  filter parameters 
for each  frame of  the nonstationary speech waveform.  Block 
implementations  of adaptive filters have been suggested 
[130, and  references  therein]  where  the  filter  coefficients 
are updated  once per block,  and  the  output samples are 
computed a block at a time  using  transform-domain “high- 
speed convolution.” Such implementations  generally  re- 
duce  the  number  of  arithmetic  operations at the expense of 
a  more  complex  control  structure,  additional  memory  re- 
quirements, and a greater processing  delay. 

A  brief  view  of  the general direction  of  future  work in 
adaptive  equalization is  given in  the  final part of  the  paper. 

A. Intersymbol Interference 

Intersymbol  interference arises in all pulse-modulation 
systems, including frequency-shift  keying (FSK), phase-shift 
keying (PSK), and  quadrature  amplitude modulation (QAM) 
[54]. However, its effect can  be most easily described  for a 
baseband  pulse-amplitude  modulation (PAM) system. A 
model  of such a PAM  communication system is shown in 
Fig.  2. A  generalized baseband equivalent  model such as 
this can be derived  for any linear modulation scheme. In 
this  model,  the  “channel”  includes  the  effects  of  the trans- 
mitter  filter,  the  modulator,  the transmission  medium,  and 
the  demodulator. 

Fig. 2. Baseband P A M  system model 
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A symbol x,,,, one  of L discrete  amplitude levels, is synchronized to  the  symbol rate.  Fig. 5 shows the  outline  of 
transmitted at instant mT through  the  channel,  where T a trace (eye pattern)  for  a  two-level or binary PAM system. 
seconds is the signaling  interval. The channel  impulse  re- If  the  channel satisfies the  zero IS1 condition,  there are only 
sponse h( t )  i s  shown in Fig. 3. The received signal r( t )  i s  two distinct levels at the  sampling time to. The  eye is then 

fully  open  and  the peak distortion is zero. Peak distortion 
(Fig. 5 )  is the IS1 that  occurs when  the data pattern is such 
that all intersymbol  interference terms add to produce the 
maximum  deviation  from  the desired signal at the  sampling 
time. 

The  purpose of an equalizer,  placed in the  path  of  the 
received signal, is to reduce  the IS1 as much as possible to 
maximize  the  probability  of correct  decisions. 

Fig. 3. Channel impulse response. 

the  superposition  of  the impulse responses of  the  channel 
to each transmitted  symbol  and  additive  white Gaussian 
noise n ( t )  

r( t )  = C x j h (  t - / T )  + n( t ) .  

If  we sample the received signal at instant k T +  to, where 
to accounts  for  the  channel  delay and  sampler phase, we 
obtain 

i 

r( to + k ~ )  = xkh( to) 

+ xjh( to + kT - j T )  + n( to + k T ) .  

The first term on the  right is the  desired signal  since i t  can 
be used to  identify the  transmitted  amplitude  level. The  last 
term is the  additive noise, while  the  middle sum is the 
interference  from  neighboring symbols. Each interference 
term is  proportional  to a sample of  the  channel  impulse 
response h(fo + ir)  spaced a  multiple iT of  symbol  inter- 
vals Taway  from to as shown in Fig.  3. The IS1 is zero i f  and 
only  if h(fo + ir) = 0, i # 0; that is, if the  channel  impulse 
response has zero crossings  at  7-spaced intervals. 

When  the  impulse response has such uniformly spaced 
zero crossings, it is  said to satisfy  Nyquist’s first criterion. In 
frequency-domain terms, this condition is  equivalent to 

j #  k 

H’( f )  = H( f -  n / T )  = constant  for ~ f l d  I / ~ T .  

H ( f )  i s  the channel  frequency response and H ’ ( f )  i s  the 
“folded” (aliased  or  overlapped)  channel spectral  response 
after  symbol-rate  sampling. The band If1 6 1/2T is com- 
monly  referred to as the  Nyquist or minimum  bandwidth. 
When H( f )  = 0 for If1 > l/T(the channel has no response 
beyond  twice  the Nyquist  bandwidth),  the folded response 
H’( f )  has the  simple  form 

n 

H’( f )  = H( f )  + H( f - l/T), 0 d f d 1/T. 

Fig. 4(a) and (d) shows the  amplitude response of two 
linear-phase  low-pass filters: one an ideal filter  with Nyquist 
bandwidth  and  the other with  odd (or  vestigial)  symmetry 
around  1/2T hertz. As illustrated in Fig. 4 (b) and (e), the 
folded  frequency response of  ech  filter satisfies Nyquist’s 
first  criterion. One class of linear-phase filters, which is 
commonly referred to  in  the literature [54],  [87], [I131  and is  
widely used in practice [23],  [118], is the  raised-cosine 
family  with cosine rolloff around 1/2T hertz. 

In practice, the  effect of IS1 can be seen from  a trace of 
the received signal on an oscilloscope with its time base 

B. Linear Transversal Equalizers 

Among  the many structures used for  equalization  the 
simplest is the transversal (tapped-delay-line  or  nonrecur- 
sive) equalizer  shown in Fig. 6. In such  an equalizer, the 
current  and past  values r( t - n r )  of  the  received signal are 
linearly  weighted  by equalizer  coefficients  (tap gains) c, 
and  summed  to  produce  the  output.  If the delays and 
tap-gain  multipliers are  analog, the  continuous  output  of 
the equalizer z( t )  is sampled at the  symbol  rate  and the 
samples go to the decision  device. In the  commonly used 
digital  implementation, samples of  the  received signal at 
the  symbol rate are stored in a digital  shift register (or 
memory),  and the equalizer output samples  (sums of  prod- 
ucts) z(to + k r )  or zk are computed  digitally,  once  per 
symbol  according to 

N-1 

zk = c,r( to + kT - n t )  

where N is  the  number  of equalizer  coefficients,  and to 
denotes  sample  timing. 

The  equalizer  coefficients c,, n = 0,l;. e ,  N - 1 may be 
chosen to force  the samples of  the  combined  channel  and 
equalizer  impulse response to zero at all but  one  of  the N 
T-spaced instants in the span of  the  equalizer. This is shown 
graphically in Fig. 7.  Such an equalizer is  called  a  zero-forcing 
(ZF) equalizer [55]. 

If  we  let  the number  of  coefficients  of a ZF equalizer 
increase without bound,  we would obtain an infinite-length 
equalizer with zero IS1 at its output. The frequency  re- 
sponse C( f )  of such an equalizer is periodic, with a period 
equal to  the symbol rate 1/T because of  the T-second tap 
spacing.  After  sampling,  the  effect  of  the  channel on  the 
received  signal is determined  by  the  folded  frequency’re- 
sponse H’( f ) .  The combined response of  the  channel, in 
tandem with  the equalizer,  must satisfy the zero IS1 condi- 
t ion or  Nyquist’s first criterion 

n-0 

C( f )H’ (  f )  = 1, If1 < 1/2T. 

From  the  above expression we see that an infinite-length 
zero-IS1 equalizer is simply an  inverse filter,  which inverts 
the  folded-frequency response of  the  channel. A finite- 
length ZF equalizer approximates this inverse.  Such  an 
inverse filter may  excessively  enhance noise at frequencies 
where  the  folded channel  spectrum has high  attenuation. 
This is undesirable,  particularly  for unconditioned  tele- 
phone  connections,  which may  have considerable  attenua- 
tion  distortion, and  for  radio channels, which may be  sub- 
ject  to frequency-selective fades. 
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Fig. 4. Linear  phase  filters which satisfy  Nyquist's  first criterion 
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Fig. 5. Outline of a binan/ eye pattern. 

Clearly, the ZF criterion  neglects  the  effect  of  noise 
altogether. Also, a  finite-length ZF equalizer is guaranteed 
to  minimize  the peak distortion  or  worst case IS1 only  if  the 
peak distortion  before  equalization is less than 100 percent 
[55]; i.e., i f  a  binary eye is initially open.  However, at high 
speeds on bad  channels  this condition is often  not met. 

The least mean-square (LMS) equalizer [54] i s  more  robust. 
Here  the  equalizer  coefficients are chosen to  minimize  the 

mean-square  error-the sum of squares of ali the IS1 terms 
plus the noise power at the  output  of  the equalizer. There- 
fore, the LMS equalizer  maximizes  the  signal-to-distortion 
ratio at i ts output  within  the constraints  of  the  equalizer 
time span and  the delay  through  the  equalizer. 

The  delay introduced by  the  equalizer  depends on the 
position  of  the  main or reference  tap of the  equalizer. 
Typically, the  tap  gain  corresponding to the  main  tap has 
the largest magnitude. 

If  the values of  the channel  impulse response at the 
sampling  instants are known,  the N coefficients  of  the ZF 
and  the LMS equalizers can  be obtained  by  solving  a set of 
N linear  simultaneous  equations  for each  case. 

Most  current high-speed  voice-band  telephone-line  mod- 
ems use L M S  equalizers because they are more  robust in 
the presence of noise  and large amounts  of ISI, and  superior 
to  the ZF equalizers in their  convergence  properties. The 
same is generally  true  of  radio-channel  modems [72], [82], 
[I141 except in one case [23] where  the ZF equalizer was 
selected due  to its implementation  simplicity. 
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fig. 6. Linear  transversal equalizer. 
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fig. 7. Combined impulse  response of a channel and  zero-forcing  equalizer in tandem. 

C. Automatic Synthesis 

Before  regular  data  transmission begins, automatic 
synthesis  of the ZF or L M S  equalizers  for unknown chan- 
nels, which involves  the  iterative  solution  of  one  of the 
above-mentioned sets of simultaneous  equations, may be 
carried  out  during  a  training period.  (In  certain  applications, 
such as microwave  digital  radio systems, and  remote  site 
receivers in a  multipoint  telephone  modem  network [43], 
the adaptive  equalizers are required to bootstrap in a deci- 
sion-directed  mode (see Section I-E) without  the  help  of a 
training sequence from  the transmitter.) 

During  the  training period,  a known signal is transmitted 
and  a  synchronized  version  of  this signal is generated in  the 
receiver to acquire  information  about  the  channel  char- 
acteristics.  The training signal  may  consist of  periodic  iso- 
lated pulses or a continuous sequence with a broad, uni- 
form spectrum  such as the  widely used maximum-length 
shift-register  or  pseudo-noise (PN) sequence [9], [54],  [76], 
[118],  [119]. The  latter has the advantage of  much greater 
average power,  and  hence  a larger received  signal-to-noise 
ratio (SNR) for  the same peak transmitted  power. The 
training sequence  must  be at  least as long as the  length  of 
the equalizer so that  the  transmitted signal spectrum is 
adequately  dense in the  channel bandwidth  to  be equalized. 

Given a synchronized  version  of  the known  training sig- 
nal, a  sequence of error signals ek = zk - x k  can be  com- 
puted at the equalizer output (Fig. 8), and used to adjust 

the equalizer  coefficients to reduce  the sum of  the squared 
errors. The most  popular  equalizer  adjustment  method  in- 
volves  updates to each tap  gain during each symbol inter- 
val.  Iterative  solution  of  the  coefficients  of  the  equalizer is 
possible because the mean-square  error (MSE) is a  quadratic 
function of the coefficients. The M S E  may  be envisioned as 
an  N-dimensional  paraboloid  (punch  bowl) with a bottom 
or  minimum. The adjustment to each tap  gain is in a 
direction  opposite  to an estimate  of  the  gradient  of  the M S E  
with respect to that  tap  gain. The idea is  to move  the set of 
equalizer  coefficients closer to the  unique  optimum set 
corresponding to the  minimum M S E .  This symbol-by-sym- 
bo1 procedure  developed  by Widrow and Hoff [I091 is 
commonly  referred to as the  continual or  stochastic update 
method because, instead  of  the  true  gradient of the  mean- 
square  error, 

a € [  e: I /acn(  k )  

a  noisy  but unbiased  estimate 

ae:/ac,( k )  = 2ekr( to + kT - nT) 

is used.  Thus the tap gains  are updated  according to 

c,( k + 1) = c,( k )  - Ae,r( to + kT - n T ) ,  

n = 0,1;.., N - 1 

where c,(k) is the  nth  tap gain at time & , e ,  is the  error 
signal,  and A is a positive  adaptation  constant  or step  size. 

fig. 8. Automatic adaptive equalizer. 
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Fig. 9. Q A M  system with baseband complex adaptive equalizer. 

D. Equalizer  Convergence 

The exact convergence  behavior  of  the  stochastic  update 
method is hard to analyze (see Section 111-8). However,  for a 
small  step  size  and  a large number  of  iterations,  the  behav- 
ior is similar to the steepest  descent algorithm, which uses 
the actual  gradient  rather  than a noisy  estimate. 

Here  we list some  general convergence  properties: a) 
fastest convergence  (or shortest settling  time) is  obtained 
when  the  (folded)-power spectrum  of  the  symbol-rate sam- 
pled equalizer  input is flat, and when  the step  size A is 
chosen to  be  the inverse of  the  product  of  the  received 
signal power  and  the number of equalizer  coefficients; b) 
the larger the variation in the  above-mentioned  folded- 
power spectrum,  the smaller the step  size must be, and 
therefore  the  slower  the  rate  of convergence; c) for systems 
where  sampling causes aliasing  (channel  foldover or  spec- 
tral overlap), the convergence  rate is  affected by  the  chan- 
nel-delay  characteristics  and  the sampler phase,  because 
they  affect  the aliasing. This will be  explained  more fully 
later. 

E. Adaptive  Equalization 

After  the  initial  training  period  (if there is one), the 
coefficients  of an adaptive  equalizer may be  continually 
adjusted in a  decision-directed  manner. In this  mode,  the 
error  signal ek = zk - t k  is derived from  the  final  (not 
necessarily  correct) receiver estimate { t k }  of  the  trans- 
mitted sequence { x k } .  In normal  operation,  the  receiver 
decisions are correct with high  probability, so that  the  error 
estimates are correct often enough to  allow  the adaptive 
equalizer to maintain precise equalization.  Moreover, a 
decision-directed adaptive  equalizer can  track slow varia- 
tions in the  channel  characteristics or linear  perturbations in 
the receiver front end,  such as slow  jitter  in  the sampler 
phase. 

The larger the step size, the faster the  equalizer  tracking 
capability.  However,  a  compromise  must be  made between 
fast tracking  and  the excess mean-square  error of  the 
equalizer.  The excess MSE is that  part of  the error power in 
excess of  the  minimum attainable MSE (with tap gains 
frozen at their  optimum settings).  This excess MSE, caused 
by  tap gains wandering  around  the  optimum settings, is 
directly  proportional  to  the number  of  equalizer  coeffi- 
cients,  the  step size, and  the  channel  noise power. The  step 
size that  provides  the fastest convergence results in an M S E  
which is, on  the average, 3 dB worse than  the  minimum 

achievable MSE. In practice,  the value of  the  step size i s  
selected  for fast convergence during  the  training  period and 
then  reduced  for  fine  tuning  during the steady-state oper- 
ation (or  data  mode). 

F. Equalizers for QAM Systems 

So far we have only discussed equalizers  for a baseband 
PAM system. Modern high-speed  voice-band  modems al- 
most  universally use phase-shift  keying (PSK) for  lower 
speeds,  e.g., 2400 to 4800 bits/s, and  combined phase and 
amplitude  modulation or, equivalently,  quadrature  ampli- 
tude  modulation (QAM) [54], for  higher speeds,  e.g., 4800 to 
9600 or  even 16800 bits/s. At  the  high rates, where noise and 
other channel  distortions  become  significant,  modems  using 
coded forms of  QAM such as trellis-coded  modulation [27], 
[105], [I071 are being  introduced to obtain  improved  perfor- 
mance. QAM is  as efficient  in bits per  second per  hertz as 
vestigial or single-sideband  amplitude  modulation, yet en- 
ables  a  coherent  carrier to be derived and  phase jitter  to be 
tracked  using easily implemented  decision-directed carrier 
recovery  techniques [49]. A timing waveform with negligible 
timing  jitter can also  be  easily recovered from  QAM signals. 
This  property is not shared by  vestigial  sideband  amplitude- 
modulation  (AM) systems  [128]. 

Fig. 9  shows  a generic QAM system, which may  also be 
used to  implement PSK or combined  amplitude and  phase 
modulation.  Two double-sideband suppressed-carrier AM 
signals are superimposed on each other at the  transmitter 
and separated at the receiver, using  quadrature or orthogo- 
nal carriers for  modulation and demodulation. It is conve- 
nient  to represent  the  in-phase  and  quadrature  channel 
low-pass filter  output signals in Fig. 9  by v,( t )  and x( t ) ,  as 
the real  and  imaginary parts of a complex  valued signal 
y ( t ) .  (Note  that  the signals  are  real, but  it  will be conveqi- 
ent t o  use complex  notation.) 

The  baseband  equalizer [84], with complex  coefficients 
c,, operates on samples of  this  complex signal y ( t )  and 
produces  complex  equalized samples z( k )  = z,( k )  + jzi (  k ) ,  
as shown in Fig.  10.  This figure  illustrates  more  concretely 
the  concept  of  a complex  equalizer as a set of  four real 
transversal filters  (with cross-coupling)  for two inputs  and 
two outputs.  While  the real coefficients cm, n = 0, * * 9 ,  N - 1, 
help  to combat  the  intersymbol  interference in the in- 
phase and  quadrature channels, the  imaginary  coefficients 
c .  n = 0; . ., N - 1, counteract  the  cross-interference  be- 
tween  the  two channels.  The latter may  be  caused by 

In  1 
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Fig. 10. Complex transversal 

asymmetry in the channel  characteristics  around  the  carrier 
frequency. 

The  coefficients are adjusted to minimize  the mean of 
the squared  magnitude  of  the  complex  error signal, e ( & )  = 
e,( k )  + je,( k ) ,  where e, and e, are the  differences  between 
z, and z,, and their desired values.  The update  method is 
similar to  the  one used for  the  PAM  equalizer except that 
all  variables are complex-valued 

c,( k + 1) = c , (k )  - Ae,y*( f,, + k T -  n T ) ,  

n = 0,1;.., N - 1 
where is the complex  conjugate  of y. Again, the use of 
complex  notation allows  the writing  of this  single  concise 
equation,  rather  than two separate equations involving  four 
real  multiplications,  which is what  really has to be  imple- 
mented. 

The  complex  equalizer can  also  be  used at  passband [6], 
[I61 to equalize  the  received signal before  demodulation, as 
shown  in Fig. 11. Here  the  received signal is split  into its 
in-phase  and  quadrature  components  by a pair  of  so-called 
phase-splitting filters, with identical  amplitude responses 
and phase  responses that  differ by 90'. The complex pass- 
band signal at the  output  of these filters is sampled at the 
symbol  rate  and  applied to the  equalizer  delay line  in  the 
same way as at  baseband.  The complex output  of  the 
equalizer is demodulated,  via  multiplication  by  a  complex 
exponential as shown in Fig. 11, before  decisions are made 
and  the  complex error  computed. Further, the error  signal is 
remodulated  before i t  is used in the  equalizer  adjustment 
algorithm. The main advantage of  implementing  the 
equalizer in the passband is that the delay  between  the 

Fig. 11. 

demodulator and  the phase error  computation  circuit is 
reduced to the delay  through  the  decision  device. Fast 
phase jitter can be  tracked  more  effectively because the 
delay through  the equalizer is eliminated  from  the phase 
correction  loop. The same advantage  can be  attained with a 
baseband  equalizer by  putting  a  jitter-tracking  loop after 
the equalizer. 

G. Decision- Feedback Equalizers 

We have  discussed placements  and  adjustment  methods 
for  the equalizer, but  the basic equalizer  structure has 
remained  a  linear  and  nonrecursive  filter.  A  simple  nonlin- 
ear equalizer [3],  [4],  [32],  [71],  [93], which is particularly 
useful  for  channels with severe amplitude  distortion, uses 
decision  feedback to cancel the  interference from symbols 
which have already  been  detected. Fig. 12 shows  such a 
decision-feedback  equalizer (DFE). The equalized signal is 
the sum  of the  outputs  of  the  forward and feedback parts 
of  the equalizer. The forward part is like  the linear transver- 
sal equalizer discussed earlier.  Decisions  made on  the 
equalized  signal are fed  back via a second  transversal filter. 
The basic idea is that if the value of  the symbols  already 
detected are known (past decisions are  assumed to be 
correct), then  the IS1 contributed  by these symbols can  be 
canceled  exactly, by subtracting past symbol values with 
appropriate  weighting  from  the  equalizer  output. The 
weights are samples of  the  tail  of  the system impulse 
response including  the channel  and  the  forward  part  of  the 
equalizer. 

The forward and  feedback  coefficients may be  adjusted 
simultaneously to minimize  the MSE. The update  equation 

l"D 
BIONK 

- 1  

Passband  complex  adaptive  equalizer  for QAM system. 
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Fig. 12. Decision-feedback equalizer. 

for  the  forward  coefficients is the same as for  the  linear 
equalizer.  The  feedback  coefficients are adjusted  according 
to 

b , ( k + I ) = b , ( k ) + b e , k , _ , ,  rn=l;.. , M  

where R, is the kth symbol  decision, b,(k) is the mth 
feedback coefficient at time k ,  and  there are M feedback 
coefficients in all. The optimum L M S  settings  of b,, rn = 
1;. e ,  M ,  are those  that  reduce  the IS1 to zero, within the 
span of  the feedback part, in a manner  similar to a ZF 
equalizer.  Note  that since the  output  of  the feedback sec- 
tion  of  the DFE is a weighted sum of  noise-free past 
decisions, the feedback  coefficients  play  no  part in de- 
termining  the noise  power at the  equalizer output. 

