
 1

Thin Client Visualization
Stephen G. Eick, M. Andrew Eick, Jesse Fugitt, Brian Horst, Maxim Khailo, Russell A. Lankenau

SSS Research, Inc

600 S. Washington, Suite 100
Naperville, IL 60540

eick@sss-research.com

Abstract—We have developed a Web 2.0 thin client

visualization framework called GeoBoost™. Our

framework focuses on geospatial visualization and using

Scalable Vector Graphics (SVG), AJAX, RSS and

GeoRSS we have built a complete thin client component

set. Our component set provides a rich user experience

that is completely browser based. It includes maps,

standard business charts, graphs, and time-oriented

components. The components are live, interactive,

linked, and support real time collaboration.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. TECHNOLOGY BACKGROUND 2
3. GEOBOOST SYSTEM ARCHITECTURE 3
4. GEOBOOST VISUAL COMPONENTS 4
5. THINC INTERFACE JAVASCRIPT FRAMEWORK..... 5
5. GEOBOOST MOBILE CLIENT 7
6. SUMMARY AND CONCLUSIONS 8
7. REFERENCES ... 8

1. INTRODUCTION

GeoBoost™ is a thin client collaborative visualization

framework for building Web 2.0 browser-based

geospatial applications. GeoBoost runs in both J2EE and

.NET environments and leverages new programming

techniques such as AJAX (Asynchronous JavaScript and

XML) and browser-based graphics standards such SVG

(Scalable Vector Graphics) to enable developers to build

rich, interactive thin-client geospatial applications that

support collaboration. The advantage of this approach to

building applications is that thin client applications run

natively within a browser without the need to install any

client software, applets, or plug-ins. This advantage

translates into low-cost deployment to many users and

the ability to support many devices for real-time

operational decision-making.

One of the surprising aspects of our GeoBoost framework

is its performance. GeoBoost visual components support

interaction, tooltips, dynamic queries, filtering, selection,

panning, and zooming. The interactive performance

GeoBoost obtains as thin client is comparable to some of

the best implementations of desktop visualization

software.

The GeoBoost system consists of three components.

First, GeoBoost visualization components are built using

a JavaScript Visualization Framework that we call thinc

Interface™. thinc Interface is a thin client AJAX

visualization framework we built that uses Scalable

Vector Graphics as its rending API. thinc Interface

ingests live RSS and RSS extensions and renders the

information in browser-based visual components. Using

thinc Interface we have built a set of a set of reusable

visual components including:

 Interactive Maps that display image, feature,

and live GeoRSS data from multiple sources

 Business Charts including Bar, Pie, and Line

Charts

 Network and Graph Displays

 Hierarchical, Tree, and Tree Map Displays

 Time Lines and Time Wheel

These components are interesting because they have the

capability to connect to live RSS streams, ingest the real-

time data, and display the resulting information. The

end-user programming model for GeoBoost visual

components is also interesting and involves JSP custom

tags and .NET Web controls. As a result it is easy for

programmers to include GeoBoost components in their

web applications using standard HTML tags.

The GeoBoost map component is particularly interesting.

 It is an OGC® (Open Geospatial Consortium) WMS

(Web Mapping Service) and WFS (Web Feature Server) -

compatible client that supports rich interactivity such as

panning, scrolling, and zooming. For dynamic

interactive operations raster data is asynchronously

requested from WMS servers using AJAX requests.

Feature data is rendered on top of the raster data using

SVG layers. It is also a collaborative geospatial wiki.

Users may mark, annotate, edit, and draw arbitrary

shapes onto the map. The polygons corresponding to

these shapes and annotations can be propagated to other

connected users to allow collaboration over the marked

area of interest.

Secondly, GeoBoost provides a series of servers to stream

imagery, feature data, and RSS for consumption by

GeoBoost visual components. Thin clients have limited

 2

processing power and systems built around thin client

architectures need more server support than equivalent

desktop systems. Thus GeoBoost server components

enable flexible data ingestion, image and feature data

tiling, tile caching, performance optimization, and

provide built-in support for tracking and collaboration

features. These server components are necessary to

support thin client interfaces and applications.

GeoBoost uses an open extensible architecture and

supports relevant standards. GeoBoost is built around

open standards such as GML (Geography Markup

Language), RSS, GeoRSS and other RSS extensions.

GeoBoost consumes imagery and feature data from both

OGC compliant sources such as WMS (Web Mapping

Service) and other native formats such as NGA‟s [3] RPF

and LizardTech‟s [4] MrSID.