Given  the same number  of  overall  coefficients, does a 
D F E  achieve less M S E  than a linear  equalizer? There is no 
definite answer to this  question. The performance  of each 
type  of equalizer is  influenced  by  the  particular  channel 
characteristics  and sampler phase, as well as the actual 
number  of  coefficients  and  the  position  of  the  reference or 
main tap of  the equalizer.  However,  the DFE can com- 
pensate  for amplitude  distortion  without as much  noise 
enhancement as a linear  equalizer. The DFE performance is 
also less sensitive to the sampler  phase [94]. 

An  intuitive explanation  for these  advantages is as fol- 

lows: The coefficients  of  a  linear transversal equalizer are 
selected to force  the  combined  channel  and  equalizer  im- 
pulse  response to approximate  a unit pulse. In a DFE, the 
ability of the feedback  section to cancel the ISI, because of 
a  number of past  symbols, allows  more  freedom in  the 
choice  of  the  coefficients of the  forward  section. The com- 
bined  impulse response of  the channel  and the  forward 
section  may have nonzero samples following  the  main 
pulse. That is, the  forward  section of a DFE need not 
approximate  the inverse of  the  channel characteristics, and 
so avoids excessive noise  enhancement  and  sensitivity to 
sampler phase. 

When a particular  incorrect  decision is fed back, the DFE 
output reflects  this  error during  the next few symbols as the 
incorrect  decision traverses the  feedback  delay  line. Thus 
there is a  greater likelihood  of more  incorrect  decisions 
following  the first one,  i.e., error  propagation.  Fortunately, 
the error  propagation in a DFE is not  catastrophic. On 
typical  channels, errors occur in short bursts that degrade 
performance  only slightly. 

H. Fractionally  Spaced Equalizers 

A fractionally spaced  transversal equalizer [6], [39], [45], 
[58], [71], [W], [I041 is shown in Fig.  13.  The delay-line taps 

Fig. 13. Fractionally spaced equalizer. 
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of such an equalizer are  spaced  at  an interval 7 which is 
less than,  or a fraction of, the  symbol  interval T. The tap 
spacing 7 is  typically  selected such that  the  bandwidth 
occupied  by  the signal at the  equalizer input is I f 1  < 1/27, 
i.e.,  7-spaced sampling satisfies the  sampling  theorem. In an 
analog  implementation,  there is  no other  restriction  on 7, 

and  the  output  of the  equalizer can be  sampled at the 
symbol  rate. In a  digital  implementation 7 must  be  KT/M, 
where  K and M are integers  and M > K. (In practice, i t  is 
convenient to choose T = T/M, where M is a small in- 
teger, e.g.,  2.) The received signal is sampled  and  shifted 
into the  equalizer  delay line at a  rate M/Tand one output 
is produced each symbol  interval  (for every M input sam- 
ples). In general,  the  equalizer output is given  by 

N-1 

zk = c,f( to + k ~ -  ~KT/M).  
n=O 

The  coefficients  of  a  KT/M  equalizer may be  updated 
once  per  symbol based on the error computed  for  that 
symbol,  according to 

c,( k + 1) = c,( k )  - Ae,r( to + k T -  nKT/M), 

n = O , I ; - . , N - l .  

It is well  known (see Section II) that  the optimum receive 
filter in a  linear  modulation system is the cascade of a filter 
matched  to  the actual  channel, with a transversal  T-spaced 
equalizer [14],  [24],  [31].  The fractionally spaced equalizer, 
by  virtue  of its sampling rate,  can  synthesize the best 
combination  of  the characteristics  of an adaptive  matched 
filter  and  a T-spaced equalizer, within the  constraints  of its 
length and  delay.  A T-spaced equalizer, with symbol-rate 
sampling at its  input,  cannot  perform  matched  filtering.  An 
FSE can  effectively  compensate  for  more severe delay  dis- 
tortion and  deal with amplitude  distortion with less noise 
enhancement  than  a  Tequalizer. 

Consider  a  channel whose amplitude  and  envelope  delay 

characteristics  around  one  band edge fc - 1/2T hertz differ 
markedly  from  the characteristics  around  the  other  band 
edge fc + 1/2T hertz in a QAM system with a  carrier 
frequency of fc hertz. Then the  symbol-rate  sampled or 
folded  channel-frequency response is  likely  to have a rapid 
transition in the area of spectral overlap. It is difficult for a 
typical T equalizer, with its limited degrees of  freedom 
(number  of taps), to manipulate such a folded channel into 
one  with a  flat  frequency response. An FSE, on the  other 
hand,  can  independently  adjust  the signal spectrum (in 
amplitude and phase)  at the two band-edge  regions  before 
symbol-rate  sampling  (and  spectral  overlap) at the  equalizer 
output,  resulting  in significantly  improved  performance. 

A related  property  of an FSE is the  insensitivity  of its 
performance to the choice of sampler  phase.  This distinc- 
tion  between  the  conventional T-spaced  and fractionally 
spaced equalizers can be  heuristically  explained as follows: 
First, symbol-rate  sampling at the  input  to  a T equalizer 
causes spectral  overlap or  aliasing, as explained in connec- 
tion  with Fig. 4. When  the phases of  the  overlapping 
components  match  they  add  constructively,  and  when  the 
phases  are 180' apart they  add  destructively, which results 
in  the cancellation  or  reduction  of  amplitude as shown in 
Fig.  14. Variation in the sampler  phase  or timing instant 
corresponds to a  variable  delay in the signal path; a linear 
phase component  with variable  slope is added to the signal 
spectrum. Thus  changes in the sampler  phase strongly in- 
fluence  the  effects  of aliasing; Le., they  influence  the  ampli- 
tude  and delay  characteristics in the spectral overlap  region 
of  the sampled  equalizer input. The minimum M S E  achieved 
by  the  T equalizer is, therefore,  a function  of  the sampler 
phase. In particular,  when  the sample  phase causes cancel- 
lation  of  the band-edge ( I f1  = 1/2T hertz)  components,  the 
equalizer  cannot  manipulate  the  null  into  a flat spectrum at 
all, or at least without significant  noise  enhancement (if the 
null is a  depression  rather  than a total  null). 

In contrast,  there is  no spectral overlap at the input  to an 

Fig. 14. Spectral overlap at the  input to a Tequalizer. 
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FSE. Thus the sensitivity  of  the minimum MSE, achieved 
with an FSE with respect to the sampler phase, is  typically 
far smaller than  with a Tequalizer. 

Comparison  of  numerical  performance results of  T  and 
T/2 equalizers  for Q A M  systems operating over representa- 
tive voice-grade  telephone  circuits [9l]  has shown  the  fol- 
lowing properties: a) a T/2 equalizer with the same number 
of  coefficients (half  the  time span) performs  almost as well 
or better  than a T  equalizer; b) a  pre-equalizer  receive 
shaping  filter is  not  required with a T/2 equalizer; c) for 
channels with severe band-edge  delay  distortion,  the  T 
equalizer  performs  noticeably  worse  than a T/2 equalizer 
regardless of  the  choice  of sampler  phase. 

1. Other  Applications 

While  the  primary emphasis of  this  paper is on adaptive 
equalization  for data  transmission, a  number  of  the  topics 
covered are relevant to other  applications  of  adaptive filters. 
In this  section,  generic  forms  of  adaptive filtering applica- 
tions are introduced  to  help  in establishing  the  connection 
between  the material  presented in later  sections  and  the 
application  of interest. But first let us briefly  mention  appli- 
cations  of  automatic or adaptive  equalization in areas other 
than data  transmission over radio or telephone  channels. 

One such  application is generalized  automatic  channel 
equalization [57], where  the  entire bandwidth  of the  chan- 
nel is  to  be equalized without regard to the  modulation 
scheme  or  transmission  rate to be  used on the  channel. The 
tap spacing  and input sample rate are selected to satisfy the 
sampling  theorem,  and  the  equalizer  output is produced at 
the same rate. During the  training  mode, a known signal is 
transmitted, which covers the  bandwidth  to be equalized. 
The  difference  between  the  equalizer  output  and  a syn- 
chronized reference  training signal is the error signal. The 
tap gains  are adjusted to  minimize  the MSE in a  manner 
similar to that  used  for an automatic  equalizer  for  synchro- 
nous  data  transmission. 

Experimental use of  fixed transversal equalizers has also 
been made in digital  magnetic  recording systems  [%I.  The 
recording  method  employed  in such a case must be lin- 
earized  by  using an ac bias. Having  linearized  the  ”channel,” 
equalization can  be  employed to combat  intersymbol  inter- 
ference at increased  recording densities, using  a  higher 
symbol  rate  or  multilevel coding. 

Fig. 15 shows a general form  of an adaptive  filter with 
input signals x and y ,  output z ,  and  error e. The  parameters 
of an L M S  adaptive  filter are updated to  minimize  the 
mean-square  value  of  the error e. In  the  following para- 
graphs, we  point  out  how the  adaptive  filter is used in 
different  applications  by  listing how x ,  y ,  z ,  and e are 
interpreted  for each case. 

Equalization: 

y Received signal (filtered  version  of  transmitted  data 
signal) plus noise  uncorrelated with the  data signal. 

x Detected data signal. 
z Equalized signal  used to detect  received data. 
e Residual intersymbol  interference  plus  noise. 

Echo Cancellation: Echo cancellation is a form  of a 
general system identification  problem, where  the system to 
be  identified is the echo  path  linear system.  The coeffi- 

Y+ ADAPTIVE 1 px 
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Fig. 15. General  form  of  an  adaptive filter. 

cients of a transversal echo canceler converge in the  mean 
to  the echo  path  impulse response  samples. 

i)  Voice: 

y Far-end  voice signal plus  uncorrelated  noise. 
x Echo of  far-end voice  plus  near-end  voice  plus  noise. 
z Estimated  echo  of  far-end  voice. 
e Near-end  voice  plus  residual  echo  plus  noise. 

Adaptation is  typically  carried  out in the absence of  the 
near-end  voice signal. When  double  talk is detected (both 
near-  and  far-end signals  present), update  of  the  echo 
canceler  coefficients is  inhibited [69]. 

ii)  Data: 

y Transmitted data  signal. 
x Echo of  transmitted data  signal plus  received signal 

z Estimated  echo  of  transmitted data  signal. 
e Received signal plus  residual  echo  plus  noise. 

Filter  adaptation is typically  required to be continued in 
the presence  of  a large interfering  received signal which is 
uncorrelated with the  transmitted data [69],  [108]. A method 
proposed in [22]  involves  locally  generating a delayed  rep- 
lica  of  the received signal and  subtracting i t  from e before 
using  the  residual  for  echo canceler update. 

plus noise. 

Noise  Cancellation: 

y Noise  source  correlated with noise in x .  
x Desired  signal  plus noise. 
z Estimate of noise in x .  
e Desired  signal  plus  residual  noise. 

One example is that  of  canceling  noise  from the  pilot’s 
speech  signal in the  cockpit  of an aircraft  [IIO]. In this case, 
y may  be the  pickup  from  a  microphone  in  the pilot’s 
helmet,  and x is the  ambient  noise  picked up by  another 
microphone placed in the  cockpit. See [I101  for  a  number  of 
other  interesting  applications  of noise and  periodic  inter- 
ference  cancellation, e.g., to electrocardiography. 

Prediction: 

y Delayed  version  of  original signal. 
x Original signal. 
z Predicted  signal. 
e Prediction  error or residual. 

A well-known example is linear  predictive  coding (LPC) 
of speech where  the  end result is the set of estimated LPC 
coefficients [&I. Due  to  the nonstationary  nature  of  the 
speech signal, LPC coefficients are typically  obtained sep- 
arately  for each new frame (IO to 25  ms) of  the speech 
signal. 
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In adaptive  differential  pulse  code  modulation (ADPCM, 
of speech, the purpose  of  adaptive  prediction is to generate 
a residual  signal with less variance so that it can be quan- 
tized and  represented  by  fewer  bits  for  transmission [ 46 ] .  In 
this case: 

y Reconstructed speech  signal = quantized  residual  plus 

x Original speech  signal. 
z Prediction 
e Residual to be  quantized  for transmission. 

Note that  the  reconstructed speech  signal is used for y 
instead  of a delayed  version  of  the  original speech  signal, 
and  the  predictor  coefficients are updated  using  the  quan- 
tized residual  instead  of e. Both the reconstructed speech 
signal  and the  quantized residual signal are also available at 
the  ADPCM decoder so that  the  predictor  coefficients at 
the decoder  can  be  adapted in a manner identical to that 
used at the  ADPCM  encoder. 

Adaptive Arrays: A  further  generalization  of the adap- 
tive  filter  of Fig. 15 is shown in Fig.  16 where a number of 
input signals are processed through an  array of adaptive 

past prediction. 

8 \ +  

: I-: ?p-@+ 
. I  /+ I 

% ! L J  FILTER 

Fig. 16. Adaptive filter array. 

filters  whose  outputs are summed  together. Such adaptive 
arrays  are useful in diversity combining [6], [I141  and in 
dealing  with  jamming or spatially  distributed  interference 

J. Implementation  Approaches 

One may divide  the methods of  implementing adaptive 
equalizers into  the  following general  categories:  analog, 
hardwired  digital, and  programmable  digital. 

Analog adaptive equalizers, with inductor-capacitor ( L C )  
tapped-delay  lines  and  switched  ladder  attenuators as tap 
gains, were  among  the first implementations  for  voice-band 
modems.  The  switched  attenuators  later gave  way to  field- 
effect transistors (FETs) as the  variable  gain  elements. Ana- 
log equalizers  were  soon  replaced  by  digitally  implemented 
equalizers for reduced size and increased  accuracy. Re- 
cently,  however,  there is renewed  interest in large-scale 
integrated (LSI) analog  implementations  of  adaptive  filters 
based on switched  capacitor  technology [2],  [112]. Here the 
equalizer input is sampled but  not quantized. The sampled 
analog values are stored  and  transferred as charge  packets. 
In one  implementation [2], the  adaptation  circuitry is digital. 
The  variable  tap gains  are typically  stored in digital  memory 
locations  and  the  multiplications  between  the  analog sam- 
ple values and  the  digital  tap gains  take place in analog 
fashion  via  multiplying  digital-to-analog converters. In 
another case  [112], a five-tap  adaptive transversal filter has 
been  fabricated  on a single  integrated  circuit (IC) using an 

all-analog  implementation approach combining  switched 
capacitor and charge-coupled  device (CCD) technologies. 
The IC consists of  a five-tap  CCD delay line, a convolver, 
five  correlators  (one  for each tap gain),  an offset  error 
canceler,  and an error signal generator.  Integrators  and 
four-quadrant  analog  multipliers are implemented in 
switched capacitor  technology. The IC can  be configured 
for use as an echo canceler, a  linear  equalizer, or a deci- 
sion-feedback  equalizer at sampling rates up  to 250 kHz. 
Analog  or  mixed analog-digital  implementations have  sig- 
nificant  potential in applications, such as digital  radio  and 
digital subscriber loop transmission, where  symbol rates  are 
high  enough to make  purely  digital  implementations dif- 
ficult. 

The  most  widespread  technology  of  the last  decade for 
voice-band  modem adaptive  equalizer  implementation may 
be classified as hardwired  digital  technology. In such imple- 
mentations, the equalizer input is made available in sam- 
pled and  quantized  form suitable  for storage in digital  shift 
registers.  The  variable  tap gains  are  also stored in shift 
registers  and the  formation  and  accumulation  of  products 
takes  place in logic circuits  connected to perform  digital 
arithmetic.  This class of  implementations is  characterized  by 
the fact  that the  circuitry is hardwired  for  the sole purpose 
of  performing  the adaptive  equalization  function with a 
predetermined structure. Examples include  the early units 
based on metal-oxide-semiconductor (MOS) shift registers 
and transistor-transistor  logic (TTL) circuits. Later imple- 
mentations [53],  [IOO] were based on MOS LSI circuits with 
dramatic savings in space, power  dissipation,  and cost. 

A  hardwired  digital adaptive filtering approach  described 
in [I061  for  a  144-kbit/s  digital subscriber loop  modem is 
based on a random-access memory (RAM) table lookup 
structure [124]. Both an echo canceler (EC) and a decision- 
feedback  equalizer (DFE), where  inputs are the  transmit  and 
receive  binary  data sequences, respectively, can  be imple- 
mented  in this way. An output signal  value is maintained 
and  updated in  the RAM  for each of  the 2N possible states 
of an N-tap transversal filter with a  binary input sequence. 
Such a  structure is not restricted to be  linear and, therefore, 
can  adapt to compensate  for  nonlinearities [123]. A  two-chip 
realization of a  digital subscriber loop  modem based on a 
joint EC-DFE RAM structure is described in [121]. 

The  most  recent  trend in  implementing voice-band 
modem adaptive  equalizers is toward programmable  digital 
signal processors [43],  [81], [IOI], [120].  Here, the  equaliza- 
tion  function is performed in a series of steps or  instruc- 
tions in a microprocessor  or  a  digital  computation  structure 
specially configured  to  efficiently  perform the  type  of  dig- 
ital  arithmetic (e.g., multiply and  accumulate)  required in 
digital signal  processing. The  same hardware  can then  be 
time-shared to perform  functions such as filtering,  modula- 
tion, and demodulation in a  modem. Perhaps the greatest 
advantage of programmable  digital  technology is  i ts  flexibil- 
ity, which  permits sophisticated  equalizer structures and 
training procedures to be implemented with ease. 

For microwave  digital  radio systems, adaptive  equalizers 
have  been implemented  both  in  the passband  at the  inter- 
mediate  frequency (IF) stage and at baseband  [%].  Passband 
equalizers are analog  by necessity, e.g.,  an amplitude  slope 
equalizer  [23] at 70-MHz IF, and a dynamic resonance 
equalizer  using p-i-n and varactor diodes [82] at 140-MHz 
IF. Three-tap T/2 transversal equalizers have been imple- 
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mented  in  the passband  (at 70-MHz IF) using  quartz surface 
acoustic  wave filters, analog  correlators,  and  tap  multipliers 
for a 4-PSK 12.6-Mbit/s  digital  radio [114].  Baseband trans- 
versal equalizers have been  implemented  using a combina- 
tion  of analog  and  digital or all-digital  circuitry. A five-tap 
zero-forcing equalizer  using  lumped  delay  elements,  hybrid 
integrated  circuits  for  variable-gain  and  buffer  amplifiers, 
and  emitter-coupled  logic for  tap  control is described in 
[23]  for a 16-QAM  %-Mbit/s  digital radio.  A  five-tap L M S  
transversal equalizer [82], and all digital DFEs have  also 
been  reported (981, [114]. 

11 .  RECEIVER STRUCTURES A N D  THEIR STEADY-STATE PROPERTIES 

A. Baseband  Equivalent Model 

To set a common framework  for  discussing various re- 
ceiver  configurations,  we  develop  a baseband equivalent 
model  of  a passband  data transmission system. We start 
from a  generic QAM system  (Fig. 9) since i t  can be used to 
implement any  linear  modulation scheme. 

The passband transmitted signal  can be  compactly writ- 
ten as 

s( t )  = Re I xx,,a( t - nT) exp( j2TIfct) I 
L n  1 

where { x , , }  is the complex sequence of data  symbols with 
in-phase (real) and  quadrature  (imaginary)  components, x ,  
and x ; ,  respectively, such that x ,  = x,, + jx;,,, a ( t )  is the 
transmit  pulse shape, and fc is the carrier frequency.  We 
shall assume that  the baseband transmit  spectrum A( f )  is 
band-limited  to If1 < (1 + u)/2T  hertz  where  the rolloff 
factor u,  between 0 and 1, determines  the excess band- 
width over the  minimum If1 < 1/2T. (Note  that greater 
than  100-percent excess bandwidth is sometimes used in 
radio and  baseband subscriber loop transmission systems.) 

The  received signal is 

r( t )  = S( r )  hp( t )  + np( t )  

where h,(t) is the passband channel  impulse response, 
n,(t) i s  "passband" Gaussian  noise, and  the  operator * 
represents convolution. The in-phase  and  quadrature out- 
puts  of  the receive  low-pass filters, ~ ( t )  and ~ ( t ) ,  may be 
represented in complex notation as y ( t )  = K ( t )  + & I t )  

Y( t )  = g( t )  * 4 t )  exp (-j2n Ct)l  
where g(t)  is the impulse response of  the  receive filter. 
Assume  that the receive filter  completely  rejects  the  dou- 
ble-frequency signal components  produced  by  demodula- 
t ion and  centered  around  2fc.  Then  the baseband received 
signal may be  written as 

y( t )  = x x , , h (  t - nT) + n( t )  (1) 
n 

where 

is the  complex-valued  impulse response of  the baseband 
equivalent  model (Fig. 17). The real-valued passband chan- 
nel  impulse response h,(t) and the complex-valued base- 
band  channel  impulse response, hb( t ) ,  are related accord- 
ing  to 

Fig. 17. General  complex-valued  baseband  equivalent 
channel  model. 

hp( t )  = Re [ hb( t )  exp (j2n fct)] 

The  corresponding  frequency-domain  relationship is 

Thus hb( t )  is the impulse response of  the  positive  frequency 
part  of  the channel spectral  response translated to base- 
band. 

The  noise  waveform n( t )  in (1) is also complex-valued, 
i.e., 

The  receive  low-pass filters (in Fig. 9) typically  perform two 
functions:  rejection  of the  "double-frequency" signal com- 
ponents,  and  noise suppression.  The latter function is 
accomplished  by  further  shaping  the baseband  signal  spec- 
trum.  In  the baseband equivalent  model,  only  the first of 
these functions  of  the receive filters is performed  by g( t )  
and  absorbed in h( t )  given in (2).  For simplicity,  the  noise 
n( t )  in the baseband  equivalent  model is assumed to be 
white  with  jointly Gaussian  real and  imaginary  components. 

6. Optimum Receive  Filter 

Given  the received signal y ( t ) ,  what is the best  receive 
filter? This question has been  posed  and answered in  differ- 
ent ways by numerous  authors. Here, we follow Forney's 
development [24]. He  showed  that  the sequence of T-spaced 
samples, obtained at the  correct timing phase,  at the  output 
of  a  matched  filter is a set of  sufficient statistics for  estima- 
tion of  the  transmitted sequence { x , , } .  Thus  such a receive 
filter is sufficient regardless of  the  (linear or nonlinear) 
signal  processing which  follows  the symbol-rate sampler. 

For the baseband  equivalent  model  derived in the  previ- 
ous  section, the receive  filter  must have an impulse  re- 
sponse h*( - t ) ,  where  the  superscript * denotes  complex 
conjugate.  The  frequency response of  this  matched  filter is 
H*( f), where H( f )  is the  frequency response of  the  chan- 
nel  model h( t ) .  

If  the data sequence { x , , }  is uncorrelated with  unit 
power, i.e., 

then  the signal  spectrum at the  matched  filter output is 
IH( f)12, and the noise  power  spectrum is IH(f)12.  After 
T-spaced sampling,  the aliased or  "folded" signal spectrum 
is 

shh( f) = x I H (  f -  "/T)12, 0 < f < 1/T 
n 

and  the noise power spectrum is N&&( f). 
If  the transmission  medium is  ideal, then  the baseband 

signal  spectrum H ( f )  at the matched filter  input is deter- 
mined solely by  the  transmit  signal-shaping filters. From 
the discussion in Section  I-A it is  clear that if IS1 is to be avoid- 
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Fig. 18. Conventional linear receiver. 

ed, the  composite  of  the  transmit  filter  and  receive  matched 
filter response must satisfy the  Nyquist  criterion, i.e., 

shh( f )  = R o ,  0 Q f <  1/T 

where, in general, 

Ro = r/l/rshh( f )  df.  
0 

Therefore, the overall  Nyquist  amplitude response IH( f)12 
must be  equally  divided  between  the transmit  and  receive 
filters. For instance, each filter may  have  an amplitude 
response which is a square root  of a raised-cosine character- 
istic [54], [113]. For  such  an ideal  additive  white Gaussian 
noise  (AWGN)  channel,  the  matched  filter,  symbol-rate 
sampler, and a memoryless detector  comprise the  optimum 
receiver. 

Let us now consider  the  more  interesting case of an 
AWGN channel with linear  distortion. For  such a channel, 
the  simple linear receiver described  above is no longer 
adequate. The symbol-rate  sampled sequence, though  still 
providing  a set of  sufficient statistics, now contains inter- 
symbol  interference in addition to noise. The current  re- 
ceived  symbol is  distorted  by a linear combination  of past 
and  future  transmitted symbols.  Therefore, a memoryless 
symbol-by-symbol  detector is  not  optimum for  estimating 
the  transmitted sequence. Nonlinear receivers which at- 
tempt  to  minimize some  measure of  error  probability are 
the subject of Section 11-D, where  the emphasis is on 
techniques  which  combine nonlinear  processing with adap- 
tive filters. 

It is instructive to first study  linear receivers, which at- 
temDt to maximize  signal-to-noise  ratio (SNR) (minimize 

fless detection. 

C. Linear  Receivers 

We  begin  by  reviewing  the conventional  linear  receiver 
comprising  a  matched  filter,  a  symbol-rate sampler, an in- 
finite-length symbol-spaced  equalizer,  and a memoryless 
detector. in the  following section  we  show  that the 
matched-filter, sampler, symbol-spaced  equalizer  combina- 
tion is a special case of a more general infinite-length 
fractionally spaced  transversal filter/equalizer. In fact, this 
general filter may  be  used as the  receive  filter  for any 
receiver  structure  without loss of  optimality. Sections 1l-U 
and l l-C4 present  a  contrast  between  practical  forms of  the 
conventional and  fractionally spaced  receiver structures. 

7) Matched Filter  and lnfinitefength Symbol-Spaced 
Equalizer: If further processing of  the  symbol-rate  sampled 
sequence at the  output  of  a matched receive filter is re- 
stricted to be  linear,  this  linear processor  takes the general 
form  of  a T-spaced infinite-length transversal  or nonrecur- 
sive equalizer followed by a memoryless detector [31], [54]. 
Let the  periodic frequency response of the transversal 
equalizer  be C( f ) .  The equalized signal spectrum is 

Shh( f )C(f) ,O Q f Q 1/T. The optimum C ( f )  is one  which 
minimizes  the MSE at its output. The MSE is given by 

E = Tl'rD - Shh(  f )  c( f ) 1 2  + NOShh( f ) l c (  f)12  df ( 3 )  

where  the first term is the  residual IS1 power,  and  the 
second  term is the  output-noise  power.  Differentiating  the 
integrand with respect to C ( f )  and  equating  the  result to 
zero, one  obtains  the  minimum MSE  (MMSE) equalizer 
frequency response 

c( f ,  = I/[ NO + shh( f ) ] .  ( 4) 

Thus the best (MMSE) matched-filtered  equalized  signal 
spectrum is given  by 

shh( f ) / [  NO + Shh( f > l .  (5) 

Substituting (4) in (3), one  obtains  the following expression 
for  the  minimum MSE achievable  by a linear  receiver: 

cmin (linear) = T/~/'N~/[ N, + Shh(  f ) ]   d f .  (6 )  

The  receiver  structure (Fig.  18) comprising a matched  filter, 
a symbol-rate sampler,  an infinite-length T-spaced equalizer, 
and  a  memoryless  detector is referred to as the  conven- 
tional linear  receiver. 

i f  the equalizer response C ( f )  is designed to satisfy the 
zero-IS1 constraint  then C( f )  = I/&( f ) .  

The  overall  frequency response of  the  optimum zero- 
forcing (ZF) linear receiver is given  by H*( f ) / S h h (  f ) ,  which 
forces the IS1 at the receiver output  to zero.  The MSE 
achieved by  such  a receiver is 

€,,(linear) = T/ l 'T&, /shh(  f )   d f .  ( 7)  

cZF(Iinear) is  always  greater than  or  equal to cmin (linear) 
because no consideration is given to the  output-noise  power 
in designing  the ZF equalizer.  At  high  signal-to-noise  ratios 
the two equalizers are nearly  equivalent. 

2)  lnfinitefength Fractionally Spaced  Transversal Filter: 
In this  section, we derive an alternative  form  of an optimum 
linear  receiver. 

Let us start with the  conventional receiver structure  com- 
prising  a  matched  filter, symbol-rate sampler, T-spaced 
transversal equalizer, and a memoryless detector. As a first 
step, linearity  permits us to interchange  the  order  of  the 
T-spaced  transversal equalizer  and  the  symbol-rate sampler. 
Next,  the  composite response H*( f ) C (   f )  of  the  matched 
filter  in cascade with a T-spaced  transversal equalizer may 
be  realized by a single  continuous-time  filter. Let  us  assume 
that  the  received signal spectrum H( f )  = 0 outside  the 
range If1 Q 1/27, 7 Q T, and  the flat noise  spectrum is also 
limited  to  the same band  by an ideal  antialiasing filter 
with  cutoff frequency 1/27. The composite  matched-filter 
equalizer  can  then be realized by an infinite-length  con- 
tinuous-time transversal filter with taps  spaced at 7-second 

0 

0 
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intervals  and  frequency response H*( f )C( f ) ,  I f 1  Q 1/27, 
which is periodic  with  period I/. hertz. The continuous 
output  of  this  composite transversal filter may be sampled 
at the  symbol  rate  without any further  restriction on the 
tap-spacing 7. If  the  frequency response C ( f )  is selected 
according to (4, the symbol-rate output  of  the composite 
filter is  identical  to the  corresponding output (5 )  in  the 
conventional MMSE linear  receiver. 

To implement  this composite  matched-filter  equalizer as 
a fractionally spaced digital  nonrecursive  filter,  the  effective 
tap-spacing  must be restricted to KT/M,  where  K and M 
are relatively  prime integers, K < M, and the  fraction  KT/M 
< 7. The desired  frequency response H*( f ) C ( f )  of this 
fractionally spaced digital transversal filter is  periodic with 
period  M/KT hertz, and limited  to  the band If1 6 1/27 < 
M/2KT since H( f )  is limited  to  the same bandwidth.  An 
ideal  antialiasing  filter with a cutoff frequency M/2T hertz 
is assumed before  the rate M/T sampler. 

The operation  of  the  digital  filter may be visualized as 
follows. Each symbol  interval, M input samples  are shifted 
into  digital  shift register memory, every Kth sample in the 
shift register is multiplied by a successive filter  coefficient, 
and  the  products  summed to produce  the  single output 
required per  symbol  interval. 

Note that  the M/T rate input  of the  fractionally spaced 
digital  filter has the signal spectrum 

H( f ) ,  I f1 Q M/2KT 
0, M/ZKT < I f (  < M/2T 

The  frequency response of  the  digital  filter is H*( f)C( f ) ,  I f (  
< M/ZKT. Thus if the  output  of  this  filter was produced at 
the rate  M/T, the  output signal spectrum would be 

H( f ) H * (  f )C(  f ) ,  ( f l  < 1/2KT 

0, M/2KT< I f1 Q M/2T. 

When  the  filter  output is produced at the  symbol rate, it 
has the desired aliased  signal spectrum 

zIH( f - n/T)12C( f -  n/T), 0 Q f Q 1/T. 
n 

Noting that C( f )  is periodic with period  1/T,  this  output- 
signal  spectrum is recognized as S,,(f)C(f), which is  the 
same as for  the  conventional MMSE linear  receiver (5), 
provided C( f) is selected  according to (4). 

This  simple  development proves the  important  point that 
an infinite-length fractionally spaced digital transversal filter 
is  at once  capable  of  performing  the  functions  of  the 
matched  filter  and  the T-spaced  transversal equalizer  of  the 
conventional linear  receiver. 

Let us further show  that the symbol-rate  sampled  outputs 
of  a  fractionally spaced digital filter form  a set of  sufficient 
statistics  for  estimation  of  the  transmitted sequence under 
the  following  conditions. The digital  filter with tap  spacing 
KT/M has the frequency response H*( f )C(  f ) ,  If1 < M/2KT, 
where  the received signal spectrum H(f) is zero  outside 
the  band If1 < M/ZKT, C ( f )  is periodic with period  1/T, 
and C ( f )  i s  information lossless. A sufficient  condition  for 
C ( f )  to be information lossless is  that C ( f )  i s  invertible, 
i.e., C( f )  # 0, 0 Q f Q 1/T.  However, it is only necessary 
that C( f)/S,,( f )  is invertible, i.e., C( f)/S,,( f )  # 0, 0 < f 
Q 1/T.  In words,  this condition  implies that C ( f )  may not 

introduce any nulls or transmission zeros in  the Nyquist 
band,  except at a  frequency  where  the signal (and  the  noise 
power spectrum at the  matched-filter  output) may  already 
have a null. 

The  above  result shows that with an appropriately  de- 
signed C( f ) ,  the symbol-rate  outputs  of a fractionally spaced 
filter,  with frequency response H * ( f ) C ( f ) ,  may be used 
without loss of  optimality, for any linear or nonlinear  re- 
ceiver, regardless of  the  criterion  of  optimality. 

In a  linear  receiver,  where a memoryless detector  oper- 
ates on the symbol-rate  outputs  of  the  fractionally spaced 
filter,  the  function C ( f )  may  be designed to minimize  the 
M S E  at the  detector  input. The optimum C ( f )  is then 
obtained  using  the same procedure as outlined  in  the 
previous  section  for  the  conventional  linear  receiver. Thus 
the MMSE KT/M-spaced filter frequency response is 

The MMSE achieved by this  filter is, of course, the same as 
cmin (linear)  derived earlier (6) for  the  conventional  receiver 
structure. 

If  the  criterion  of  optimality used in designing C( f )  is to 
force  the  intersymbol  interference at the  detector input  to 
zero,  one  obtains  the  overall  filter response 

The MSE achieved in this case is  the same as €,,(linear) 
derived earlier (7). 

3) Fixed Filter and Finite-  Length  Symbol-Spaced Equalizer: 
The  conventional MMSE linear receiver is impractical  for 
two reasons.  First, constraints of finite  length and computa- 
tional  complexity  must be imposed on the  matched  filter as 
well as the T-spaced  transversal equalizer. Secondly, in 
most  applications, i t  is  impractical to design, beforehand, a 
filter  which is  reasonably matched to the  variety  of  received 
signal  spectra  resulting  from transmissions  over different 
channels  or  a  time-varying  channel. Thus the  most  com- 
monly used  receiver  structure comprises a  fixed  filter, sym- 
bo1 rate  sampler,  and finite-length T-spaced adaptive 
equalizer (Fig. 18). The fixed-filter response is either  matched 
to the  transmitted signal  shape  or is designed as a com- 
promise  equalizer which attempts to equalize  the average 
of  the class of  line characteristics expected  for  the  applica- 
tion. For the present discussion, let us  assume that  the fixed 
filter has an  impulse response p ( t )  and a frequency re- 
sponse P ( f ) .  Then, the T-spaced sampled output of  this 
filter may be  written as 

Uk = z X n q ( k T -  nT) -I- vk (1 0) 
n 

where 

4 t )  = P ( t ) * h ( t )  
and 

vk = /n( t)p(  kT - t)  dt. 

Denoting  the N equalizer  coefficients at time kT by the 
column vector ck ,  and  the samples stored in  the equalizer 
delay line  by  the vector uk, the  equalizer output is  given by 

zk = CLuk 
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where  the superscript T denotes transpose. Minimizing  the 
M S E  41zk - X k l 2 ]  leads to  the set of  optimum equalizer 
coefficients 

copt = A-’a (11) 

where A is an N X N Hermitian covariance matrix E[$u:], 
and a is an N-element  cross-correlation  vector 4 * x k ] .  

Using  the assumption  that  the data  sequence ( x k }  is 
uncorrelated with  unit power, i t  can be  shown  that  the 
elements  of  the matrix A and  vector a are given  by 

a i , j = C q * ( k T ) q ( k T +  i T - j T )  
k 

+ No/@( t ) p (  t + iT - j T )  dt (1 2) 

and 

ai = q*(  - i T ) .  (1 3) 

The MMSE achieved  by  this  conventional  suboptimum lin- 
ear receiver is  given  by 

cmin(con) = I - a*W’a. (1 4) 

Alternatively,  the N equalizer  coefficients may  be chosen 
to force  the samples of  the  combined  channel  and  equalizer 
impulse response to zero at all but one  of  the N T-spaced 
instants in the span of  the  equalizer. The zero-forcing 
equalizer  coefficient vector is given  by 

czF = Q-’8 (1 5) 

where Q is an N X N matrix with elements 

q.  . = q( i~ - j T )  

and 8 i s  a vector with  only one  nonzero  element,  that 
element  being  unity. The MSE achieved  by  the  zero-forcing 
suboptimal  receiver is given by 

I ? /  (1 6)  

czF(con) = cmin(con) +(cZF - c ~ ~ ~ ) * ~ A ( c ~ ~  - Copt) 

where  the quadratic  form is the excess M S E  over the LMS 
solution. 

It is instructive to derive expressions for  the  equalizer  and 
i ts performance as the  number  of  coefficients is allowed to 
grow  without  bound. Since the N X N matrices A and Q 
are Toeplitz,  their eigenvalues  can  be obtained  by  the 
discrete  Fourier  transform (DFT) of any row or column as 
N -P w [MI. Thus by  taking  the DFT of (11) for copt we 
obtain  the frequency  spectrum of  the  infinite-length T- 
spaced L M S  equalizer 

where 

Qeq( f )  C Q( f - n/T)  
n 

is the aliased  spectrum of q( t ) ,  and 

n 

is the aliased power spectrum  of p( t ) .  The minimum 
achievable M S E  is  given  by 

The  corresponding expressions for  the  zero-forcing  equalizer 
are 

CZF( f )  = l /Qeq( f )  (21 1 
and 

E z F ( C O ~ )  = T/ No&( f ) / l Q e q (  f ) 1 2  df.  (22) 

When P(f) is a  matched  filter, i.e., P ( f )  = H * ( f ) ,  the 
above expressions reduce to those  given in Section 11-81 
because Spp( f )  = Qeq( f )  = Shh( f ) .  

The  smallest  possible MSE (zero-IS1 matched filter  bound) 
is  achieved when  in (20) we have 

1 / J  

0 

lQeq(  f)12/spp( f )  = Shh(  f )  = Ro, 0 d f d  I/T. 
This  occurs when  the channel  amplitude  characteristic is 
ideal  and  perfect  equalization is achieved by the  matched 
filter. The  greater  the  deviation  of IQeq( f)12/%,( f )  from its 
average R o ,  the greater  cmin(con).  The  aliased power spec- 
trum s,,( f ) ,  as defined  in (19), is independent of  the phase 
characteristics of P( f )  or the sampler  phase.  The value  of 
the squared  absolute value 1Qq(f)l2 of  the aliased  spec- 
trum Qeq( f ) ,  on the other hand, is critically  dependent on 
the sampler phase in the  rolloff  region due to aliasing. Thus 
the  minimum M S E  achieved  by the conventional  receiver is 
dependent  on  the sampler  phase even when  the  number  of 
T-spaced equalizer  coefficients is unlimited (N 4 w). 

When N is finite,  the value of  cmin(con)  depends on  the 
channel  impulse response h( t ) ,  the  noise  power spectral 
density No, the choice  of  the  fixed receive filter p( t ) ,  and 
the  number N of T-spaced equalizer  coefficients. There- 
fore, i t  is difficult  to say much  about  the  performance  or 
degree of  suboptimality  of this receiver structure without 
resorting to numerical  computations  for  particular exam- 
ples. As noted above, one general characteristic of  this 
receiver  structure is the  sensitivity  of its performance to the 
choice  of sampler phase.  This point is discussed further in 
Section It-E. 

4) Finite- Length Fractionally Spaced  Transversal Equalizer: 
This suboptimum linear  receiver  structure is simply  a  practi- 
cal form  of  the  infinite-length structure discussed in Section 
ii-C2. We  shall  restrict  our attention  to  the  digitally  imple- 
mented  fractionally spaced equalizer (FSE) with tap  spacing 
K T / M  (see  Fig. 19). The input  to  the FSE is the  received 
signal  sampled at  rate M / T  

y( k T / M )  = C x n h (  k T / M  - nT) + n( k T / M ) .  (23) 
n 

Fig. 19. Linear  receiver  based on a  fractionally  spaced  trans- 
versal equalizer. 

1364 PROCEEDINGS OF THE IEEE, VOL. 73, NO, 9, SEPTEMBER 1985 



Each symbol  interval,  the FSE produces an output according 
to 

N-I 

Z( &T)  = C,Y( &T - ~ K T / M ) .  ( 24) 
n-0 

Denoting  the N equalizer  coefficients at time kT by the 
vector ck and  the N most  recently  received samples  (spaced 
KT/M seconds apart) by the vector yk, the  equalizer output 
may be  written as 

Zk = clyk. 

Minimizing  the MSE E[Izk - x k 1 2 ]  leads to the set of  opti- 
mum equalizer  coefficients 

cOpt = A-’a 

where A is an N X N covariance matrix E[)’ i :yl ] ,  and a is 
an N-element cross-correlation  vector 4 ) ’ i : x k ] .  