The third interesting component of GeoBoost is the

GeoBoost AJAX portal. This portal provides a live

framework for content, e.g. web pages, to be integrated

in, customized, and tailored to specific use cases. Users

with different job functions may customize GeoBoost

content for their specific needs and thereby incorporate

task-specific workflow.

The benefits of the GeoBoost platform include:

 Provides the user with rich desktop user

interface functionality in a browser

 Includes visual components that are ready for

use and may be incorporated into web

applications

 Supports real-time collaboration without

proprietary client software

 Enables inexpensive and large deployments

since no client software is required to be

installed

 Provides web developers with a platform for

rapidly building geospatial and thin client

applications

 Supports the relevant open standards including

OGC WMS, WFS, GML, RSS, GeoRSS

2. TECHNOLOGY BACKGROUND

Applications built using the GeoBoost™ platform are

described as Rich Internet Applications [5] (RIAs).

Although Macromedia coined the term, a RIA today is

understood to be an application that runs in a web

browser and provides an interactive and responsive user

interface that has traditionally been found in desktop

applications. Until recently, the only software

applications that could provide this level of

responsiveness desired were the standard “fat client”

applications that require client-side installation and run

as a native client applications. Recently, a new class of

RIAs has emerged that run completely within a web

browser. These applications offer many benefits over

traditional fat client applications. In this section we will

describe some of these benefits and discuss other attempts

to provide this functionality.

Fat Client Application vs. Web Application

To understand the benefits inherent to a web application,

it helps to first understand how a typical fat client

application might work. After being installed, the fat

client application is launched by the user. The user

interface provides interaction with the rest of the

application and the app loads data that it needs from the

user‟s hard drive. Many times, the data used by the

application is in a proprietary format that is specific to

the application. Although the richness of the user

interface is often very good, the drawbacks of a fat client

application are numerous. It is difficult to get new data

or upgrades to the application without having another

install process. Storing the data in a proprietary format

makes it difficult to ingest different types of data or work

with other applications without introducing specific

interfaces to support the new functionality.

A web application solves several of the problems

apparent with a fat client application. Since a web

application is stored on a web server and launched by

browsing to a specific URL in a web browser, the entire

application deployment process is greatly simplified.

Upgrading the application is also easier as the user will

automatically see the new application when they browse

to the URL, if the web app has been upgraded since the

last time they used it. Data can be retrieved from a local

hard drive as with a fat client application or it can be

retrieved by requesting it from remote URLs on other

networks.

To be able to ingest data from different sources, the need

for data standards in web applications becomes very

obvious. Groups such as the Open Geospatial

Consortium (OGC) have defined geospatial related

standards that many web applications implement.

Another important difference is that extending a web

application‟s functionality is often much easier than

extending a similar fat client application. The server

architecture of a web application can be designed in such

a way that it supports a plug-in based approach so that

individual pieces of functionality can be easily added or

removed. However, the missing component for most web

applications until recently has still been the responsive

user interface that is common in fat client applications.

Moving from Web 1.0 to Web 2.0

Traditional web applications also known as Web 1.0 use

a client-server model. The client, a web browser, issues

 3

an http request to a server for a new page when the user

clicks on a link. The web server, usually Apache or IIS,

does some processing, retrieves information from legacy

systems, does some crunching, and sends a formatted

page of hypertext back to the client for display. This

approach is the simplest technically, but does not make

much sense from the user perspective. The reason for

this is the latency, one to ten seconds, between when the

user requests the page and when it finally loads. Because

of this latency it is not possible to use direct

manipulation user interfaces [1]. This class of user

interface is greatly preferred by users [2].

The new model enabled by a set of technologies that are

broadly called Web 2.0 eliminates the start-stop-start-

stop nature of web applications. Instead, information is

asynchronously downloaded to the browser using XML.

JavaScript code in the browser caches this information

when it is received from the server and displays it upon

user request. Since the information is cached locally, the

system can provide instantaneous responses and thereby

support direct manipulation operations. JavaScript code

in the browser handles interactions such as panning,

zooming, scaling, and data validation. The advantage of

the asynchronous requests for XML data is that users can

continue working with the application‟s responsive user

interface without losing their focus on the screen while

data is downloading.

Historical Attempts at Creating a Rich User Interface

To casual web users the recent appearance of direct

manipulation web interfaces may appear to be a sudden

discontinuity. However, creating a rich user experience

has been a goal for web developers since Sun first

introduced Java and Applets back in 1995. From a

historical perspective, JavaScript and DHTML were

introduced as lightweight ways to provide limited client

side programmability and improve user experiences.