Using  the assumption  that the data  sequence { x k }  is 
uncorrelated with  unit power, it can be  shown  that  the 
elements  of  the matrix A and  vector a are given  by 

a , , j = C h * ( & ~ -  ; K T / M ) ~ ( & T - ~ K T / M )  + ~ ~ 8 ,  (26) 

ai = h*( - ~ K T / M ) .  (27) 

k 

The MMSE achieved  by  the FSE is  given by 

c,,,~,,(FsE) = I - a*TA-’a. ( 28) 

On the surface, the FSE development is quite similar to 
that  of  the  conventional T-spaced LMS equalizer  given in 
the  previous section. There are, however,  significant dif- 
ferences. First, unlike the T equalizer, the FSE does not 
require  a  fixed receive  shaping filter p(t) .  Secondly, note 
that  while  the FSE input covariance  matrix A is Hermitian, it 
is not  Toeplitz.  In fact,  each diagonal  periodically takes one 
of M different values. Due  to the  non-Toeplitz  cyclosta- 
tionary nature of  the A matrix, it is  no longer  possible to 
obtain  the eigenvalues  of A by  simply  taking  the DFT of 
one  of its rows  even as N + 00. However, it is possible to 
decompose  the set of  infinite equations 

A c =  a 

into M subsets  each with M Toeplitz  submatrices.  Using 
this procedure, it can  be shown [39] that as N + m, a 
fraction (M - K)/M of  the  eigenvalue are equal to No, and 
the  remaining eigenvalues are of  the  form (M/K) Shh( f)  + 
No, where 

Shh( iM/NKT) = C I H (  iM/NKT - n/T)12,  
n 

~=O,I,~,...,(NK/M)-I . (29) 

The  frequency response of  the  optimum FSE approaches 
(8) as N + 00, and its MSE approaches cmin (linear)  given 
in (6). 

As the noise  becomes  vanishingly small,  an infinitely  long 
FSE has a set of zero eigenvalues.  This implies  that  there are 
an infinite number  of  solutions  which  produce  the same 
minimum MSE. The  nonunique  nature  of  the  infinite FSE is  
evident  from  the fact that  when  both signal and  noise 
vanish in  the frequency range 1/2T< If1 < M/2T,  the in- 

finite FSE spectrum C ( f )  can take any  value in this  fre- 
quency range without  affecting  the  output signal or MSE. 

Gitlin and  Weinstein [39] show  that  for  transmission 
systems with less than  100-percent excess bandwidth,  the 
matrix A is nonsingular  for  a  finite-length FSE even as the 
noise  becomes  vanishingly  small. Therefore, there exists a 
unique set of  optimum equalizer  coefficients cOpt given  by 
(25). 

Deviation  of  the  coefficient vector ck from  the  optimum 
results in  the  following excess MSE over cmin(FSE) given in 
(28): 

This  quadratic  form may  be diagonalized to obtain #%dk, 
where  the diagonal  matrix A has the eigenvalues of A 
along its main diagonal,  and dk is the  transformed coeffi- 
cient  deviation vector  according to 

where  the  columns of  the  diagonatizing  matrix V are the 
eigenvectors of A.  From the analysis of  the  infinite FSE, one 
would expect  that when the  number  of FSE coefficients is 
“large,” a significant  fraction ( M  - K ) / M  of  the  eigenval- 
ues of A are relatively  small. If the i th eigenvalue is very 
small,  the i t h  element  of  the  deviation  vector dk will  not 
contribute  significantly  to  the excess MSE. It is, therefore, 
possible  for coefficient deviations to exist along  the  eigen- 
vectors  corresponding to the small  eigenvalues of A without 
significant  impact on the MSE. Thus  many coefficient vec- 
tors may produce  essentially  the same MSE.  

The  most  significant  difference in the  behavior  of  the 
conventional  suboptimum receiver and  the FSE is a direct 
consequence of  the higher  sampling rate at the input  to the 
FSE. Since no aliasing takes place at the FSE input,  it can 
independently manipulate  the  spectrum in the two  rolloff 
regions to  minimize the  output M S E  after  symbol-rate sam- 
pling. Thus unlike  the T-spaced equalizer, it is possible  for 
the FSE to compensate  for timing phase as well as asymme- 
try in the channel  amplitude or delay  characteristics without 
noise  enhancement. This is discussed further in Section 11-E. 

D. Nonlinear Receivers 

The MMSE linear receiver is optimum  with respect to the 
ultimate  criterion  of  minimum  probability of symbol error 
only  when  the channel does not  introduce any amplitude 
distortion, i.e., Shh( f )  = R,, 0 g f g  1/T. The linear  receive 
filter  then achieves the  matched filter  (mf)  bound for MSE 

and a memoryless  threshold  detector is  sufficient  to  mini- 
mize  the  probability  of error.  When  amplitude  distortion is  
present in  the channel,  a  linear  receive  filter, e.g., FSE, can 
reduce IS1 and  output MSE by providing  the  output signal 
spectrum 

The  corresponding  output error power  spectrum is No/ 
[No  + Shh(f)] .  Thus  noise power is  enhanced at those fre- 
quencies  where Shh( f )  < R,. A memoryless detector  oper- 
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ating  on  the  output  of this  received  filter no longer mini- 
mizes  symbol  error  probability. 

Recognizing  this fact,  several authors have investigated 
optimum or  approximately optimum nonlinear  receiver 
structures  subject to a variety  of  criteria [59]. Most  of these 
receivers use one  form  or another of the  maximum a 
posteriori probability  rule  to maximize  either  the  probabil- 
ity  of  detecting each symbol  correctly [ I ]  or of  detecting  the 
entire  transmitted sequence correctly. The classical maxi- 
mum-likelihood receiver [54] consists of r n k  matched filters, 
where k is the  length  of  the  transmitted sequence whose 
symbols are drawn  from a discrete  alphabet  of size rn. 

The complexity  of  the classical  receiver, which grows 
exponentially with the message length, can be avoided  by 
using  the  Viterbi  algorithm. This recursive  algorithm which 
was originally  invented  to decode  convolutional codes  was 
recognized to be a maximum-likelihood sequence  estima- 
tor (MLSE) of  the state  sequence of a finite-state  Markov 
process observed in memoryless  noise  [25].  Forney [24] 
showed  that if  the receive  filter is  a whitened matched 
filter, its symbol  rate  outputs at the  correct  sampling  times 
form  a set of  sufficient statistics for  estimation  of  the 
information sequence.  Thus the transmission  system be- 
tween  the data source and  the  Viterbi  algorithm (VA)  can 
be  considered as a  discrete channel, as shown in Fig. 20. 
The state and  hence  the input sequence of  the discrete 
channel  can  be  estimated  by  the VA which observes the 
channel  output  corrupted by  additive  white Gaussian noise 
[24]. The computational  complexity  of  the MLSE  is propor- 
tional  to r n - ’ ,  the  number  of  discrete  channel states, 
where 1 is the number of terms in the  discrete  channel 
pulse  response. 

The MLSE maximizes  the mean time  between  error (MTBE) 
events, a  reasonable  criterion  for  practical  automatic  repeat 
request (ARQ)  data communications systems where ef- 
ficiency is measured by throughput (i.e., the  number of 
blocks  of data  correctly  received versus the  total  number of 
blocks transmitted). 

The  symbol  error  probability  of  the MLSE [24] is estimated 
by an  expression of the  form 

Pr ( e) = KQ[ dmin/2u]. 

The minimum Euclidean  distance  between any two valid 

WIYrra) 
WmOL 
aut%cE 

neighboring sequences is cfmin, u2 is the  mean square white 
Gaussian  noise power at the  input  to  the VA, and 8mi,/u2 
is the  effective SNR. 

Q ( x )  = ( 1 / 2 n ) p x P ( - ? / 2 )  dY 

is the Gaussian probability  of error function,  and  the  error 
coefficient K may be  interpreted as the average number  of 
ways in  which  minimum distance  symbol errors  can occur. 

The lower  bound  on  the  probability  of error for binary 
transmission  over an ideal  AWGN  channel is given  by 

Q[ (2~min(mf))-”~]. 

The MLSE approaches  this  lower bound at high SNR for all 
channels  except  those with extremely severe ISI. For in- 
stance, for  a class IV partial response  system with a  discrete 
channel  model  of  the  form 1 - d, the  symbol  error  rate 
achieved  by  the MLSE is about 4 times  the lower  bound 
given above. In decibels  this  difference is small (about 0.5 
dB for  a  symbol  error rate of  and goes to zero as the 
effective SNR goes to  infinity. 

For unknown and/or  slowly  time-varying channels, the 
MLSE can be  made  adaptive  by  ensuring  that both  the 
whitened  matched  filter and  the  channel  model used by 
the VA adapt to the  channel response. Magee  and Proakis 
[62]  proposed an adaptive  version of  the VA which uses an 
adaptive  identification  algorithm to provide an estimate  of 
the discrete  channel  pulse response.  Structures with adap- 
tive  whitened matched  filters (WMF) were  proposed in [61] 
and  [MI. 

Forney [24] derived  the  WMF as the cascade connection 
of  a  matched  filter W ( f ) ,  a  symbol-rate sampler, and  a 
T-spaced  transversal whitening  filter whose  pulse response 
is the anticausal  factor of  the inverse filter  l/Shh(f). The 
noise at the  output  of  the WMF is white and  the IS1 is 
causal.  Price [83]  showed  that  the WMF is also the optimum 
forward  filter in a  zero-forcing  decision-feedback  equalizer, 
where  the feedback transversal filter can exactly  cancel the 
causal IS1 provided all past decisions are correct. (Earlier, 
Monsen [71] had  derived the  optimum  forward  filter for an 
L M S  DFE.) 

At  this  point it is helpful  to discuss simpler  forms  of 
nonlinear receivers, i.e., decision  feedback  equalization  and 

I t  I I +  

Fig. 20. Discrete  channel model. 

1366 PROCEEDINGS OF THE IEEE, VOL. 73, NO. 9, SEPTEMBER 1985 



general  decision-aided IS1 cancellation,  before  returning to 
the  topic  of adaptive  receiver filtering  for  maximum-likeli- 
hood sequence  estimation. 

I )  Decision Feedback Equalizers: The MLSE unravels IS1 
by  deferring decisions  and  weighing as many preliminary 
decision sequences as the  number  of states in the  discrete 
channel  model. Thus in most cases, the MLSE makes  use of 
all  the energy in the discrete  channel  impulse response to 
maximize  the  effective SNR.  By contrast, a D F E  makes 
memoryless  decisions  and cancels all  trailing IS1 terms. Even 
when  the  WMF is used as the  receive  filter  for both  the 
M L S E  and  the DFE, the latter suffers from  a reduced  effec- 
tive SNR, and  error  propagation,  due to its inability  to defer 
decisions. 

a)  Infinite  length: A decision-feedback  equalizer (DFE) 
takes  advantage of  the symbols which have already  been 
detected  (correctly with high  probability) to cancel the 
intersymbol  interference  due to these  symbols without noise 
enhancement.  An  infinite-length DFE receiver takes the 
general form (Fig. 21) of  a  forward  linear  receive  filter, 
symbol-rate sampler,  canceler, and memoryless detector. 
The  symbol-rate  output  of  the detector is then used by  the 
feedback filter to generate future  outputs  for  cancellation. 

KyIw*R) 
RQNE 

As pointed  out  by Belfiore  and Park [4], an equivalent 
structure to the DFE receiver  of Fig. 21 is the  structure 
shown in Fig.  22.  The latter may be  motivated  from  the 
point  of  view that  given  the MMSE forward  filter, e.g., an 
infinite-length FSE, we  know that the sequence of  symbol- 
rate samples  at the  output  of  this  filter  form a set of 
sufficient statistics  for  estimating the transmitted sequence. 
Then  what  simple  form  of nonlinear  processing could  fur- 
ther  reduce the M S E ?  To this  end,  let us examine the  power 
spectra of  the  two components  of  distortion:  noise and 1st. 
Noise at the  output  of  the MMSE forward  filter (see Section 
Il-C1) has the  power spectrum 

Since noise  and IS1 are independent,  the  power  spectrum  of 
the  total  distortion or error  sequence is given  by  the sum of 
the noise and IS1 power spectra, i.e., 

Fig. 2 l .  Conventional  decision-feedback receiver. 

t 
Fig. 22. Predictor form of decision-feedback receiver. 
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The  error  sequence is white  if and only if Shh( f )  is a 
constant; e.g., Shh(f) = Ro,  If1 Q 1/2T, when  the channel 
has no  amplitude  distortion.  In  this case, further  reduction 
in M S E  is not possible.  However,  for channels with ampli- 
tude  distortion,  the  power  of  the error  sequence at the 
output of  the  forward  filter can  be reduced  further  by  linear 
prediction [122], provided past  samples of  the error se- 
quence are available.  An  estimate  of these  past error sam- 
ples  can  be  obtained  by  decision  feedback via a  memory- 
less detector, as shown in Fig. 22. To complete  the  picture, 
i t  remains to derive  the optimum  predictor spectrum as the 
number  of  predictor coefficients grows without  bound. 

The  error  sequence at the  predictor  output has the spec- 
trum 

E( f )  = i( f )  + I!( f )B( f)  

where B(f)  is the desired  spectrum  of  the infinitely  long 
predictor, i.e., 

g( f)  = 6 - P f n T .  
m 

ne 
n-1 

The optimum B( f )  is  one which minimizes  the  final MSE 

The solution i s  available from  the theory  of  one-step  pre- 
dictors and  Toeplitz  quadratic  forms [44]. There  exists a 
factorization  of  the inverse power  spectrum of  the error 
sequence,  such  that 

r( f)r*( f) = IAP( f)12 

where 
m 

r( f)  = ynexp( - j 2 n f n ~ )  
n-0 

i.e., { y n }  is causal. Then  the optimum B( f)  is given by 

B( f)  = r( f ) I y0  - I ,  o Q f <  I / T  

where  the  normalizing  factor yo is the average value of 
I-( f )  in the range If1 Q 1/2T. The minimum achievable M S E  
is 

cmin(DFE) = IAYOI~. (32) 

Given  the error sequence with power  spectrum I P (  f)12, the 
optimum  predictor produces a white error sequence with 
power spectral  density l/ly,12. Note that since both error 
sequences, before  and  after  prediction,  contain  noise  and 
IS1 components,  neither sequence is Gaussian.  The MMSE 
given in (32) can be expressed directly in terms of  the 
folded  power spectrum Shh( f).  Note that 

The first integral on the  right-hand side is  In(l/lho12) since 
If( f)12 = lAho12. The  second integral is  zero  because 1 + 
B( f )  has all i t s  zeros inside  the unit circle [122]. Thus using 
(32), we have 

(33) 

This  expression is identical to the MMSE for an infinite- 
length convention1 DFE [93], which proves the  equivalence 
of  the  predictor and  conventional D F E  structures. 

We can write  the  following equivalence  relationship  by 
comparing  the two DFE structures  shown in Figs. 21 and 22: 

W( f) = H*( f)  C( f ) [ l  + B( f) ] .  (34) 

After some inspection, it becomes evident  that  the infinite- 
length  forward  filter  W(f)  in  the conventional D F E  struc- 
ture is  the cascade of a matched  filter  and  the  anticausal 
factor  of  the  optimum C( f )  given in (4)  [71]. So long as the 
length  of  the  forward  filter  in each of  the  two DFE struc- 
tures is unconstrained,  the two structures  remain  equivalent 
even when  the feedback  (or  prediction)  filter is reduced to 
a finite length.  Note,  however,  that  while  the  forward  filter 
W( f )  in the  conventional  structure  depends on  the number 
of  feedback  coefficients,  the  forward  filter in the  predictor 
structure is independent  of  the  predictor  coefficients. 

An  alternative  to the optimum mean-square D F E  receiver 
is  the  zero-forcing  formulation [4],  [83]. The forward  filter is 
again of  the  form (34). However, C( f )  is  designed to satisfy 
the zero-IS1 constraint, i.e., C( f )  = I/$,,,( f). Thus the  for- 
ward  filter W( f )  is the cascade of a matched filter and  the 
anticausal  factor  of  the inverse filter I/&( f). The noise at 
the  output  of  W(f) is white and  the IS1 is causal (as in the 
case of Forney's whitened matched filter). The  causal IS1 is 
completely canceled  by an infinite-length decision-feed- 
back  filter. The  final error  sequence  consists solely  of  noise 
which is white and Gaussian with power 

As expected,  cmin(m9 Q cmi,(DFE) Q cZF(DFE). 
b) Finite length: Neglecting  zero-forcing equalizers, 

there are four possible  structures  for finite-length DFE re- 
ceivers, based on the  conventional or FSE forward filters, 
and conventional or predictor  forms  of  feedback filters. Let 
us denote these as 

Type 1 : Conventional  forward  filter + conventional  feed- 

Type 2 :  Conventional  forward  filter + predictor feed- 

Type 3: FSE forward  filter + conventional  feedback 

Type 4: FSE forward  filter + predictor  feedback  filter. 

Type 7: To  the  forward  equalizer  structure  described in 
Section ll-C3, we add Nb feedback  Coefficients. Denoting 
the  latter at time kT by  the  column vector b k ,  the samples 
stored in the  forward  equalizer  delay  line  by  the  vector uk, 
and  the past N, decisions  by  the  vector xk,  the  equalizer 
output is given  by 

back filter. 

back  filter. 

filter. 

zk = c:uk - 6 xk . 

Minimizing  the M S E  with respect to the  feedback coeffi- 
cients leads to 

b, = QCk ( 36) 
where Q is an N, X N matrix with elements  given  by (16). 
Using (36) and  proceeding as in Section 11-Cl, it can be 
shown  that  the set of  optimum  forward  coefficients is given 
by 

cOpt = k ' a .  (37) 

The N X N matrix A has elements b, , j  similar to given 
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Fig. 23. Decision-aided IS1 cancellation. 

by (12), except  that  the  summation over k now excludes the 
set 1 Q k g N, (which is  in the span of  the  feedback filter). 
Finally 

bo,, = QCopt. 

Type 2: In this case, the  forward  equalizer  coefficients 
can  be obtained  from (11) independently  of  the  predictor 
coefficients. Let Ck be  an  N,-element vector at time kT 
consisting  of  the N, most recent  error signals before  pre- 
diction at instants k ,  k - I;. ., k - N, - 1, with the  for- 
ward equalizer  coefficients at their  optimal values.  Then, 
the set of optimum predictor  coefficients bk is the  solution 
of  the  normal equations 

E [  6;-1&-7] bk = E [  6 ; f?k ] .  (38) 

Type 3: This case is  similar to Type 1, except that  the 
forward  filter structure  described in Section ll-C4 is  used. 
The set of  optimum  forward  coefficients can be  obtained 
using 

cop, = k ' a  

where  the  matrix A has elements  similar to A,,, given  by 
(26), except  that  the  summation over k now excludes the 
set 1 Q K < N,. The optimum feedback  coefficients are 
given  by 

bop, = HCopt 

where H is an N, X N matrix with elements h,,j = h( iT - 
jKT/M). 

Type 4: This  type  of D F E  is similar to Type 2. The 
optimum  forward  coefficients given  by (25) still apply  and 
the  predictor  coefficients can be obtained by solving  a set 
of  normal  equations similar to that  given in (38). 

For a  direct  comparison  of  the  performance  of  the  four 
types of DFE structures, resort must  be made to numerical 
solution  for particular  channel characteristics, number  of 
equalizer  coefficients, etc. One general comment  that can 
be  made is that  for an equal  number  of  forward  and 
feedback  coefficients,  the D F E  structures  of Type 1 and 3 
will always  achieve an output M S E  at least as low or lower 
than  the M S E  achieved by structures  of Type 2 and 4, 
respectively.  This is true because unlike Type 1 and 3 
structures,  independent  solution  of  the  forward  equalizer 
and  the feedback  predictor  coefficients in Type 2  and 4 DFE 
structures  does not  in general  guarantee joint  minimization 
of  the  final MSE. 

QURESHI:   ADAPTIVE  EQUALIZATION 

One  important factor in the  practical  performance of D F E  
structures  of all types is the  effect of error  propagation on 
the  final error  probability. Assuming correct  decisions,  the 
improvement  in  output signal-to-MSE  ratio  provided  by a 
D F E  reduces the  probability  of  occurrence  of  the first error. 
However,  once an error occurs i t  tends to propagate  due to 
incorrect  decision  feedback. Bounds on  the error multipli- 
cation factor have been  developed  by Duttweiler et al. 1121 
and  by  Belfiore  and Park [4]. 

2) Decision-Aided /SI Cancellation: The concept of de- 
cision feedback  of past data  symbols to cancel intersymbol 
interference  can  theoretically be extended to  include  future 
data  symbols. If all past and  future data  symbols were 
assumed to be known at the receiver, then  given  a  perfect 
model  of  the IS1 process, all IS1 could be canceled  exactly 
without any noise  enhancement. Such a hypothetical re- 
ceiver  could,  therefore, achieve the zero-IS1 matched-filter 
bound  on performance. In practice,  the  concept  of  deci- 
sion-aided IS1 cancellation can be  implemented  by  using 
tentative  decisions  and some finite delay at the  receiver. In 
the absence of  tentative  decision errors, the IS1 due to these 
finite  number  of  future data  symbols (as well as past data 
symbols)  can be canceled exactly before  final receiver deci- 
sions are made. Such a receiver structure with a two-step 
decision process was proposed  by Proakis  [85].  Recently, 
Gersho  and  Lim  [34] observed that  the MSE performance  of 
this receiver  structure could be improved  considerably  by 
an adaptive  matched  filter in the  path  of  the  received signal 
prior  to IS1 cancellation. In fact, the zero-IS1 matched-filter 
bound  on M S E  could be achieved in the  limit assuming 
correct  tentative  decisions. A general theoretical  treatment 
is available i n   [ a ] .  

Consider the  block diagram of Fig. 23 where  correct data 
symbols are assumed to be known  to the  canceler. Let the 
forward  filter have N coefficients  fractionally spaced  at 
KT/M-second  intervals. Then the  final output  of  the struc- 
ture is given by 

zk = c:yk - q x k  

where ck and yk are the  forward filter  coefficient and input 
vectors,  respectively, with N elements as defined earlier in 
Section  ll-C2, bk is the  vector  of  the canceler coefficients 
spaced T seconds apart, and xk  i s  the  vector  of data  sym- 
bols. Each of these  vectors is of  length N, + N,. The  data 
vector xk has elements xk+ N,, . . . x k + ' ,  x ~ - ~ , .  . ., x ~ - ~ , .  
Note  that  the current data symbol xk  i s  omitted. The 
canceler has N1 noncausal  and N, causal coefficients 

1369 



b-,,. . ., b-,, b,;. ., bN,. To minimize  the MSE 4 Izk - and  the IS1 power spectrum may be  written as 
xk12] ,  we can  proceed a i i n  Section Il-Dlb for  the DFE. First, 
setting  the derivative of  the MSE with respect to bk to zero tl - s h h ( f ) / [ N O + R 0 1 2 + 6 ( f ) ~ 2 = N ~ / [ N O + R 0 1 2 ~  

we  obtain 
- 

bk = H c ~  

where H is an (N1 + N,) X N matrix with elements 

h,,j= h(iT-  jKT/M), i =   - N 1 ; ~ ~ , 1 , 1 ; ~ - , N 2  
j = O , l ; . . , N - I .  

Using  this result, i t  can be shown  that  the  optimum set of 
forward  filter  coefficients is given by 

cWt = A-’a 

where  the matrix A has elements 2 j , j  similar to given by 
(26), except  that the summation over k now excludes the 
set k = -N, ; - . , l , I , . . - ,N ,  (which is in the span of  the 
canceler).  The  vector a is the same as in (27). Finally,  the 
optimum canceler  coefficient  vector = Hc,, consists 
of T-spaced  samples of  the impulse response of  the  chan- 
nel  and  the  forward  filter in cascade, omitting  the reference 
sample. 

The  role of  the  forward  filter. in this  structure may be 
better  understood  from  the  following  point of  view.  Given 
an optimum (LMS) desired  impulse response (DIR) for  the 
canceler (with  the reference sample forced to unity), the 
forward  filter equalizes  the  channel response to this  desired 
impulse response with least MSE. In fact both  the DIR, 
modeled  by  the canceler  coefficients, and the  forward  filter 
coefficients are being  jointly  optimized  to  minimize  the 
final MSE. The same  basic idea was  used by Falconer and 
Magee [I71 to create a  truncated DIR channel  for  further 
processing by  the  Viterbi algorithm. In (171, a  unit energy 
constraint was imposed on the DIR while  in  the IS1 canceler 
structure  the reference sample of  the DIR is constrained to 
be  unity.  Another  difference  between  the  two structures is 
the use of  a  forward  filter  with fractional  tap  spacing  rather 
than a predetermined  “matched”  filter  followed  by  a T- 
spaced  equalizer. The use of  a fractionally spaced forward 
filter  for  creating a truncated DIR was proposed in [ 8 8 ]  
noting its ability  to  perform  combined adaptive  matched 
filtering and  equalization. 

As we  allow  the lengths of the  forward  filter  and  the 
canceler to  grow  without bound,  the  forward filter evolves 
into a  matched  filter with frequency response [34], [80] 

The  canceler  models  the T-spaced impulse response of  the 
channel  and  forward  filter in cascade, all except the  refer- 
ence  sample. The frequency response of the  canceler may 
be  written as 

Note that  since all the  quantities in the above  expression 
for  the canceler  frequency response  are  real, the canceler 
coefficients  must  be  Hermitian  symmetric. 

The output noise  power  spectrum is given  by 

The output MSE, obtained  by  integrating  the sum of  the 
noise  and IS1 power spectra, is equal to  the zero-IS1 matched 
filter  bound, i.e., 

The critical  question  regarding  decision  aided IS1 cancel- 
lation is the  effect  of tentative  decision errors on the  final 
error  probability of the receiver. Published results  answer- 
ing this  question are not yet available.  However,  reduced 
MSE has also been  reported [SI when  a version  of  the 
decision-aided  receiver  structure is used to cancel nonlinear 
ISI. 

3) Adaptive Filters for MLSE: Adaptive  receive filtering 
prior  to  Viterbi  detection is of  interest  from two points  of 
view. First, for  unknown and/or  slowly  time-varying  chan- 
nels the receive filter must  be  adaptive in order to obtain 
the  ultimate performance  gain from  maximum-likelihood 
sequence  estimation. Secondly, the  complexity  of  the MLSE 
becomes prohibitive for  practical channels with a larger 
number  of IS1 terms.  Therefore, in a  practical  receiver, an 
adaptive  receive filter may be used to  limit the  time spread 
of  the channel as well as to track  slow time variation in the 
channel  characteristics [17], [89]. 

By a  development  similar to that  given in Section ll-C2, i t  
can be  shown  that  a fractionally spaced  transversal filter can 
model  the characteristics of  the WMF  proposed  by Forney 
[24]. However, the constraint on this  filter to produce  zero 
anticausal IS1 makes it  difficult  to derive an algorithm  for 
updating  the  filter  coefficients  in an adaptive receiver. 

The  general  problem of adaptive receive filtering  for 
MLSE may be approached as follows.  We  know  from Sec- 
tion lkC2 that an LMS FSE produces  the  composite response 
of  a  matched  filter and an LMS T-spaced equalizer, when 
the M S E  is defined  with respect to a unit pulse DIR. In 
general, an LMS FSE frequency response  can  always be 
viewed as the composite  of a matched filter and an LMS 
T-spaced equalizer response 

where G( f )  is the DIR frequency response with respect to 
which  the MSE is minimized.  After  symbol-rate  sampling, 
the signal  spectrum at the  output  of  the FSE is given  by 

noise  power spectrum may  be written as 
Shh(f )G( f ) / [No + Shh(f)], If1 d 1/2T, and  the output 

The  selection  of  the DIR is therefore  the crux of  the 
problem. Fredericsson [30] has shown  that  from an effective 
M S E  point  of view, best performance is obtained  when  the 
DIR is selected  such  that its power  spectrum is  

With this optimum DIR and  the  receive filter selected 
according to (39), the  residual IS1 power  spectrum at the 
input  to  the  Viterbi  algorithm is given by 

Summing  the residual IS1 and  noise  power spectra we 
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Fig. 24. Adaptive M L S E  receiver with causal  desired impulse response (DIR) developed via 
decision-feedback  equalization. 
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Fig. 25. General  form of adaptive M L S E  receiver with finite-length desired  impulse re- 
sponse. 

obtain  the  power spectrum  of  the  combined  error sequence 
at the  input  to  the  Viterbi  algorithm. The error sequence is 
found  to be  white  with mean-squared value No/( R, + No), 
which is equal to the  matched-filter  bound.  Note  that  the 
Gaussian  noise  component  of  the error  sequence is  ap- 
proximately  white at a  moderately high SNR. However,  the 
total error  sequence while  white i s  not Gaussian due to 
residual ISI. 

Let us select the DIR such that G ( f )  i s  the causal factor 
of  the  power spectrum  given in (40). Then the  resulting FSE 
(39) may be  recognized as the  optimum  forward  filter  of an 
infinite-length  conventional LMS DFE. At moderately high 
SNR this FSE approaches the WMF. An MLSE receiver  using 
such  a  receive filter is  shown in Fig. 24. This receiver can 
easily  be  made  adaptive  by  updating both  the FSE and the 
feedback filter  coefficients to  jointly minimize  the  mean- 
squared  value of  the error sequence.  The feedback filter 
coefficients also provide all but  the first DIR coefficient  for 
use by  the  Viterbi  algorithm. The first DIR coefficient is 
assumed to  be  unity. 

Fredericsson  [30]  points out  the  difficulty  of  obtaining a 
general explicit  solution for  the optimum  truncated DIR of 
a  specified  finite  length. However,  when  the DIR is  limited 

to  two or three terms [17],  [30], it invariably takes the  form 
of one or the  other  familiar class of  partial response  systems 
[48] with a null at one or both band edges. As mentioned in 
Section 11-D, the  Viterbi  algorithm is able to recover  most of 
the nearly  3-dB loss which otherwise results from use of 
bandwidth-efficient partial-response systems. 

Several methods  of  jointly  optimizing the  fractionally 
spaced receive filter and the  truncated DIR  are available 
which  minimize  the M S E  at the  input  to  the  Viterbi al- 
gorithm (VA). These methods differ  in the form  of  con- 
straint [17], [ a ]  on the DIR which is necessary in this 
optimization process to exclude  the  selection  of  the null 
DIR corresponding to  no transmission  through  the  channel. 
The  general form  of such a receiver is  shown  in Fig.  25. 

One such constraint is to restrict  the DIR to be causal and 
to restrict the first coefficient of the DIR to be unity.  In  this 
case, the delay LT in Fig. 25 is equal to the  delay  through 
the VA and  the first coefficient  of { 4 )  i s  constrained to  be 
unity. 

If the causality  constraint is  removed (as in [34] for  deci- 
sion-aided IS1 cancellation)  but  the  reference  (or  center) 
coefficient  of  the DIR is constrained to  unity, another  form 
of  the receiver  shown in Fig. 25 is obtained [103]. In this 
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case the delay  LT is equal to the  delay  through the VA plus 
N,T where  the DIR has 2N, + 1 coefficients with its center 
coefficient constrained to be unity. As before,  this  structure 
can easily be made  adaptive  by  updating  the FSE and DIR 
coefficients in a  direction opposite to the  gradient  of  the 
squared  error with respect to each coefficient. 

The least restrictive  constraint on the DIR is the  unit 
energy  constraint  proposed  by Falconer  and Magee [17]. 
This leads to yet  another  form of  the receiver structure 
shown  in Fig.  25. However,  the  adaptation  algorithm  for 
updating  the desired  impulse response coefficients { b k }  is 
considerably  more  complicated (see  [17]). Note  that  the 
fixed  predetermined WMF and T-spaced prefilter  combina- 
tion  of [I71 has been  replaced in Fig. 25 by  a general 
fractionally spaced adaptive  filter. 

A  common characteristic  of  the above mentioned  trun- 
cated DIR suboptimum MLSE receiver  structures is that the 
sample  sequence at the  input  to  the VA contains  residual 
IS1 (with respect to the DIR), and  that  the  noise sequence is 
not  white. Bounds on the  performance of  the VA in  the 
presence of  correlated noise  and residual IS1 are developed 
in [89]. In practice, so long as the DIR power spectrum  more 
or less matches the nulls or high-attenuation  regions  of  the 
channel  folded  power  spectrum, a reasonable length FSE 
can  manipulate  the  channel response to the  truncated DIR 
without significant  noise  enhancement  or  residual ISI. How- 
ever, the degree to  which  the noise sequence at the VA 
input is uncorrelated  depends on the  constraints  imposed 
on the DIR. As mentioned earlier, as the causal DIR length 
is allowed  to grow,  the  forward filter in the  structure of Fig. 
25 approaches the WMF at moderately  high SNR, resulting 
in uncorrelated  noise at the VA input. On the  other hand, if 
the DIR is noncausal,  the receive filter approaches a  matched 
filter as the DIR length approaches the  length of the origi- 
nal  channel  impulse response, resulting in the  noise to be 
colored  according to the  folded  power  spectrum of the 
received  signal. For such  receiver  structures, the  modified 
VA [103], which takes the noise correlation  into account, is  
more appropriate. 

E. Timing Phase Sensitivity 

As noted  in earlier sections, conventional  suboptimum 
receiver  structures based on T-spaced equalizers  suffer from 
extreme  sensitivity to sampler timing phase.  The inherent 
insensitivity of the  performance  of  fractionally spaced 
equalizers to  t iming phase  was heuristically  explained in 
Section I-H. Here  we present  an overview  of  the  influence 
of  timing phase on the  performance  of various receiver 
structures. 

Let us reconsider  the  conventional  linear receiver of 
Section 11-C1 in  the presence of  a  timing phase offset to. 
Assume that H ( f )  = 0, If1 > 1/T,  i.e., the channel has  at 
most labpercent excess bandwidth. The sampled  noise 
sequence at the  output  of  the matched  filter is given by 

nk = n( k T +  to) = I n (  t )  h*( t - kT - to) dt 

where h*( - t )  i s  the  impulse response of  the  matched  filter 
H*( f ) .  The power spectrum, NoShh(f),  of the noise se- 
quence { nk> is independent of the  timing phase to. 

The  sampled signal  spectrum, however, is a function  of to 
according to 

s h h ( f r t O )  = exp(-j2nfro)[ IH(f)12 + I H ( f -  I/T)I’ 

. exp( j2ato/~)] ,  o G f G  I/T. 

Note  that  when to = 0, the alias IH( f - 1/T)12 adds con- 
structively to IH( f)12, while for to = T/2, destructive alias- 
ing takes place in the  foldover  region  around 1/2T hertz. In 
particular, if  the channel  power  spectrum is the same  at the 
two  band edges, a  null is created in the  sampled signal 
spectrum at f = 1/2T hertz when to = T/2. 

The M S E  corresponding to (3) may  be written as a func- 
tion  of  timing phase,  i.e., 

4 6 )  = T/l’h - Shh( f, 6 )  C( f ) 1 2  + W h h (  f )  IC( f )  I 2  df 
0 

where C ( f )  is the  periodic  frequency response of the 
T-spaced equalizer which  follows  the sampler. Proceeding 
to optimize C(f ) ,  as in Section 11-81, the  minimum MSE 
may  be  derived as a  function  of to 

(41) 
Note that if S~,(f,r0)/S,,( f )  is small in the  foldover  re- 
gion, due  to  poor choice  of to, the intergrand  becomes 
relatively large in that range of  frequencies. This  leads to a 
larger emin. Clearly, timing phase is unimportant  when there 
is  no excess bandwidth and  therefore no aliasing. 

The  above  development shows that  for systems with 
excess bandwidth,  the performance  of  the  conventional 
MMSE linear  receiver with a  fixed  matched filter is sensitive 
to choice  of  timing phase due to the  inability  of  the 
T-spaced equalizer to invert  a  “null”  in  the sampled signal 
spectrum without excessive  noise enhancement. This  sensi- 
tivity can be  avoided i f  the  matched  filter  spectrum H*( f )  
is adjusted  by a linear phase factor, exp(j2nfto),  to ex- 
plicitly compensate  for  the timing offset to. An  infinite- 
length  fractionally spaced equalizer  obtains its insensitivity 
to  timing phase in this way. 

For instance,  given  a timing offset to, an infinite  length 
T/2 equalizer synthesizes the  frequency response 

W( f )  = H*( f )  exp(j2nfto)/[ No + Shh( f ) ] ,  I f 1  Q I /T. 

The  signal  spectrum at the  equalizer input is the DFT of  the 
T/Z-sarnpled channel  impulse response { h(kT/2 + to) } ,  
i.e., H(f, to)  = H(f)exp(-j2nffo),If l Q I/T. Aliasing,  due 
to symbol-rate  sampling, takes place at the  equalizer output 
after W( f )  has explicitly compensated  for the  timing offset. 
This  results in the  equalized signal spectrum 

Thus the residual ISI, noise, and M S E  at the T/2 equalizer 
output are all  independent  of  the  timing phase. 

In a  practical  conventional receiver structure, the matched 
filter is typically  replaced  by a filter  matched to the  trans- 
mitted pulse  or  the  received  pulse over the average chan- 
nel.  Mazo [ 6 4 ]  has shown  that  under some  assumptions, the 
best timing phase for an infinite-length T-spaced equalizer 
is one which maximizes  the energy in the  band edge, 
f =  1/2T hertz,  component in the  symbol-rate  sampled 
signal at the equalizer input. However, on channels with 
severe delay distortion and  moderately large excess band- 
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width, e.g., Wpercent, even  the timing phase which maxi- 
mizes  band-edge energy  can lead to near nulls  elsewhere in 
the  folded spectrum. On such a  channel,  a T-spaced 
equalizer  performs  poorly regardless of  the  choice  of  timing 
phase. Conditions  for  amplitude depressions to occur in the 
folded spectrum are given in [%I. For instance, asymmetri- 
cal  delay distortion  in the two band-edge  regions can  cause 
the phase  responses of  the two aliasing  components to 
differ  by II radians a few  hundred hertz away from  the band 
edge. Thus while  the aliases add at the  band edge, they 
subtract  where  they are opposite in phase.  This cancellation 
may  be  accentuated  by  amplitude  distortion in  the channel 
causing  the  amplitudes  of  the  canceling aliases to be  nearly 
equal. 

By contrast,  a finite-length FSE maintains its ability to 
compensate  for a timing offset in such a way as to equalize 
with the  minimum  of noise enhancement. 

The  results discussed above can be  extended to 
decision-feedback receiver structures.  Consider a conven- 
tional DFE consisting  of a matched  filter,  a  symbol-rate 
sampler,  and infinite-length T-spaced forward  and  feedback 
filters. The M S E  of such a  receiver can  be derived as a 
function  of  the  timing phase (using  the  method  given in 
W 1 )  

( 42) 

As to is varied, the greatest deviation in cmin(  to)  occurs  for a 
channel  such  that 

where a is the  rolloff factor. For this  channel 

shh(  f t t O ) ~ ~ o = O  = Shh(  f )  = 1, 0 d f 6  1/T 

and 

1, I f 1  < (1 - a)/2T 
0, (1 - U)/2Td f d (1 + a)/2T. 

Using  this result in (42) we  obtain  for  the DFE 

Emin( t o )  I t o -O  = 1/(1 + I/No) 

and 

c m i n ( t O ) 1 t ~ - T / 2  = 1/(1 + l / ~ o ) ( ' - ~ ) .  

For No = 0.01 (20-dB SNR) and a = 0.1, the M S E  of  the 
decision-feedback  equalizer degrades by 2 dl3 when to is 
varied  from  the best choice to = 0 to the worse choice 
to = T/2. The  corresponding  result  for  the  conventional 
linear  receiver is obtained  by  using (41) 

crn ,n( to ) I to -O = Nd(I + No) 

and 

c m i n ( t O ) I t o - T / Z  = a +(I - Q)NO/(I + No),  

For No = 0.01 and Q = 0.1, the M S E  of  the  linear  receiver 
degrades by 10.4 dB as to i s  varied from 0 to T/2. 

This  example  illustrates  the ability  of  the  conventional 
D F E  to compensate  for  the spectral null created by poor 
choice  of  timing phase with much less noise  enhancement 

than a conventional  linear  receiver.  However,  this  relative 
insensitivity may not translate into actual performance in- 
sensitivity  from an  error probability  point  of  view  due to 
error  propagation  in  the DFE. In order to cancel the IS1 due 
to a  spectral null created  by a bad timing phase, the 
feedback filter must  develop a relatively long impulse  re- 
sponse with large magnitude  coefficients. Such a DFE is  
likely  to suffer  from severe error propagation. 

The  performance  of a DFE with a fractionally spaced 
forward  filter is, of course, insensitive to  timing phase by 
virtue  of  explicit compensation of  the  timing  offset by  the 
forward  filter  before symbol-rate  sampling. The  same com- 
ment applies to a  fractionally spaced  receive filter used in 
conjunction  with a  maximum-likelihood sequence estima- 
tor. 

Ill. LEAST MEAN-SQUARE ADAPTATION 

In this  section  we  expand  upon  the  topics  briefly  intro- 
duced  in Sections  I-C  through I-E, that is, L M S  adaptation 
algorithms, their convergence  properties,  and excess MSE. 
The  effect  of  finite precision in digital  implementations is 
also discussed.  The  results of  this  section are applicable to 
other forms of adaptive filters, e.g.,  an echo canceler, with 
appropriate  reinterpretation  of terms. 

The  deterministic  gradient  algorithm,  which is of little 
practical  interest, is presented first to set the stage for a 
discussion of  the L M S  or  stochastic gradient  algorithm. 

A. Deterministic Gradient Algorithm 

When  the equalizer input covariance matrix A and  the 
cross-correlation  vector a (see Sections 11-U and II-C4) are 
known,  one can write  the M S E  as a function  of A ,  a, and 
the equalizer coefficient vector t k  according to 

ck  = C : k k  - 2 Re [ C:'a] + 1. 

Taking  the  gradient  of  the MSE with respect to ck gives 

ac,/ack = 2( ACk - a). (43) 

Thus a deterministic (or  exact) gradient  algorithm  for  adjust- 
ing ck to  minimize ck can be  written as 

ck+1 = ( I  - bA)Ck + Aa (44) 
where A is the step-size parameter.  (This update  procedure 
is also known as the steepest  descent algorithm.)  Using  the 
fact  that a = Ac,,,, from (11) or (25), and  subtracting cOpt 
from  both sides of (44), we  obtain 

c k + l  - Copt = ( I -  A A ) ( C k  - (45) 

In order to analyze  the  stability and convergence  of  the 
deterministic gradient  algorithm,  we use coordinate  trans- 
formation to diagonalize  the set of  equations (45) so that 

dk+q = ( I  - AA)dk (46) 
where  the  transformed  coefficient  deviation  vector is de- 
fined  in (30). 