Macromedia introduced Flash and along with the term

“Rich Internet Applications” in another attempt to

enhance user experience on the web. Even though the

vision for these capabilities has been clear for a while,

these techniques have not caught on because of cross-

browser incompatibilities as well as the difficulty in

producing Rich Internet Applications. Developers have

been unable to keep up with these browser changes, and a

critical mass of applications have not be attained. What

has emerged from an intense period of competition is the

closest there has been to a de facto browser standard. By

programming to this standard, it now is possible to

deliver a direct manipulation interface in a web

application.

Scalable Vector Graphics

Scalable Vector Graphics is an XML markup language

for vector graphics. Using SVG it is possible to build

both static and animated graphical displays in browsers.

SVG is an open standard created by the W3C (World

Wide Web Consortium) that is intended to compete with

Flash, a closed proprietary technology. Adobe‟s Flash

has been a successful graphics standard and is widely

used to deliver multimedia content, timeline animations,

and advertising content. Because of programming

limitations, however, Flash has not caught on for

application user interfaces. On the other hand, nearly all

browsers now provide native support for SVG (or support

through a browser plug-in). SVG also appears to be the

graphics standard of choice for cell phones and mobile

devices. Microsoft is expected to promote a different

XML-based language called XAML for creating user

interfaces. Although our components are written for

SVG, our approach works equally well with either SVG

or XAML. By abstracting our graphics layer, we are able

to produce interactive components based on whatever

rendering language the browser supports. This approach

completes the missing piece in web applications. By

providing the user with a responsive user interface in a

web browser, the ability to create Rich Internet

Applications is truly possible.

3. GEOBOOST SYSTEM ARCHITECTURE

The GeoBoost system architecture is shown in

Figure 1. GeoBoost servers ingest geospatial raster data,

feature data, and business data from a wide variety of

common data sources and then transform the imagery

and data sources into protocols formats that GeoBoost

thin client components can accept, image tiles and RSS,

and perform database and other services for GeoBoost

applications.

The problem these servers are solving involves

restrictions in the thin client programming model. Thin

client code is written in JavaScript which is a difficult

programming language, has no access to databases, is

restricted by security rules, and cannot maintain

information from page to page as the user navigates

through a site. These operations must be enabled using

support from various other services. The AJAX

JavaScript and browser programming model does make

two types of operations easy. First, it is easy on a web

page to issue asynchronous image requests by assigning a

url to image src tags. As the images are retrieved, the

browser automatically renders them on the page.

Second, it is possible to asynchronously request XML

files which the JavaScript may use to manipulate the web

page. Because of the difficulty in programming

JavaScript, the servers do the heavy lifting. It is more

efficient to do protocol conversions, calculations, and as

much computation as possible on servers rather than

within the client. The reason is that thin client code is

restricted and particularly difficult to debug.

 4

Data Ingest

GeoBoost‟s strategy for data ingest is to accept data in as

many formats as possible, with particular focus on open

standards. These include raster image data, geospatial

feature data, and generic business and geospatial data.

Server Layer

GeoBoost provides two types of servers. Image Services

stream image tiles, either drawn from image repositories

or created by rendering feature data as image tiles, to the

client. Application Services stream XML to the client.

The XML is usually formatted RSS, a simple XML

protocol, or RSS namespace extensions. As mentioned

above, the problem that Image Services imagery and

Application Services solves for raw data involves thin

client computational limitations. Browser-based code

written in JavaScript is severely limited and it is not

possible to do many computations that are easily done in

fat-client or applet code.

GeoBoost Web 2.0 AJAX Client

The GeoBoost thin client layer is a Web 2.0 AJAX client

and includes a development environment consisting of a

set of visual components for building web-based

graphical applications. Using a common data

infrastructure, these components ingest image and RSS

data and provide visualization and collaboration services.

 To make these components easier to use for non-

programmers, GeoBoost provides JSP and ASPX tags

that enable the visual components to be readily used on

web sites.

GeoBoost‟s second client is a Windows Mobile

application that ingests image tiles, feature data, and uses

services provide by GeoBoost Servers for tracking. The

application is aimed at GeoSpatial tracking, alerting, and

collaboration involving mobile devices.

Application Layer

Using the GeoBoost platform, we have built a series of

vertical applications focused around geospatial problems.

 The first application, called FUSION, focuses on Air

Traffic Management and display plan positions,

restricted airspace, and weather patterns. The second

application shows the positions of employees and

company assets wearing RFID-tagged badges within a

building.

4. GEOBOOST VISUAL COMPONENTS

GeoBoost Visual Components

GeoBoost provides a broad set of visual components that

includes maps, business charts, networks and graphs,

trees and hierarchical displays, and a timeline. Each of

these components has been developed using the thinc

Interface framework, described below, and, when

wrapped with the appropriate HTML code, may be

independently positioned and moved on the browser

screen. See Figure 2.

GeoBoost Graph Visualization

GeoBoost‟s graph visualization, shown in Figure 7,

displays the nodes and links of a graph ingested from

RSS. Being completely thin client, the graph is generated

by JavaScript and displayed in the browser when new

information arrives. The nodes, which are simply

standard RSS items, are represented by any of several

built in geometric shapes or custom icons as well as

custom size. The edges, which are also RSS items,

require only a from item id and to item id tag which

correspond to the ids of the two connected nodes. The

edges are drawn as connecting lines and have the ability

to show direction by having an arrow pointing at the

target node.

The graph has a robust set of functionality that allows

user interaction and customization. It is capable of

displaying the network as a radial or tree graph. In both

drawing modes, the nodes and links have built in mouse

events such as hovering to see a tooltip and right clicking

for a menu of additional options. The graph also has the

ability to zoom in or out for a closer look and pan by

clicking and dragging the mouse. Labels for individual

nodes are drawn on the graph for quick recognition of

what RSS item is represented by a particular node. By

default, the graph will find the minimum spanning tree

of the network and use the middle item as the root node.

However, any node can be specified as the root of the

graph in order to see the relationships of that item more

clearly. The graph allows dynamic changing of the root

node by simply right clicking on an item and selecting

the option to set as root. Tooltips for the graph may be

text or images.

One issue for thin client programming is scalability.

JavaScript is an interpreted language and is not

particularly fast. We were pleasantly surprised with the

performance of our graph drawing algorithms. The

approximate time to layout and display a graph with 300

edges and 200 nodes on a standard laptop is

approximately 1 second. Drawing labels increases the

time by a factor of four. Interactive operations such as

tooltips and selections are essentially instantaneous.

GeoBoost Map Visualization Component

The GeoBoost Map is a rich visualization that allows

dynamic interaction with raster imagery and vector

feature data. It supports animated zooming and panning

as well a number of different API functions that allow

programmatic interaction with the Map. Multiple Maps

can be synchronized together so that they pan and zoom

 5

at the same rate, which is used to create “Overview”

Maps and “Magnification” Maps. See Figure 2

andFigure 3.

Raster imagery can be ingested from OGC compliant

sources (WMS and WFS) or from custom sources.

Multiple raster sources can be “layered” on a Map and

re-ordered to combine street maps and satellite imagery

from different sources. In addition, the transparency of

each raster source can be individually adjusted to allow

other layers to show through. See Figure 4.

Feature data is ingested using the standard GeoRSS

format which translates very cleanly to and from other

popular geospatial formats. Many useful interfaces exist

to allow real-time and historical data to be pulled in and

updated on the Map incrementally, providing optimal

performance for web applications. Multiple overlays of

feature data can be placed on a Map, each having a

different data source. A variety of styles can be applied

in real time to feature data to encode meaning, including

color, width, opacity, etc. The advantage of drawing

each data item as a vector feature is that the item is able

to be highlighted and selected in a very intuitive way.

The Map supports sweep selection to select multiple

items at a time. The unique aspect of this interaction

model is that it causes the events to propagate to other

linked Maps and visualizations (Timelines, Bar Graphs,

Pie Graphs, etc) which are displaying the same data.

GeoBoost Time Line and TimeWheel

GeoBoost Timeline, shown in Figure 8, is an interactive

visualization that plots temporal data based on their date

and time. Like the Map, the Timeline supports dynamic

zooming and panning so the user can scroll through time

and find data. Multiple overlays also allow data from

different sources to be stacked on the Timeline and then

shown or hidden. The Timeline supports six different

scales (Year, Month, Day, Hour, Minute, Second) and

several different drawing modes (Circles, Ticks, Spheres,

Custom Icons) and is very easy to configure and

customize. Another unique feature is its ability to plot

data according to a specified property along the Y axis

rather than using the default “Best Fit” algorithm, which

essentially turns the Timeline into an interactive Line

Chart with Time as the X axis. The data on the Timeline

supports tooltips and can be highlighted or selected,

which will cause the events to propagate to other linked

visualizations. Synchronizing two separate Timelines

that display the same data is also useful because they will

pan at the same rate and provide a summary and detailed

view of the same data over time.