Since A i s  a  diagonal  matrix, it is  clear from (46) that  the 
i t h  element  of dk decays geometrically  according to 

d;k=(I - A A , )  dj0, i = o , l ; - . , N - l  (47) k 

where A; i s  the  ith eigenvalue  of A ,  and d, is the  initial 
value of  the i th  transformed  tap-gain  deviation. Recall from 
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Section ll-C2 that  given dk,  the MSE at step k may be 
written as the sum of emin and  the excess M S E  

ck = €,in -k qTAdr; 
N-1 

= cmin + Xj( I  - AXj)2kldjo12. (48) 
i-0 

Given  finite  initial deviations,  the  deterministic  algorithm is 
stable  and the M S E  converges to emin provided 

0 < A < 2 /XmaX ( 49) 

where X,,, i s  the  maximum  eigenvalue  of A. If all the 
eigenvalues of A are equal to X and A is selected to be 
1 / X ,  the excess MSE will  be reduced to zero in one  adjust- 
ment step of the  deterministic  gradient  algorithm (44). For a 
T-spaced equalizer,  this condition corresponds to a flat 
folded  power spectrum at the  equalizer input. 

When  the eigenvalues of A have a large  spread,  i.e., the 
ratio p = XmaX/Amin i s  large, no single value of  the  step size 
A leads to fast convergence  of all the  tap-gain  deviation 
components.  When A = 2/(Xm,, + Amin) ,  the two extreme 
tap-gain  deviation components converge at the same rate 
according to [ ( p  - l ) / ( p  + l ) l k  [33 ] .  All other  components 
converge at a faster  rate with a time constant at most as 
large as ( p  + 1)/2 iterations. The impact  of  the large eigen- 
value spread on the convergence of  the excess M S E  is  
somewhat less  severe  because tap-gain  deviations  corre- 
sponding  to  the small  eigenvalues contribute less to the 
excess M S E  (see (48)). 

Two  possibilities  for speeding up the  convergence  of  this 
deterministic  algorithm can be devised.  The first of these 
involves  the use of a variable step  size A, in (44). This  leads 
to the  relationships 

k - 1  

djk = d, n (1  - A n x i ) ,  i =  0 , 1 ; . . ,  N - 1 

corresponding to (47). Observe that, i f  the eigenvalues are 
known beforehand,  complete convergence  can be  obtained 
in N steps by using a variable  step size provided  the N 
values of the step size are selected such that A n  = l / X n ,  
n = 0 , l ; .  ., N - 1 .  Thus  each step reduces one  of  the 
tap-gain  deviation components to zero. 

The  second method of obtaining fast convergence is to 
replace  the scalar A in (44) by  the  precomputed inverse 
matrix A-l .  This is  tantamount to direct  noniterative  solu- 
tion, since regardless of  initial  conditions or the  eigenvalue 
spread of A,  or the  equalizer size N, optimum  solution is 
obtained in one step. 

n-0 

B. LMS Gradient  Algorithm 

In practice, the channel characteristics are not  known 
beforehand.  Therefore,  the  gradient  of  the M S E  cannot  be 
determined exactly  and  must be estimated  from  the  noisy 
received  signal. The LMS gradient  algorithm [I091 i s  ob- 
tained  from  the deterministic  gradient  algorithm (44) by 
replacing  the  gradient 

by i ts  unbiased but noisy  estimate yf (y,'ck - x k ) .  The 
equalizer  coefficients are adjusted  once in every symbol 
interval  according to 

where yk i s  the equalizer input vector, xk i s  the  received 
data  symbol,  and ek i s  the error in the  equalizer output. 

Subtracting cOpt from  both sides of (50) allows us to  write 

(ck+l - Copt )  = ( I -  A ) f y l ) ( c k  - Copt )  - ' y f e k o p t  

where ekopt is the  instantaneous  error if the  optimum 
coefficients  were used.  The transformed  coefficient  devia- 
t ion vector dk is now a  random  quantity.  Neglecting the 
dependence  of t k  on yk, we see that  the  mean  of dk 
follows  the recursive  relationship (&), i.e., 

= ( I -  A A > E [ d k l .  ( 5 1 )  

The  ensemble average of  the MSE evolves according to 

E k  = €,,,in f E [  flTAdk] 

where  the second  term on the  right is the average  excess 
MSE 

N-1 

€Ak = X i E [  l d i k 1 2 ] .  
i -0  

This quantity is difficult  to evaluate  exactly in terms of  the 
channel  and equalizer parameters. Using  the  assumption 
that  the equalizer input vectors yk are statistically  indepen- 
dent [38],  [65], [MI, [102], the  following approximate  recur- 
sive relationship  can  be  derived: 

E [  ldk+1I2] = ME[ l d k I 2 ]  + A2cminX ( 5 2 )  

where X i s  the vector of eigenvalues of A and the N X N 
matrix M has elements 

M,i = (1 - 2AXj)6,j + A2XjXj  

Let p be the  ratio  of the  maximum to the  effective average 
eigenvalue of A. 

Three important results  can  be derived [38] using  this line 
of analysis [I021 and  eigenvalue  bounds [38]: 

1 )  The L M S  algorithm is stable if the step size A is in  the 
range 

0 < A < 2 / (  NpX) ( 5 3 )  

where x i s  the average eigenvalue of A and is equal to the 
average signal power at the  equalizer  input,  defined  accord- 
ing to E[y:g] /N.  When A satisfies (53) ,  all eigenvalues of 
the matrix M in (52)  are  less than  one in magnitude  permit- 
t ing mean-square  coefficient  deviations in ( 5 2 )  to converge. 

2)  The excess M S E  follows  the recursive relationship 

c A k + l  = [ I  - 2 A x  + A2Np(x)'] CAk + A2cmlnNp(X)*. 

( 54) 

If A is selected to  minimize  the excess MSE at  each itera- 
tion,  we  would  obtain 

' k  I ' A k / ( ' r n i n  + ' & k ) (  N p x ) .  

Initially cAk x=- cmln ,  so that fastest  convergence is obtained 
with an initial step size 

A, = I / (   N p X ) .  ( 5 5 )  

Note  that A. is half as large as the  maximum  permissible 
step size for  stable  operation. 

3 )  The steady-state excess M S E  can be  determined  from 
(54) to be 

c,, = Aemln Npx/(2 - A NpX).  (56) 

A value  of A = A. results in c,, = c m i n ,  that is, the  final M S E  
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is 3 dB greater  than  the minimum achievable MSE. In order 
to reduce to ycmin, where y i s  a small fraction, A must 
be  reduced to  

A = 2y/[(l + y )  NpX] = 2A0y/(1 + y ) .  (57) 

For instance,  a  reduction  of A to 0.1 A. results in a steady- 
state M S E  which is about 0.2 dB greater than  the  minimum 
achievable MSE. 

Note that  the  impact  of a distorted  channel, with an 
eigenvalue ratio p > 1, on the excess MSE, its rate  of  con- 
vergence,  and the choice  of A is  the same as if the  number 
of equalizer  coefficients N was increased to  Np. For a 
T-spaced equalizer, some of  the eigenvalues (and  hence p )  
depend  on  the  timing phase  and the  channel  envelope 
delay  characteristics in the  band-edge  regions. 

The  above  results  apply  equally to T-spaced and  fraction- 
atly spaced equalizers, except that  the  recursion  for the 
excess M S E  (54) for  a  KT/M-spaced  equalizer is  given  by 

cAK+, = [I - 2A(M/K)X + A’N(M/K)p(X)’] 

As mentioned earlier, only about K/M  of the  eigenvalues 
of  the  correlation matrix A are significant  for a KT/M FSE. 
For the same  average  signal power at the  equalizer  input, 
equal to  the average eigenvalue x, the  significant  eigen- 
values are generally M/K times larger for an N-coefficient 
K T / M  FSE compared  with  the eigenvalues  for an N-coeffi- 
cient T-spaced equalizer. Thus the  eigenvalue  ratio p for an 
FSE should  be  computed  only over  the  significant  eigen- 
values  of A .  Note that A and p for an FSE are independent 
of  timing phase and  channel  envelope  delay characteristics, 
and p = 1 when  the unequalized  amplitude shape is  
square-root of  Nyquist. 

For well-behaved channels ( p  approximately I), cAk for 
an N-coefficient  KT/M FSE, using  the best initial step  size 
given by (55), initially converges  faster as (1 - M/KNp 
compared with (1 - l/N)k for an N-coefficient  Tequalizer 
using  the same  best initial step size.  Conversely,  an 
MN/K-coefficient FSE, using a step size K/M times as 
large, generally  exhibits  the same behavior with respect to 
the convergence  and steady-state value  of excess M S E  as an 
N-coefficient T-spaced equalizer. 

As a  rule of thumb,  the  symbol-by-symbol L M S  gradient 
algorithm  with  the best initial A leads to a reduction  of 
about 20 dB in M S E  for  well-behaved  channels ( p  ap- 
proximately 1) in about  five  times  the  time span cq of  the 
equalizer.  At  this  time it is desirable to reduce A by a factor 
of 2 for  the  next 5 cq seconds to permit  finer  tuning of  the 
equalizer  coefficient. Further reduction  in excess MSE can 
be  obtained  by  reducing A to its steady-state value accord- 
ing  to (57). (For distorted channels,  an effective  time span 
of p T , ,  should  be substituted in the above  discussion.) 

C. Digital Precision Considerations 

The  above  discussion may  suggest that it is  desirable to 
continue  to reduce A in order to reduce  the excess M S E  to 
zero in the steady  state. However,  this is not advisable in a 
practical limited precision  digital  implementation  of the 
adaptive  equalizer.  Observe [36] that as A is reduced, the 
coefficient  correction terms in (50), on  the average, become 
smaller  than  half the least significant bit  of  the  coefficient; 
adaptation  stalls  and  the M S E  levels off. If A is  reduced 

further,  the M S E  increases if the  channel  characteristics 
change at all or if some adjustments  made at peak  errors are 
large enough  to  perturb the  equalizer  coefficients. 

The M S E  which can  be attained  by a digital  equalizer  of a 
certain  precision can be approximated as follows [38].  Let 
the equalizer  coefficients be represented by a uniformly 
quantized  number  of B bits  (including sign) in the range 
(-1,l). Then the real and  imaginary parts of  the  equalizer 
coefficients will continue to adapt, on the average, so long 
as 

It i s  desirable to select a  compromise  value  of A such that 
the  total M S E  E = cmin + cA, with predicted  by  infinite- 
precision  (analog) analysis  (56), is equal to the  lower limit 
on E determined by  digital  precision (58). The required 
precision can be  estimated by  substituting A from (57) into 
(58) 

(59) 

where (X/€) can be recognized as the  desired  equalizer 
input-power-to-output-MSE ratio. 

As  an example,  consider a 32-tap T-spaced equalizer 
(N = 32) for  a  well-behaved  channel ( p  = 1). Select y = 
0.25 (corresponding  to a I -dB increase in  output M S E  over 
E,,,) and  a  desired  equalizer output-signal-power-to-MSE 
ratio  of 24 dB (adequate  for  9.6-kbit/s transmission). Let the 
input-to-output  power scale factor  for  this  equalizer be 2, 
so that = 1027/20.  Solving (59) for B, we  find that 
12-bit precision is required. 

The  required  coefficient  precision increases by 1 bit for 
each doubling  of  the number of coefficients,  and  for each 
6-dB reduction  in desired output MSE. However,  for a given 
cmin ,  each 6-dB  reduction in excess MSE E,, requires a 2-bit 
increase in the  required  coefficient  precision. This  becomes 
the  limiting factor in some adaptive filters, e.g.,  an echo 
canceler, which must track slow  variations in system param- 
eters in  the presence of  a large uncorrelated  interfering 
signal [108]. 

Note  that  the precision  requirement  imposed  by  the L M S  
gradient  adaptation  algorithm is significantly  more  stringent 
than a precision  estimate based on quantization  noise  due 
to  roundoff  in  computing the sum of  products  for  the 
equalizer output.  If each product is  rounded  individually to 
B bits and then summed, the variance of  this roundoff 
noise is N2-”/3. Assuming  an equalizer output signal 
power  of 1/6, the  signal-to-output  roundoff noise ratio is 
2”/2N, which is  54 dB for B = 12  and N = 32:  30  dB 
greater  than  the  desired 24-dB signal-to-MSE  ratio in our 
example. 

Roundoff in the  coefficient  update process, which has 
been analyzed in [7], is  another source of  quantization 
noise in adaptive filters. This roundoff causes deviation  of 
the  coefficients  from  the values they take when  infinite 
precision  arithmetic is  used.  The MSE E, contributed  by 
coefficient  roundoff [7] is approximated  by E, = N2T2’/6A. 
Again  using an output signal power value of  1/6,  the 
signal-to-coefficient  roundoff noise  ratio is A2”/N. For our 
example, we  obtain A = 0.0375 from (59) using y = 0.25, 
N = 32, p = 1, and X = 1/3. The signal-to-coefficient 
roundoff noise  ratio is  43  dB for B = 12, which is  19 dB 
greater  than the desired 24-dB  signal-to-MSE ratio, suggest- 
ing that  the  effect  of  coefficient  roundoff is  insignificant. 
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Moreover,  each  time  we  reduce A by a factor  of 2, the 
coefficient  precision B must  be  increased by 1 bit  in order 
to prevent  adaptation  from  stalling  according to (58).  This 
reduction in A and  the  corresponding increase in B further 
reduces the M S E  due  to  coefficient  roundoff  by 3 dB. Using 
the expression  for e, given above, and A from (53, one can 
rewrite (58) as 

€ / € r  2 6P(l + Y)/Y. 

Since p 2 1 and y is typically a small fraction,  the MSE due 
to coefficient  roundoff, cr,  is always  small compared to c 
provided  coefficient precision is sufficient to  allow adapta- 
t ion  to continue  for small desired values of y and  A. Thus 
coefficient  roundoff noise  can  be neglected in the process 
of  estimating LMS adaptive  filter  precision  requirements. 

Simple  update schemes using  nonlinear  multipliers to 
produce  the  coefficient  correction terms  have been  devised 
to address the  precision  problem and reduce  implementa- 
tion complexity at  some penalty in performance [13]. Two 
such schemes  are: 

1) Sign-bit  multiplication update 

ck+ l   =ck -Asgn( f i ) sgn (ek ) .  

2) Power-of-two  multiplication update 

c k + l  = c& - A f (  f i )  f(ek) (61) 

where 

f (  x )  = sgn (,~)2[~~g21"11 

and [ . I  is used  here to denote  the greatest integer less than 
or  equal to  the argument. 

In (60) and (61), the  sgn(.) and f ( . )  functions are applied 
separately to each element  of a vector and to the real and 
imaginary  parts  of  a  complex  quantity. Analysis and  simula- 
t ion results show  [I31 that while sign-bit multiplication 
update (60) suffers a significant  degradation in convergence 
time compared to the  true LMS gradient  update (50), the 
loss in performance is small when  the  power-of-two  multi- 
plication  update (61) is used. 

Whenever some of the eigenvalues of  the  input matrix A 
for an  adaptive filter become  vanishingly small, the  output 
M S E  is relatively  insensitive to  coefficient deviations  corre- 
sponding  to these  eigenvalues. In some practical  situations 
this may lead to numerical  instability:  when  input signals 
are not adequately dense  across the  entire  bandwidth  of 
the adaptive filter (e.g., a signal consisting  of a few tones 
at the  input  to a long adaptive  equalizer or voice  echo 
canceler),  or an FSE which naturally has a set of  relatively 
small  eigenvalues, as mentioned in Section ll-C4.  In these 
cases, finite  precision errors tend to accumulate  along the 
eigenvectors  (or  frequency  components)  corresponding to 
small  eigenvalues without significantly  affecting  the output 
MSE. If a  natural  converging  force  constraining these com- 
ponents (e.g., background noise) is  weak, and  the  digital 
precision  errors have a bias,  these fluctuations may eventu- 
ally  take  one  or  more  filter  coefficients  outside  the  allowed 
numerical range, e.g., (-1,l). This overflow can  be  catas- 
trophic unless saturation  arithmetic is  used in the  coef- 
ficient  update process to prevent it. 

Another  solution is to use a so-called  tap-leakage al- 
gorithm [a] 

c k + l  = - 'PICK - A f i e k  

where  a decay factor (1 - A p )  has been  introduced  into  the 

usual  stochastic  gradient  algorithm (50).  The tap-leakage 
algorithm seeks to  minimize  a  modified mean-square  cost 
function 

w:c:  + 4 leA21 

which is a sum of  the M S E  and an appropriate  fraction p of 
the squared length  of  the N-dimensional  coefficient  vector. 
The decay tends to force  the  coefficient  magnitudes and, by 
Parseval's theorem,  the  equalizer  power spectral  response 
toward zero. For an FSE, a value of p on the  order  of a small 
eigenvalue is suggested [a]. 

The  tap-leakage  algorithm is similar to an adaptive  pre- 
dictor  update  algorithm for an ADPCM system [I291  where 
the  predictor  coefficients are forced to decay toward prede- 
termined  compromise values during silence  intervals. This 
prevents the  effect  of  channel errors on  the decoder adap- 
tive  predictor  coefficients  from persisting. 

IV. FAST CONVERGING EQUALIZERS 

The  design  of  update  algorithms to speed up  the conver- 
gence of adaptive filters has been a topic  of intense  study 
for  more  than a decade.  Rapid convergence is  important  for 
adaptive  equalizers  designed  for use with channels,  such as 
troposcatter  and HF radio, whose  characteristics are subject 
to  time variations [87]. In voice-band  telephone  applica- 
tions,  reduction  of  the  initial setup time  of  the equalizer is 
important in  polling  multipoint networks  [26]  where the 
central  site  receiver  must adapt to receive typically  short 
bursts  of  data from  a number  of  transmitters  over  different 
channels. 

In this  section  we present an overview  of  three classes of 
techniques  devised to speed up equalizer  convergence. 

A. Orthogonalized LMS Algorithms 

Recall from Section Ill-A that  for  the  deterministic  gradi- 
ent  algorithm, no single  value  of  the step  size A leads to 
fast convergence of all the  coefficient  deviation  compo- 
nents when  the eigenvalues  of the equalizer input covari- 
ance  matrix A have a large  spread. Using  the  independence 
assumption, the same is true  regarding  the  convergence  of 
the mean of  the  coefficient deviations  for  the LMS gradient 
algorithm (see (51) in Section 111-8). The  excess M S E  is a 
sum of  the mean-square value of each coefficient  deviation 
weighted  by  the corresponding eigenvalues of A .  Slow 
decay  of  some of these  mean-square deviations,  therefore, 
slows down  the convergence  of the excess MSE. Substitut- 
ing  the best initial A from (55) in (54), we  obtain  the 
recursion 

Observe  that the  initial decay of cAk is geometric with a 
time constant of approximately Np symbol  intervals. Thus 
for  the same length equalizer,  a severely distorted  channel 
(p = 2) will cause the  rate  of  convergence  of  the L M S  
gradient  algorithm  to be slower  by  a  factor  of  2  compared 
to that  for  a  good channel. The inadequacy of  the L M S  
gradient  algorithm  for fast start-up receivers  becomes obvi- 
ous if we  consider a 9.6-kbit/s, 2400-Bd modem with an 
equalizer  spanning 32 symbol  intervals. For a severely dis- 
torted channel,  more  than 320 equalizer  adjustments over a 
133-ms  interval would be required  before data transmission 
could begin. 
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For partial-response systems [ a ] ,  [50], where a controlled 
amount  of  intersymbol  interference is introduced  to  obtain 
a desired  spectral shape, the  equalizer  convergence  prob- 
lem is fundamental. It can be shown  that p = 2 for an ideal 
cosine-shaped  spectrum at the  equalizer input for a Class IV 
SSB partial-response [8] or a Class I QAM partial-response 
[90] system. Noting this  slow convergence, Chang [8] sug- 
gested the use of a prefixed  weighting matrix to transform 
the  input signals to the  equalizer  tap gains to  be approxi- 
mately  orthonormal. All eigenvalues of the  transformed 
equalizer input covariance matrix are then  approximately 
equal  resulting in faster equalizer  convergence. 

Another  orthogonalized LMS update  algorithm [75],  [88] is 
obtained  by observing  that  the decay of  the  mean  of all the 
transformed  coefficient  deviation  components  could  be 
speeded up  by using  a  diagonal  matrix  diag(Ai)  instead  of 
the scaler A in (SI), such that each element Ai of  this  matrix 
is  the inverse of  the corresponding  element X i  of A .  Trans- 
forming  diag(Ai) back to  the  original  coordinate system, 
we  obtain  the  orthogonalized L M S  update  algorithm 

ck+l = =k - W e k .  (63) 

As in Chang’s  scheme  [8], the best  value of  the weighting 
matrix P is given  by 

P = V*’diag( Ai)V = V*’A-’V = A-’ 

where  the  columns  of the  diagonalizing  matrix  Vare  eigen- 
vectors  of A (see  (30)). In practice,  A is not  known before- 
hand,  therefore, P can only approximate A-’. For instance, 
in partial-response systems where  the  dominant spectral 
shape is known beforehand,  we can use P = S1, where S 
is the covariance  matrix  of  the  partial-response  shaping 
filter. 