TimeWheel is an interactive visualization that plots

temporal data according to time of day and day of week.

It is useful for identifying patterns in data that is linked

to a Timeline or Map. The TimeWheel is shaped like a

clock with each segment representing a different hour of

the day. Concentric rings are labeled to designate a

different day of the week. Once the data items are

plotted, it is very easy to select or highlight clumped data

items that meet certain criteria (“All data that occurred

on Saturdays and Sundays between 9:00 and 12:00” or

“All data that occurred on Fridays at 10:00pm”). In

addition, the segments can be drawn equally or can be

drawn proportional to the number of items that occurred

in that slice (hour of the day). This provides a simple

means of volume analysis to determine which hours of

the day represent the most activity. A day/night layer

can be added to the TimeWheel to show which hours of

the day represent daytime and which represent nighttime

so that it becomes obvious whether data items occurred

during the day or night.

GeoBoost Portal

GeoPortal, shown in Figure 9, is an AJAX-enabled portal

site for customized workflow. It enables users to include

content of interest, customize the content, and

automatically updates the content. Content is, of course,

just web pages that are included via a simple interface.

Widgets use the GeoBoost visualization library to create

a consistent view of data through multiple displays.

GeoPortal content widgets are stored in a Ruby on Rails

backend which maintains user preferences, manages data

feeds, and provides the logic required to include content.

In a simple use case, a user might display information

from a data feed in several ways by including bar-chart,

line-chart, and geospatial widgets on a single page.

Additional tabs can be added to the display to allow the

user to build situation-specific applications designed to

include only the information necessary to the task at

hand. These applications can then be made public for

dissemination to others working in the same area.

Simple collaboration features built into the Ruby on Rails

backend allow users working on the same application to

share information.

5. JAVASCRIPT VISUALIZATION FRAMEWORK

GeoBoost visual components are built using a JavaScript

AJAX visualization framework that we call thinc

Interface. The framework uses the browser‟s native

rendering layer, SVG currently and in the future WPF/E

(Windows Presentation Foundation Everywhere or

XAML), for building thin client visualizations. In

contrast to open source efforts such as DOJO [6],

Prototype [7] and Microsoft‟s Atlas [8] that focus on user

interface components, our focus is on visualization. The

SVG graphics API that thinc uses is a W3C standard that

is natively supported by many browsers including

Firefox.

 6

RSS and GeoRSS Data Ingest

Each of these components ingests data to be displayed

based upon RSS and namespace extensions of RSS that

provide the components with specialized information.

RSS is a simple protocol for publishing information. The

basic content of an RSS stream is a set of metadata tags

organized into items that describe content. The required

tags in each item are <title>, <link>, <description>,

<pubDate>, <guid>. The <link> tag is generally a

hyperlink to retrieve the item content.

GeoRSS extends RSS by adding location information.

The location may be a point, e.g. <georss:point>45.256 -

71.92</georss:point>, or more complex polygon. We

have extended the GeoRSS specification to add specific

shapes of interest such as ellipses, sectors, and slices

using a thinc namespace extension. For example, the

specification

<georss:where>

 <thincml:sector center="38.82, -77.12"

 radius="4000" insideradius="3000"

 startangle="90" arcangle="45"/>

</georss:where>

Represents a sector of a circle or a pie wedge if the inside

radius is zero.

Linking Between Visual Components

RSS organizes information into sets of items within a

channel. Our GeoBoost visual components have the

capability to ingest RSS feeds and display the

information using different visual presentations. Our

Map Components, for example, display GeoRSS by geo-

positioning entities in the browser over a map. Tooltips

and other mouse operations are automatically linked

among different visual components showing the same

item sets. This approach toward visual components

makes it easy to create rich visual applications built

around RSS.

Supporting Multiple Browser Graphics APIs

Rendering 2D vector graphics in a web browser is

challenging for many reasons. Lack of IDE support for

JavaScript makes it difficult to debug and step through

the JavaScript code needed to render vector graphics that

manipulate the browser‟s DOM (document object model).

 In addition, cross-browser coding is even more difficult

because all browsers do not support the same type of

vector graphics. At the current time, the latest browser

releases of Mozilla Firefox, Opera, and Safari all have

native support for SVG, which is a W3C standard for

vector graphics. However, Microsoft Internet Explorer

supports VML natively, which is a similar vector

graphics library designed by Microsoft. By using a plug-

in, Microsoft Internet Explorer can also support SVG

documents that are included through the use of an

“embed” or “object” tag. The current varying state of

vector graphics capability between common browsers

introduces substantial complexity for the typical web

developer who typically just needs to do simple things

like drawing points, circles, rectangles, or other

polygons.

The thinc Graphics classes and API solve this problem by

abstracting the details of programming against the

individual browsers and allow the web developer to

program against a single graphics API. The thinc

Graphics classes interrogate the browser‟s rendering

environment at run-time to determine the vector graphics

it supports, and then conditionally execute the

appropriate JavaScript code to create the vector objects.

For example, a user browsing with Firefox to a page that

had been created with the thinc Graphics classes would

see the native SVG that the code generated. However, a

user browsing to the same page with Internet explorer

would see SVG in an embed tag if they had a plug-in that

supported SVG otherwise, the thinc Graphics classes

would fall back to generating the native VML that is

supported in Internet Explorer. Of course, this behavior

can be overridden by the developer to force specific

rendering engines to be used.

This approach allows a web developer to make simple

calls to the API such as “DrawRectangle” or

“DrawCircle” and not be concerned with the specifics of

each browser‟s rendering capability. The thinc Graphics

classes provide this layer of abstraction and make it much

easier for the developer to use native vector graphics in

their application. In addition, this model is flexible and

easy to extend so that when new browsers are released,

the same application code should work without requiring

any changes. New classes can be added to the underlying

thinc Graphics code without changing the existing

signature of any of the thinc Graphics API calls.

JSP and ASPX Server Tags

GeoBoost exposes functionality to the integration

developer through HTML server tags. Server tags allow

the developer to define GeoBoost widgets inline using an

HTML syntax rather than pure JavaScript code. As

shown in Figure 5 and Figure 6, HTML tags enable

developers to use sophisticated visual components by

simply including them on web pages.

For each of GeoBoost‟s visual components we have

developed both JSP and ASPX custom HTML tags. For

ASPX these tags are also referred to as .NET Web

Controls. The tags, which all start with <thinc> provide

a programming abstraction layer on top of the JavaScript

library for html programmers. When processed by the

web server, the <thinc> tags in the web page are

converted to the corresponding JavaScript on the web

 7

server when the page is loaded.

The advantage of GeoBoost‟s HTML tag functionality is

that it greatly simplifies authoring web pages.

Developers can program against the JSP Custom Tags or

.NET Web Controls for fast integration into their

application, or they can program directly against the

JavaScript API for optimal flexibility. The tags are

identical across platforms. Thus, a page created using

JSP Custom Tags will run in the .NET environment, and

vice versa. The tag library exploits HTML‟s inherent

notion of containment, „embedding‟ map data sources

within a <thinc:map /> tag. In this way the complex

underlying JavaScript is shielded from the end developer,

enabling rapid prototyping and quick integration

Benefits to End Developer

The HTML syntax is more readable and therefore more

maintainable for the end developer. Server tags also

allow intellisense and syntax checking when used in the

standard programming environments Eclipse and

Microsoft‟s Visual Studio. By integrating with the

popular IDE‟s, “Drag and Drop” support is enabled,

allowing the developer to design and code the application

using typical Rapid Application Development (RAD)

techniques. Syntax errors are caught at integration time

rather than during run time. GeoBoost Server Tags

provide meaningful error messages for the integration

developer. Regular HTML error messages provide only

generic error messages and codes (for example, Error

500, Server Error), whereas GeoBoost server tags provide

detailed error messages.

Hierarchy within Tags

Many of the GeoBoost widgets express a hierarchal

relationship. For example the Map widget might contain

3 overlay regions which to display, or the BarChart

widget might contain 3 data series to plot. Unique to

GeoBoost, the server tag library expresses these

relationships using XML‟s natural syntax, familiar to all

developers. The standard way to express the relationship

is by embedding ID‟s and using lookup indirection to

deduce hierarchy. GeoBoost tags express this naturally,

as in the following sample:

<thinc:map latitude=”35.0” longitude=”45.0”>

 <thinc:ItemCollection>

 <thinc:GeoRssDataConnector url=”source1” />

 <thinc:GeoRssDataConnector url=”source2” />

 </thinc:ItemCollection>

</thinc:map>

In the above sample code, a map is drawn centered at

latitude 35, and longitude 45. Drawn in the map is the

data from “source1” and “source2”. This hierarchal

relationship is clear from the code.