A  practical advantage of  this  algorithm (63) over  Chang’s 
structure is that  the  weighting  matrix is in the  path  of  the 
tap-gain  corrections  rather  than  the  received  signal. The 
computation required,  therefore,  need not  be carried out  to 
as much accuracy. 

As we  shall see in Section IV-C,  the fastest converging 
algorithms are obtained  when P is continually  adjusted to 
do the best job of  orthogonalizing  the  tap-gain  corrections. 

B. Periodic or Cyclic  Equalization 

As mentioned  in Section  I-C,  one  of  the  most  widely 
used [118], [I191  methods  of  training  adaptive  equalizers in 
high-speed  voice-band  modems is based on  PN training 
sequences with periods  significantly greater than  the  time 
span of  the equalizer.  Here  we discuss the  techniques [70], 
[76], [%I which can be  used to speed up equalizer  conver- 
gence in  the special case when  the  period  of  the  training 
sequence is  selected to be equal to the  time span of  the 
equalizer. 

I )  Periodic or Averaged  Update:  Consider a training 
sequence {xk }   w i th  period NT  for  a T-spaced equalizer 
with N coefficients. Let the  equalizer  coefficients be ad- 
justed  periodically, every N-symbol  intervals,  according to 
the  following L M S  algorithm with averaging: 

N-1 

c,( k + 1) = c,( k )  - A ek,+jy*( kNT + j T  - nT), 
j - 0  

n = 0,1;.., N - 1. 

Let us denote  the  error sequence during  the kth period  by 

the  vector ek  whose j t h  element is given  by 
N-1 

ekN+j = cn( k )  Y( kNT + j T  - nT) - xkN+j, 
n - 0  

j=O,l;..,N-l. 

The  update  algorithm can  be written  in matrix notation as 

ck + 1 Ck - Ak’,*e, (64) 

where  the n, j t h  element  of  the N X N matrix Vk i s  given  by 
y(kNT + j T  - no. Substituting ek = VLck - xk ,  we  obtain 

ck+l = ck - A( r,* rkck - r,*xk).  

Neglecting noise  and  using  the fact that  the  periodic  train- 
ing sequence  can  be  designed to  be  white [53],  i.e., 

N-1 

- x,$ = 8,k 
N n - 0  

we have 

V,* Vk = NAP and V,*xk = Nap. 

The  elements  of  the  matrix A,, and  vector a, are given  by 

a, , j  = h*( nT - iT) h( nT - jT) 
N-1 

n - 0  

and 

a; = h*( - iT) 

where h( nT), n = 0,l; . ., N - 1, are the T-spaced  samples 
of  the  periodic channel response to a sequence of  periodic 
impulses spaced NT seconds  apart.  Thus the  periodic  up- 
date  algorithm may be  written as 

ck+1 = ( 1  - ANA,)ck + Ahfa,. (66) 

Note  the  similarity  of (66) to the  deterministic  gradient 
algorithm (44). However, in this case the  matrix A, is not 
only  Toeplitz  but also circulant, i.e.,  each row  of A,, is a 
circular  shift  of  another  row. The elements a c j  of  the i th  
row are the  coefficients R i - ,  of  the  periodjc  autocorrelation 
function  of  the channel. The final  solution  to  the difference 
equation (66) is the  “optimum” set of  periodic  equalizer 
coefficients: cpopt = Ai's,. Substituting in (a), we  obtain 

c k + l  - Cpopt = ( I -  - cpopt>. (67) 

For a  noiseless  ideal  Nyquist  channel R i - j  = Sjj ,  i.e., A, = 1. 
Therefore,  a  single averaged adjustment with A = 1/N re- 
sults in perfect  periodic  equalization. 

In general, the transformed  coefficient  deviation  vector 
after  the k th  periodic update is given  by 

dk = ( I  - ANA,) do k 

where A, is a  diagonal  matrix with eigenvalues Xi!, i = 
0,l; ., N - 1, equal to the  coefficients  of  the  dlscrete 
Fourier  transform (DFT) of  the  channel  periodic  autocorre- 
lation  function R,, n = 0,l; . ., N - 1. Thus 

N-I 

APi = R, exp ( - j2~ni/N) 
n-0  

= I F H ( i / N T -  k/T) , i=O,I;..,N-l. 12 
(68) 

Using these  results, it can be  shown  that in the absence of 
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noise  the  perfect  periodic  equalizer has a frequency  re- 
sponse  equal to the inverse of  the  folded  channel  spectrum 
at N uniformly spaced discrete  frequencies 

C ( n / N T )  = 1 H ( n / N T -  k / T ) ,  n = 0,1;.., N - 1. 

The excess M S E  after  the kth update is given  by 
/ k  

C d k  = eThdk 
N-1 

= XPi(l - A N h , j ) z k ~ d , ~ 2 .  
i -0  

If  the  initial  coefficients are  zero, then Idjolz = I&, and 

Each component  of this sum  converges provided 0 < A < 
2 / (  NXpmax).  Fastest convergence is obtained  when A = 

2) Stochastic Update: So far we have examined  the 
convergence  properties of the  periodic  update or LMS 
steepest  descent  algorithm with averaging. It is more  com- 
mon, and as we shall see, more  beneficial to use the 
continual  or stochastic  update  method,  where all coeffi- 
cients are adjusted in each symbol  interval  according to 
(50). Proceeding as in Section 111-6 and noting that in  the 
absence of  noise ekopt = 0 for  a  periodic  input,  we  obtain 

2/[N(Xpmax + ApminI l .  

( c k + l  - cpopt) = ( I -  A f i y l ) ( c k  - Cpopt) 

Let us define an N X N matrix 

Bk ( 1 -  A f i y l ) .  

Note that  since yk is periodic with period N,  B, is a 
circulant matrix  and 

Bk+1 u-’Bku 
where  the N X N cyclic  shift  matrix U is of  the form 

0 1 0 . . 0  

U =  [0 0 1 i i I j .  
0 0 0 . .  
1 0 0  

Note  that UTU = UN = 1. Consider the first N updates from 
time zero to N - 1. Then 

( c N  - cpopt) = Bh’-IBN-2 * * ‘  B b ( c O  - ‘,opt) 
= ( u - N + l B b u N - ’ ) (   u - N + Z B b u N - 2 )  f * .  a( c, - c,,,) 

= ( ~ s , ) ” ( c o  - Cpopt). 

In general 

( c k N  - cpopt) = ( U B b ) k N ( C O  - ‘,opt)’ (70) 

The convergence  of  the  coefficient  deviations,  therefore, 
depends on the eigenvalues of Uk. Using  the fact that 
b*bJ is singular with rank 1 ,  after some manipulation,  the 
characteristic  equation det(h1 - Uk) = 0 can  be reduced 
to  the  form 

N-1 

AN + AN XnR, - 1 = 0. (71) 
n-0 

Here 

R , = ( y l Y , * , , , ) / N ,   n = O , I ; * * , N - l  

are the  coefficients  of  the  periodic  autocorrelation  function 
of  the equalizer input  (defined  earlier in terms of  the 
periodic  impulse response of  the  channel).  When R, = 0 
for n > 1 ,  corresponding to an ideal  Nyquist  channel, all 
roots  of (71) are equal to the Nth roots  of (1 - ANR,). 
Thus  perfect  equalization is obtained  after N updates with 
A = I / (  NR,). 

Let X,,, be  the maximum  magnitude root of (71). Then 
the  coefficient deviations  after  every N stochastic  updates 
are reduced in magnitude  according to (70) provided IX%,I 
< 1 .  Moreover,  from  the  maximum  modulus  principle  of 
holomorphic  functions [92] we have the  condition that 

I N-1 I 

IAN,,,( d max R,exp( -j27rni/N) 
.. . 

0s i <  N-1 

or 

where X,, are the eigenvalues  of A, in the  periodic  update 
method. Since (72) holds with equality only  when R,  = 0 
for n 2 1, we reach  the  important  conclusion  for  periodic 
training  that  for  the ideal  Nyquist  channel  the  stochastic 
and averaged update  algorithms converge equally fast, but 
for  all  other  channels  the stochastic update  algorithm  re- 
sults in faster convergence. This behavior has also been 
observed for equalizer  convergence in the presence of 
random data [71]. 

In the presence of noise,  an  exact  expression for  the 
excess MSE for  the  stochastic  update  algorithm is difficult 
to derive  for  periodic  training sequences. However, assum- 
ing zero initial  coefficients the following expression is  a 
good  approximation  to results obtained in practice  for mod- 
erately  high SNR: 

N-1 

c h k N  = [(I - + A2Nh:~pmin]  (73) 
i-0 

where X; are the roots  of (71) (the  effect  of noise  can be 
included  by  defining R, = E [ ~ l f i + ~ ] / N ) .  For  an ideal 
channel, X i  = R, = 1 for all i ,  and  the excess MSE for 
periodic  training converges to cpmin after N adjustments 
with A = 1 / N ,  where cpmin is the  minimum achievable 
M S E  for  periodic training. 

The  significant  difference in the  convergence  behavior  of 
the stochastic  gradient  algorithm  for  random data and peri- 
odic  training is now apparent  by  comparing (54) and (73). 
The well-controlled  correlation properties of  periodic train- 
ing sequences tend  to reduce  the average settling  time  of 
the equalizer by about  a  factor  of two compared to the 
settling  time in the presence of  random data. 

An  important  question regarding  periodic  equalization is 
that  once  the  coefficients have been optimized  for  a  peri- 
odic  training sequence, how close to  optimum is that set of 
coefficients  for random data.  The  answer depends  primarily 
on  the selected period  of  the  training sequence (and  hence 
the equalizer span) relative to  the  length  of  the channel 
impulse response.  When  the  period is  long enough to 
contain  a  sufficiently large  percentage (say 95 percent)  of 
the energy of  the channel  impulse response, the edge 
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effects in  the periodic  channel response and  equalizer 
coefficients are small. In frequency-domain terms, the  dis- 
crete  tones of  the  periodic  training sequence are ade- 
quately dense to  obtain representative samples of  the  chan- 
nel spectrum.  Under these conditions,  the excess MSE due 
to the  periodicity  of  the  training sequence is small  com- 
pared to  the excess M S E  due to  the large value of A which 
must  be  selected  for fast initial convergence.  After rapid 
initial convergence has been  obtained in this  manner, i t  
may be desirable to make finer  adjustments to the  equalizer 
using a pseudo-random  training sequence with a longer 
period,  or  begin  decision-directed  adaptation  using  ran- 
domized customer data. 

3) Application to Fractionally Spaced  Equalizers:  The 
averaged and stochastic  update  methods  of  periodic  train- 
ing are  also applicable to fractionally spaced equalizers [%]. 
The period  of  the  training sequence is still equal to the  time 
span of  the equalizer. Thus a sequence with  period  NTcan 
be used to  train an equalizer with  NM/K coefficients 
spaced KT/M seconds  apart. 

The  equalizer  coefficients may be  adjusted  periodically, 
every N symbol intervals, according to the averaged update 
algorithm 

c,( k + 1) = c,( k )  - A ekN+jy*(  kNT - j T  - nKT/M), 

n = 0,1;.., NM/K - 1. 

In  the absence of noise, the  elements  of the matrix A, and 
vector a, (given in (65) for  a T-spaced equalizer) are given 
below for  a  KT/M-spaced  equalizer 

N-1 

j - 0  

N-1 

ai,j = h*( n T -  iKT/M)h( n T -  jKT/M) 
n-0 

and 

ai = h*( - ~KT/M). 

The  matrix A, is no longer  Toeplitz  or  circulant and, there- 
fore, its eigenvalues  cannot be obtained  by DFT techniques 
(68). However, i t  can  be shown  that  the N significant 
eigenvalues are  samples of  the  channel folded  power spec- 
trum,  that is, 

X,; = ( M / K ) ~ I H ( ~ / N T -  ~ / T ) I * ,  i =  o,~, . . . ,  N - I 

( 74) 

k 

and  the  remaining N(M - K)/K eigenvalues are zero.  The 
frequency response of  the  perfect  periodic  equalizer at N 
uniformly spaced discrete  frequencies is given by 

C(n/NT) = H* (n /NT) /z IH(n /NT-  k/T)12,  
k 

n = 0,1;.., NM/K - 1. 

Starting with zero initial coefficients,  the excess M S E  after 
the  kth averaged update is  related to  the eigenvalues (74) 
according to 

N-1 

Ephk = (I -  ANA,;)^'. 
i-0 

If the  channel  folded  power spectrum is flat, i.e., X,; = 
M/K, i = 0,1;.., N - 1, then  a single averaged update 
with A = K/MN results in a matched  filter which also 
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removes  intersymbol  interference.  In  contrast with T-spaced 
equalizers, the ideal  amplitude shape of  the  unequalized 
system  for fast convergence of  a  fractionally spaced 
equalizer is a square root  of Nyquist  rather  than  Nyquist. 
Moreover,  the convergence  of an FSE is not  affected  by 
sampler timing phase  or channel  delay  distortion since the 
channel  power spectrum  and  hence X,,; are independent  of 
phase-related parameters. 

The  stochastic  update  algorithm (50) for  periodic  training 
of  fractionally spaced equalizers can be analyzed along  the 
lines  of Section IV-62. For instance, for  a T/2-spaced 
equalizer, neglecting noise, the  coefficient  deviation  recur- 
sion (70) still applies.  However, all matrices are now  2N X 
2N and  the  cyclic  shift  matrix U now produces  a  double 
shift. The eigenvalues  of Ut& are the  roots  of  the character- 
istic  equation  det(A/ - Ut&) = 0, or 

N- I  

where 

2N-1 

R, = (I/N) ~(kT/2)y*(kT/2 + nT),  
k-0 

n =  0,1;**, N -  1 

are the T-spaced  samples of  the channel  periodic  autocorre- 
lation.  Note  that half  the  roots  of (75) are the Nth roots of 
unity.  Coefficient  deviation components  corresponding to 
these  roots do not converge.  Appropriate  selection  of initial 
coefficients, e.g., co = 0, ensures that these components are 
zero.  The  remaining  roots  of (75)  are dependent on  the 
properties  of R,, whose DFT  may  be recognized to  be 
equal to the samples of  the  channel folded  power spectrum 
(74). Therefore, like the averaged update  algorithm,  the 
convergence of  the stochastic update  algorithm is  also 
independent  of phase-related parameters. When  the  folded 
power spectrum is flat, R, = R, Sno, perfect  equalization 
can  be obtained in N adjustments with A = I/NR,. When 
the  channel  power spectrum is  not Nyquist ( R ,  # 0, n 2 I), 
the  maximum  modulus  principle (72) applies  ensuring  that 
the stochastic  update  algorithm will result in faster conver- 
gence  than  that  obtained  by  periodic or  averaged update. 
Comments with regard to the  selection of an adequately 
long  period  of  the  training sequence given in Section  IV-62 
still  apply. 

4) Accelerated Processing: One  technique  for  reducing 
the  effective  settling  time  of an equalizer  involves  perform- 
ing equalizer coefficient update  iterations as often as per- 
missible  by  the  computational speed limitations of the 
implementation. For instance, for a periodic  equalizer,  one 
period  of  the received sequence of samples  may  be stored 
in  the equalizer  delay  line and iterative updates using  the 
averaged or stochastic  update  algorithm may  be  made at a 
rate faster than  the usual  [76].  This update  rate may be 
selected to be  independent  of  the  modem  symbol  rate 
since the sequence  of samples  already stored in the 
equalizer  delay line may  be circularly  shifted as often as 
required to produce  new  output samples.  Based on each 
such output  new  coefficient  correction terms  can  be com- 
puted  using  a circular  shift  of the  locally  stored  periodic 
training sequence. Thus after  the  equalizer  delay line has 
been  filled  with a set of  received samples, the best periodic 
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equalizer  for  that  particular set of received samples  can be 
determined almost  instantly  by accelerated processing  given 
unlimited  computational speed. If this set of received sam- 
ples is representative of  the channel response to the  peri- 
odic  training sequence then  the  equalizer  obtained  by such 
accelerated  processing is a  good  approximation to the  opti- 
mum  periodic equalizer.  However,  all sources of aperiodic- 
ity, e.g., initial transients  and noise, in these received sam- 
ples  degrade  performance, since new received samples  are 
not used in this method  to reduce  the  effect of noise by 
averaging. Modified versions of  the accelerated processing 
method are possible which reprocess  some previously 
processed samples and  then accept a  new  input sample as 
i t  becomes  available,  thus  updating  the  equalizer coeffi- 
cients several times per symbol  interval. 

5) Orthogonalized Periodic Equalizer: As discussed in 
Section IV-A, the convergence  of  the LMS gradient al- 
gorithm can  be  improved  by  inserting an orthogonalizing 
matrix  P in the  path  of  the  coefficient corrections (63). The 
desired  value of P i s  the inverse of  the  equalizer input 
correlation matrix A. For a periodic  equalizer  the average 
update  algorithm (64) can be modified in a  similar  manner 
to 

However, in this case the  orthogonalizing  matrix  P can be 
replaced  by a single inverse filter in the  path  of  the  periodic 
equalizer  input sequence before it is used for  coefficient 
adjustment [%I. This simplification is  a consequence of  the 
fact  that, as discussed in Section IV-B1, the  input  correlation 
matrix A, for  a T-spaced periodic  equalizer is Toeplitz  and 
circulant.  The  inverse Po f  the  circulant  matrix NAP is also 
circulant. For periodic  input, the  transformation  performed 
by  P is  equivalent to a  nonrecursive filtering  operation  (or 
periodic  convolution)  with coefficients  equal to the  ele- 
ments  of  the first row  of P. 

The fast settling  periodic  equalizer  structure with a single 
inverse filter is  also applicable when the  equalizer coeffi- 
cients are updated symbol-by-symbol. The modified sto- 
chastic  update  algorithm is given  by 

N-I 

cn(k -t 1) = c,(k) -bek  p,y*(kT - j T -  nT), 
j - 0  

n = 0,1;.-, N - 1. 

A block diagram of  the equalizer  structure  and  performance 
curves showing significant  improvement in the  settling  time 
for  partial  response Q A M  systems  are given in [%I. 
6) Discrete  Fourier Transform  Techniques: Throughout 

the discussion on periodic  equalization,  we have taken 
advantage of  the circulant  property of  the equalizer input 
t o  use the  discrete  Fourier  transform (DFT) for analysis. As 
pointed  out  in Section IV-61, in the absence of  noise the 
perfect  periodic equalizer has a frequency response equal 
to the  inverse of  the  folded channel  spectrum at N uni- 
formly spaced frequencies. Therefore, the  equalizer coeffi- 
cients can be  directly  obtained  by  transmitting  a  periodic 
training sequence  and  using  the following steps  at the 
receiver [43],  [70],  [%I: 

1) Compute  the DFT of  one  period  of  the  equalizer  input 

N-I 

y;= ykexp(-jZnik/N),  i=O,I; . . ,N-l .  
k-0  

2) Compute  the desired  equalizer  spectrum  according to 

C ; = X ; ~ * / I ~ 1 2 ,  i=O,I;.*,N-l 

where X i  i s  the  precomputed DFT of  the  training sequence. 
3) Compute  the inverse  DFT of  the  equalizer  spectrum to 

obtain  the  periodic equalizer  coefficients 

c, = (I/N) Ciexp(j2ani/N), n - 0,1;--, N - 1. 

A number  of  modifications may  be  made to improve 
performance  of this  direct  computation  method in  the 
presence of noise  and  other  distortions, such as frequency 
translation, which adversely affect  periodicity. For instance, 
when  the equalizer input is  not  strictly  periodic with  period 
N T  due  to channel-induced  frequency  translation, its DFT 
at any  frequency suffers from interference from adjacent 
components.  The  effect  of  this  interference can  be mini- 
mized by windowing a  longer sequence of  input samples 
before  taking  the DFT.  The window  function  should  be 
selected  such  that its Fourier  transform has reduced  side- 
lobe energy while preserving  the  property  of zero  response 
at 1/NT-hertz intervals. A 2NT second  triangular window 
has both these  properties [43]. A second minor  modification 
can be made to step  2  by  adding a constant  estimate  of the 
expected  flat  noise  power spectral components to the  de- 
nominator. 

N-I 

i-0 

C. Recursive Least  Squares (RLS) Algorithms 

The  orthogonalized L M S  algorithms  of  Section IV-A can 
provide  rapid convergence  when  the  overall  received signal 
spectral shape is known beforehand;  for example, in 
partial-response systems. In certain  voice-band  modem  ap- 
plications special  training sequences  can be used to design 
fast equalizer  startup  algorithms, such as those in the last 
section.  However, in general, a self-orthogonalizing  method, 
such as one of  the RLS algorithms  described in this  section, 
is required  for  rapidly  tracking adaptive equalizers (or filters) 
when neither  the  reference signal nor  the input (received) 
signal  (or  channel)  characteristics can  be controlled. 