Using hierarchical containment, it is possible to include

several different image and datasets into thinc

components. For example, Figure 6 shows an example

where our Map control is attached to two different WMS

image servers. Both sets of imagery are retrieved by the

client and combined within the browser. The result is

shown in Figure 4 where NASA imagery is combined

with political boundaries by merging the images in the

browser.

Annotating and Editing Visual Components

As shown in Figure 10 GeoBoost provides the capability

for users to edit and annotate the visualizations. The

edits and annotations automatically propagate using

AJAX messages and are persisted in GeoBoost‟s

collaboration database. In Figure 10 two users of the

Map component are simultaneously editing the map in

different browsers. The each of the browsers polls the

collaboration database every second or two and picks up

any new changes. The result is that of a real-time

geospatial wiki. The same capability may be used with

any of GeoBoost‟s visual components.

5. GEOBOOST MOBILE CLIENT

Screens on mobile devices are typically small, have

differing orientations and dimensions, have varying pixel

resolutions, and thus require special attention.

Additionally, mobile devices typically have slower

processors, minimal battery life, and constrained local

storage. These factors must be weighed when integrating

a mobile appliance into the GeoBoost platform. Creating

a compelling mobile client requires careful consideration

of all these constraints. To fully take advantage of

mobile applications, the GeoBoost server platform has

been extended to process and deliver data in new ways.

By off-loading this processing to the server, the mobile

device resources were conserved and the user experience

was enhanced.

Screen resolutions and aspect ratios (orientation)

Mobile devices have varying screen resolutions and

physical dimensions. Some devices (notable the Palm

Treo) have a square screen with a resolution of 320x320.

 Other smart-phones have rectangular dimensions, with

orientations in both Landscape and Portrait. On the far

end of the device scale, small handhelds have screen

resolutions of 800x600 with a physical dimension of 5”.

A strategy of delivering “a standard set” of images to

clients, and letting the mobile device handle the

difference would be disastrous since the devices do not

have the processing power required for intense image

manipulation. Rather, GeoBoost server allows image

manipulation to be done server side, and passing on

images with resolution and dimensions specific to the

device.

 8

Processor Power, Battery Life

On a mobile device, battery life is directly proportional to

processor power and processor workload. If we program

the device to do heavy computations or image

manipulation, we have a double effect on the device:

slowing performance overall, and draining the battery.

Battery life is at a premium on the devices, and

manufactures are trying to increase the battery power by

continually reducing the processor power. Recognizing

this constraint, the GeoBoost server platform was

extended to serve images “pre-cooked” for the specific

device. This allows the device to simply display the map

image, rather than needing to manipulate the image for

its hardware.

Color Depth

Current mobile technology delivers limited color depth

and typically only displays 24-bit color (as opposed to 32-

bit color standard on a desktop). This limited

GeoBoost‟s ability to finely calibrate data points on the

map. GeoBoost server side changes were made to

accommodate the reduced color depth.

Glyph Size

Mobile devices are designed to be used within 5”-6” from

the users eyes, whereas desktop monitors are 17” - 25”

from the eyes. Further, some handhelds are specifically

designed with touch interfaces (the Windows Mobile

platform), whereas others are designed for stylus use

(TabletPC). Fingertip use requires bigger icons with

larger hotspots to be activated, while with stylus use, a

smaller hotspot is possible. Some mobile devices (Smart

Phones) allow neither, and rely on the telephone input

digits or joysticks (blackberry pearl) for input. GeoBoost

Mobile has algorithms and tolerances defined to allow

varying sized hotspots depending on device. The larger

hotspots require larger icons, so icon collision detection

algorithms are needed to space hotspots accordingly.

GeoBoost Mobile

A prototype rich client was developed as proof points for

our theories. The prototype consumed map images from

GeoBoost server, and delivered them to the device to

allow zooming, panning, and scrolling on the client. The

architecture of our mobile application is similar to that of

the GeoBoost client: a Model-View-Controller pattern is

used to create several different interfaces to a single

central data model.

The mobile application connects to Map Services over

the internet and fetches map tiles for the currently

displayed area. Feature data is provided by Data and

Application services in the form of GeoRss. The GeoRss

is parsed by our RSS library and imported into the

application‟s central data store. The application then

uses its native graphics libraries to represent the feature

data on the map.

Mobile applications are especially well suited for low-

bandwidth or sporadic internet access. Since the

application does not depend on a web browser, additional

optimizations such as local tile caching can be introduced

to counteract the limitations of the network.

6. SUMMARY AND CONCLUSIONS

We have created a Web 2.0 AJAX thin client mapping

framework that we call GeoBoost™. Using our

framework we are able to build browser-based geospatial

applications that run on top of open geospatial standards,

RSS and GeoRSS, and provide rich geospatial

visualizations built using Scalable Vector Graphics. The

framework is unique in that applications built using it

have the richness of traditional desktop applications and

the reach of browser-based systems. It provides an open

platform for thin client web mapping.

7. REFERENCES

[1] Stuart Card, Jock Mackinlay, Ben Shneiderman,

Readings in Information Visualization: Using Vision

to Think, Morgan Kaufmann, 1999.

[2] Ben Shneiderman, Designing the User Interface,

Addison Wesley, Third Edition, 1998.

[3] National Geospatial Agency, Military Standard

Raster Product Format, 6 October 1994.

[4] www.lizardtech.com

[5] Dona Maurer, “Usability for Rich Internet

Applications”, Digital Web Magazine, 20 February,

2006.

[6] Dojo Foundation, “dojo, the Javascript Toolkit”,

available at http://dojotoolkit.org/.

[7] Sam Stephenson., “prototype JavaScript Framework”,

available at http://prototype.conio.net/.

[8] Martin LaMonica, “Microsoft gets hip to AJAX,”

CNET, 27-June 2005, available at

http://news.com.com/Microsoft+gets+hip+to+AJAX/210

0-1007_3-5765197.html

http://www.lizardtech.com/
http://dojotoolkit.org/
http://prototype.conio.net/

 9

Map

Service

GeoBoost™ System Architecture

JavaScript Class Library

GeoBoost™

R A S T E R D A T A F E A T U R E D A T A

Image Tiles

thinc™ Interface
• thin client Web UI

• no plug-ins/applets

• Web 2.0 standards

Servers
• data ingesting

• rendering optimization

• computations

• synchronization

Data
• Raster Data (Images)

• Feature Data

• OGC compliant

• Proprietary

Command & Control Municipal Govt Supply/Logistics RFID Tracking

Applications
• web-based

• rich interaction

• real-time

Feature

Service

Tracking

Server

Collaboration

Server

Image Tiles

A P P S E R V I C E S

JSP and .NET Server Tags

XML,
GeoRSS

XML,
RSS

B U S I N E S S D A T A

T H I N Web C L I E N T

W E B A P P L I C A T I O N S

Fusion Server

I M A G E S E R V I C E S

D A T A S E R V I C E S

Other

Server

AutoCAD DTEDDTED

WMS
RPF

CADRG

JPEG

2000

RPF

CIB MrSID Oracle

Other

Postgres XML SQL Server

Oracle

Geo

ESRI
ArcIMS

DB2
Web

Service

WFS

ESRI

ArcIMS

XML

Windows

Mobile

Mobile CLIENT

Figure 1 GeoBoost System Architecture.

Figure 2. Linked GeoBoost Maps with Standard Business Charts.

 10

Figure 3. GeoBoost Map Component Merging Raster and Map data for Washington DC.

Multiple TileSets SS

05-200

Figure 4 NASA image data is combined with feature data rendered as geopolitical outlines from two different web

servers using GeoBoost’s Map Visualization Component.

 11

Nested JSP and ASPX

Custom Tags

Construct a map

New tag to allow multiple Wms servers

Multiple GeoRss feeds within maps

Tags that are contained within other tags are feed automatically into the “parent” tag.

This allows a natural syntax, and obviates the need to „hardcode‟ the name in the

data tag.

Figure 5 JSP and ASPX Server Tags simplify programming using thinc Interface Components. These six lines of

HTML code put a map on the web page and attach it to two GeoRSS feeds.

Nested Tags Scope

• Multiple feeds can be feed into single view

by nesting multiple tags

• Nested tags are scoped to the containing

item
Multiple

Image sets

Figure 6 thinc HTML tags for including multiple image sets on a map.

Figure 7. GeoBoost Graph Visualization Component.

 12

Figure 8. GeoBoost Time Line and TimeWheel linked to map showing crime locations in Washington DC.

Figure 9 GeoBoost's live AJAX portal.

 13

Figure 10 GeoBoost real-time collaboration. Edits and annotations on the map and other visual components

propagate using AJAX within a couple seconds.

Figure 11 GeoBoost Tracking Application on Mobile Device.