As discussed in earlier sections, the rate of  convergence 
of  the  output MSE of an LMS gradient  adaptive  equalizer is  
adversely  affected by the  eigenvalue spread of  the  input 
covariance  matrix. This slow  convergence is due to the 
fundamental  limitation  of  a single  adjustable step  size 
parameter  A in the L M S  gradient  algorithm. If the  input 
covariance  matrix is  known a priori then an orthogonalized 
LMS gradient  algorithm can be  derived, as in Section IV-A, 
where  the scalar A is replaced  by a matrix P. Most  rapid 
convergence is obtained  when  P is  the inverse of  the 
equalizer input covariance  matrix  A,  thus  rendering the 
adjustments to the  equalizer  coefficients  independent  of 
one another. 

In [41], Codard  applied  the Kalman  filter  algorithm to  the 
estimation  of  the L M S  equalizer  coefficient  vector  under 
some  assumptions on the  equalizer output error and input 
statistics. The resulting  algorithm has since been  recognized 
to  be  the fastest known equalizer  adaptation  algorithm. It is 
an  ideal  self-orthogonalizing  algorithm [37] in that  the re- 
ceived  equalizer input signals  are used to  build  up  the 
inverse of  the  input covariance matrix which is applied to 
the  coefficient adjustment process. A disadvantage of  the 
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Kalman  algorithm is that it requires on the  order  of N2 
operations  per  iteration  for an equalizer with N coeffi- 
cients. 

Falconer  and  Ljung [20] showed  that  the  Kalman  equalizer 
adaptation  algorithm can  be derived as a solution  to  the 
exact least  squares problem  without any statistical assump- 
tions.  An  advantage  of  this  approach is that the  “shifting 
property”  previously used for fast  recursive  least  squares 
identification algorithms  [73] can be applied to the  equalizer 
adaptation  algorithm. This resulted in the  so-called fast 
Kalman algorithm [20] which requires on the  order  of N 
operations  per  iteration. 

A third class of  recursive least  squares algorithms known 
as adaptive  lattice  algorithms  [I271  were first described  for 
adaptive  identification  in [74]  and for  adaptive  equalization 
in [63],  [%I, and [97].  Like the fast Kalman  algorithm, adap- 
tive  lattice  algorithms are recursive in time,  requiring of the 
order  of N operations per iteration.  However,  unlike  the 
Kalman  algorithms,  adaptive  lattice  algorithms are order- 
recursive.  That is, the  number  of  equalizer  coefficients  (and 
the  corresponding  lattice  filter sections)  can  be  increased to 
N + 1 without affecting  the already computed parameters 
of  the  Nth-order equalizer.  Low  sensitivity  of  the  lattice 
coefficients to numerical  perturbations is  a further ad- 
vantage. 

In  the  remainder  of this section, we shall briefly  review 
the least  square criterion  and its variants, introduce  the 
“shifting  property” and  the  structure  of  the fast Kalman  and 
adaptive lattice algorithms,  and  summarize some important 
results, complexity estimates, and  stability  considerations. 

1) The  Least  Squares Criterion: The performance  index 
for  recursive least squares (RLS) algorithms is expressed in 
terms of  a  time average instead  of a statistical  or  ensemble 
average as in L M S  algorithms. The RLS equalizer  adaptation 
algorithm is required to generate the  N-coefficient  vector 
c, at time n which minimizes  the sum of all squared  errors 
as i f  c, were used  over all the past received signals, i.e., c, 
minimizes 

n 

(77) 
k-0  

This leads to the  so-called prewindowed RLS algorithm, 
where  the  input samples yk are  assumed to be zero  for 
k < 0. 

In order to  permit tracking  of  slow time variations,  a 
decay  factor w with a value slightly less than  unity may  be 
introduced. The  resulting  exponentially  windowed RLS al- 
gorithm  minimizes 

n 

k-0  

The minimizing vector c, is the  solution  of  the discrete- 
time  Wiener-Hopf  equation  obtained by  setting  the  deriva- 
tive  of (78) with respect to c, to zero.  Thus we have the 
solution 

c, = A i 1  a, 

where  the N X N estimated covariance matrix is given  by 
n 

k - 0  

and  the  N-element estimated  cross-correlation  vector is  

given  by 
n 

a, = w”-ky* k - - + gxk. 
k-0  

The  parameter 6 is selected as a small positive  number to 
ensure  that A, is nonsingular. The matrix A,, and  vector a, 
are akin  to  the statistical  autocorrelation  matrix  and cross- 
correlation  vector encountered in the L M S  analysis. How- 
ever, in this case A, is not a Toeplitz  matrix even for 
T-spaced equalizers. 

It can be  shown [87] that  given c,,-~, the  coefficient 
vector  for  time n can be generated  recursively  according to 

where e,, = x ,  - y;c,,-, is the  equalizer output error  and 

k, = A i l g  

is the Kalman  gain  vector. The  presence of  the inverse 
estimated  covariance  matrix in (81) explains  the  insensitivity 
of  the rate of convergence  of  the RLS algorithms to  the 
channel  characteristics. 

In the Kalman  algorithm [41], the inverse matrix P, = A i 1  
and the Kalman  gain  vector are computed  recursively 
according to  

and 

Pn = [ E-1 - k n ~ , T ~ n - l ] / w .  (82) 

The  order of N2 complexity  of  this  algorithm is due to the 
explicit recursive  computation  of P,. This computation is 
also susceptible to  roundoff noise. 

Two other  variations  of the  prewindowed and  exponen- 
tially  windowed least  squares criteria are the  “growing 
memory”  covariance  and  “sliding window” covariance per- 
formance  indices  defined as 

W k - , l X k  - y:c,12 
k - N - I  

and 
n 

I x k  - YkTcn12 
k = n - L + 1  

respectively,  where N is the  number  of equalizer coeffi- 
cients  and L is the fixed length  of  the  sliding  window. The 
sliding  window  method is equivalent to a block least  squares 
approach,  where  the  block is shifted  by  one sample and  a 
new  optimum coefficient  vector is determined each  sample 
time. 

2) The  Fast Kalman  Algorithm:  Consider  the  input vec- 
tor Y,,-~ at time n - 1 for  a T-spaced equalizer  of  length N. 
The  vector y, at time n is obtained  by  shifting  the  elements 
of Y, , -~  by one,  discarding  the  oldest sample y,-,,,, and 
adding a new sample y,. This shifting  property is exploited 
by  using least  square linear  prediction. Thus  an efficient 
recursive algorithm can be  derived [20] for  updating  the 
Kalman  gain  vector k,  without  explicit  computation of  the 
inverse  matrix P,,. Here  we shall briefly examine the  role  of 
forward  and  backward  prediction  in  the fast Kalman  al- 
gorithm. See [20] for a more  detailed  derivation  generalized 
to fractionally spaced and  decision-feedback  equalizers. 

Let F,,-l be  a vector  of N forward  predictor  coefficients 
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which  minimizes  the  weighted sum of squares of  the  for- 
ward  prediction error f, between  the  new  input sample y, 
and a prediction based on the vector Y , - ~ .  That is, Fn-l 
minimizes 

n 

W"-klfk12 
k-0  

where 

fk Yk - 6 - I Y k - 1 .  
T 

(83) 

The least  squares forward  predictor  coefficients can be 
updated recursively according to 

F, = Fn-l + k,-,f,. (W 
Similarly, the vector B,,-l of N backward  predictor  coeffi- 

cients  permits  prediction  of  the old discarded sample yndN 
given  the  vector y,. Thus we have the backward error 

bn = Yn-N - B:-lYn (85) 

and  the  update  equation 

B, = B,-, + k,b, 

The updated Kalman gain vector k,, which is not  yet 
available, can be  obtained as follows.  Define 

C Yn - C Y n - 1  (86) 
as the error between y, and  its prediction based on the 
updated  forward  predictor. Let 

E, = WE,-, + C*f, (87) 

be  the  estimated  exponentially  weighted squared predic- 
tion error. Then  the augmented or extended Kalman gain 
vector with N + 1 elements is  given by 

where  the dashed lines  indicate  partitions of  the vector k,. 
Finally, the  updated backward  predictor vector and the 
Kalman  gain  vector are given  by  the recursive relationships 

Bn = i B n - 1  + ~ n b n ] / [ l  - ~ n b n I  (89) 

and 

kn P n  + BnPn (90) 

where K, and pn are the N-element and scalar partitions, 
respectively, of  the augmented Kalman gain vector defined 
in (SS). 

The  matrix  computations (82) involved in the Kalman 
algorithm are replaced in the fast Kalman algorithm by  the 
recursions (83) through (90) which use forward and back- 
ward  predictors to  update the Kalman gain vector as a new 
input sample y, i s  received and  the oldest sample Y , , - ~  is  
discarded. 

A fast exact initialization  algorithm  for  the  interval 0 d n 
< N given in [IO] avoids the  choice  of a stabilizing 6 in (79) 
and the  resulting  suboptimality  of  the  solution at n = N. 

3) Adaptive  Lattice Algorithms: The Kalman and fast 
Kalman  algorithms  obtain  their fast convergence by ortho- 
gonalizing  the adjustments made to the  coefficients of an 
ordinary  linear transversal equalizer. Adaptive  lattice (AL) 
algorithms, on the other hand,  use  a lattice  filter structure 
to  orthogonalize a set of received signal components [127]. 

The  transformed received signal components are then lin- 
early  weighted  by a set of equalizer coefficients  and 
summed to produce  the equalizer output.  We shall briefly 
review  the  gradient [%] and least  squares [87],  [97] forms of 
adaptive  lattice  algorithms  for linear T-spaced complex 
equalizers. See [78] and [52] for generalization of  the least 
squares AL algorithm to fractionally spaced and decision- 
feedback equalizers. 

The  structure  of an adaptive lattice gradient equalizer is 
shown in Fig. 26. An N-coefficient equalizer uses N - 1 

ae*OvLass 

..+e* 

Fig. 26. Gradient adaptive lattice equalizer. 

lattice  filter stages.  Each symbol interval a new received 
sample y ( n )  enters stage 1. The mth stage produces two 
signals f,(n) and b,(n) which are  used as inputs  by stage 
m + 1. These  signals correspond to  the forward and back- 
ward  prediction errors,  respectively, of mth-order forward 
and  backward  linear LMS predictors. The two predictors 
have identical so-called reflection  coefficients k ,  for  the 
mth stage. At  time n, the  prediction errors  are updated 
according to  

6(.) = 4(n)  = Y ( n )  (9) 

and  for m = I;.., N - 1 
f,( n) k-1( n) - k,( n - 1) b,-1( n - 1) (92) 

b,( n) b,-,( n - I )  - k,( n - I)  fm-,( n) .  (93) 
The reflection  coefficients are updated to  minimize  the 
sum of  the mean-square value of  the forward and backward 
prediction errors.  That is, 

k,( n) = k,( n - 1) 

+ [ e-,( n)bm( n) + b:->( n - 1) L( n > ] / v m  (94) 

D;n = w.,(n - 1 )  + If ,- ,(n)12 + Ib,-l( n - 1)12. (95) 

where 

The  equalizer output for each  stage is computed  according 
to  

zm(n) = z,-1(n) + c,(n - l )brn(n)t  

m = 0,1;-., N - 1. (96) 
The final output ~ ~ - ~ ( n )  is used during data mode to 
compute  the receiver decision x(n). Initially, a reference 
signal x(n) is substituted  for  the receiver decision in order 
to  compute  the error signals 
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e , ( n ) = x ( n ) - z , ( n ) ,  m = O , I ; . . , N - l .  (97) 

The last step in  the  algorithm is  the  equalizer  coefficient 
update  equation 

Equations (91)-(98) define  the  gradient AL equalizer al- 
gorithm. 

One  important  property  of  the  lattice structure is  that as 
the  reflection  coefficients converge, the  backward  predict- 
ion errors b,( n), m = 0,l; . -, N - 1, form a vector b(n)  of 
orthogonal signal  components, i.e., 

The  vector b ( n )  is a  transformed  version  of the received 
vector y( n) with elements y(n) ,   y(n - I);. ., y(n - N + 1). 
This  transformation is performed  by an N X N lower  trian- 
gular  matrix L according to b( n) = Ly( n), where 1 is formed 
by  the  backward  predictor  coefficients  of  order m, m = 
1, .  . ., N - 1 ,  The prediction error b,+,(n) is given  by 

b,,,+,( n )  = Y( n - m)  - C Bm( j )  V(  n - m + j )  

where  the  predictor  coefficients 8 of  order m and  lower 
can  all  be  derived from the first m reflection  coefficients kj, 

The lower triangular form of  the  above  transformation 
permits  a  simple way to increase the  length or order  of the 
lattice equalizer since the  existing prediction errors and 
equalizer  coefficients  remain  unchanged  when  another 
stage is  added. The prediction errors at the mth stage  are 
not  functions  of  the  reflection  coefficients at succeeding 
stages as can  be seen from Fig. 26,  (92), and (93). The lattice 
equalizer is, therefore,  order-recursive as well as time-recur- 
sive. 

A  computationally complex  (requiring larger number  of 
computations)  but faster converging least  squares form  of 
the AL equalizer results when  the  performance  index  or 
cost function  to be minimized is the  exponentially win- 
dowed sum of squared  errors given in (78) instead  of  the 
M S E .  The structure  of  the least  squares AL equalizer is  
shown  in Fig.  27. Note  that  the  lattice  coefficients  for 
forward and  backward prediction for any of  the  lattice 
stages  are no longer equal,  each being  independently  up- 

m 

j -1  

j = 1,. . . , m. 

Fig. 27. Least squares  adaptive lattice equalizer. 

dated to  minimize the  weighted sum of squared forward 
and  backward  prediction errors, respectively. The  least 
squares AL algorithm for  a T-spaced complex  equalizer is 
summarized  below. 

At  time n, the  inputs  to the first lattice stage  are  set to 
the  newly received sample,  i.e., 

r,(n) = 4(") = Y ( n )  (99) 

€A( n)  = I$( n) = WE;( n - 1) + v*( n) y( n) (loo) 

and 

where €h(n) and c ( n )  are the  estimated sum of  the 
squared forward and  backward prediction errors,  respec- 
tively, at stage m. Next,  the  order  updates are performed  for 
m = 1,. . . , N - I  

K,( n) = wK,( n - 1) + tm( n - 1) fm- l (  n )  (101) 

the  forward  prediction errors 

fm( n )  = fm-l( n) - G,( n - n - 1) (102) 

the  backward  prediction error 

bm( n)  = n - 1) - H,( n - 1) fm- l (  n )  (103) 

the  lattice  coefficient for  forward  prediction 

Gn( n) = Krn(n)/Eb,-l(n - 1) (1 04) 
the  lattice  coefficient  for  backward  prediction 

Hm( n) KZ( n)/€h-l( n) (105) 
and 

E;( n) = n) - Gm( n)  Kg(  n) (1 06) 

~ k ( n )  = ~:-1(n) - Hrn(n)Krn(n) (107) 

tm( = [I - ~ r n - l (  .)I bz-1( n)  (1 08) 

~ m (  n) = yrn-l( n) + It,( n) 1 2 / C - 1 (  (109) 

Now the equalizer output can  be computed  according to 

zm( = zm-l( n> + [ C m (  n - l)/c-l( n - 111 bm-l (  n ) ,  
m = 0,1;. . ,N - 1.  (110) 

The  final  equalized signal is given  by ~ , + ~ ( n ) .  The error 
signals are computed and  the  corresponding  equalizer  coef- 
ficient updates are performed  for rn = 0,l; . -, N - 1 
according to 

em( = X (  n) - zm( (111) 
and 

c,( n)  = wc,( n - I )  + tm( n)e , - , (  n) .  (112) 

Equations (99) through (112) define  the least  squares AL 
algorithm. 

4)  Complexity and Numerical  Stability: In the  preceding 
sections, we have presented an overview  of  three basic 
forms  of recursive least  squares equalization  algorithms. 
Fast RLS algorithms are still  being  actively  studied to reduce 
computational complexity,  specially  for  "multichannel" 
(fractionally spaced and  decision-feedback)  equalizers,  and 
to  improve  stability  when  limited precision  arithmetic is 
used. Some of  the recent results are reported in [IO], [Ill, 
and [52]. 

Accurate  counts  of  the  number  of  multiplications, ad- 
ditions/subtractions,  and  divisions are hard to summarize 
due  to  the large  number  of  variations  of  the RLS algorithms 
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which have been  reported  in  the literature. In the  table 
below,  the  number  of operations  (multiplications  and  divi- 
sions) required  per  iteration is listed  for T- and  T/Z-spaced 
transversal equalizers  of span NT seconds for  the LMS 
gradient, Kalman, fast Kalman/fast  transversal, and RLS 
lattice algorithms. In each case, the smallest number of 
operations is given  from  the  complexity estimates reported 
in [78],  [IO], and [52]. 

Number of Operations  per  Iteration 
Algorithm T Equalizer  T/2  Equalizer 

L M S  gradient 2N 4N 
Kalman 2N2 + 5N 8N2 + 10N 
Fast  Kalman/fast  transversal 7N + 14 24N + 45 
RLS lattice 15N - 11 46N 

The fast Kalman is the  most  efficient  type of RLS al- 
gorithm.  However,  compared to the LMS gradient al- 
gorithm,  the fast Kalman  algorithm is still  about  four  times 
as complex  for  Tequalizers  and six times  for T/2 equalizers. 
The RLS lattice  algorithm is still  in  contention  due  to its 
better  numerical  stability  and  order-recursive  structure,  de- 
spite  a two-fold increase in computational  complexity  over 
the fast Kalman  algorithm. 

The  discussion on RLS algorithms would  not  be  complete 
without a  comment on the  numerical  problems associated 
with these algorithms in steady-state operation.  Simulation 
studies have reported  the  tendency  of RLS algorithms im- 
plemented  with  finite precision to become  unstable  and 
the adaptive filter  coefficients  to  diverge [IO],  [&I, [52],  [78], 
[126].  This is due to the  long-term  accumulation  of  finite 
precision errors. Among  the  different types of RLS al- 
gorithms, the fast Kalman or fast  transversal type  algorithms 
are the most prone  to  instability [&I,  [78]. In [78]  instability 
was reported  to occur when an exponential weighting 
factor w 1 was  used for  the fast Kalman  algorithm  imple- 
mented  with single-precision floating-point  arithmetic. The 
Kalman  and RLS lattice  algorithms did  not show  this  insta- 
bility. A  sequential  processing  dual-channel  version  of the 
RLS lattice  algorithm  for a DFE is reported to be stable even 
for  fixed-point  arithmetic  with I O -  to  12-bit accuracy  [52]. 
However, in [IO] an “unnormalized” RLS lattice  algorithm is 
shown  to become  unstable.  Normalized versions of fast 
transversal [IO] and RLS lattice  [I271  algorithms are more 
stable but  both require square  roots, the  lattice  type  having 
greater computational complexity. 

The  stability  of RLS algorithms can  be improved [IO], [ a ] ,  
[I261 by  modification  of  the least  squares criterion,  and 
periodic  reinitialization of  the  algorithm to avoid  precision 
error buildup. The modified  criterion takes into account  the 
squared  magnitude  of  the  difference  of  the  filter  coeffi- 
cients  from  their  initial  (or restart)  values.  The rationale  for 
this  so-called soft constraint  [IO] is the same as for  the 
stochastic  gradient  algorithm with tap leakage  discussed in 
Section Ill-C. 

For a  short  transition  period  following each reinitializa- 
tion,  while  the RLS algorithm is reconverging, an auxiliary 
L M S  adaptive filter is used to compute  outputs. Results of 
four variations of  the  periodic restart procedure  for an 
adaptive  decision  feedback  equalizer are given in [126]. 

V. CONCLUDING REMARKS 

Adaptive  equalization  and  the  more general field  of 
adaptive  filtering have been areas of active research and 
development  for  more than two decades. It is, therefore, 

1384 

tempting  to state  that no substantial  further work remains 
to  be done.  However,  this has not  been  the case in the last 
decade  despite how mature the field appeared in 1973  [59]. 
In fact, a  number  of  the  topics  covered in this paper;e.g., 
fractionally spaced  equalizers, decision-aided IS1 cancella- 
tion,  and fast recursive least  squares algorithms,  were not 
yet  fully  understood or were yet to be  discovered. Of 
course, tremendous strides  have  since been made in  imple- 
mentation  technology  which have spawned new  appli- 
cations, e.g., digital subscriber loops,  and  pushed  existing 
applications  toward  their  limits, e.g., 256-QAM  digital ra- 
dios and  voice-band  modems with rates approaching 19.2 
kbits/s.  Programmable  digital signal  processors now  permit 
implementation of ever more  sophisticated  and  computa- 
tionally  complex algorithms;  and so the  study  and research 
must  continue-in  new directions. There is still  more  work 
to be  done in adaptive  equalization  of  nonlinearities with 
memory  and in equalizer  algorithms  for  coded modulation 
systems. However,  the emphasis has already shifted  from 
adaptive  equalization  theory  toward  the  more general the- 
ory and  applications  of  adaptive filters, and toward struc- 
tures  and implementation technologies which are uniquely 
suited  to  particular applications. 
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