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Abstract

The proportionate flow shop (PFS) is considered as a unique case of the flow shop problem in which the processing times of the oper-
ations belonging to the same job are equal. A proportionate flexible flow shop (PFFS) is a machine environment with parallel identical
machines at each stage. This study presents an effective hybrid approach based on constructive genetic algorithm (CGA) for PFFS sched-
uling with the criterion to minimize the total weighted completion time (WCT). Minimizing the WCT in a PFFS problem significantly
differs from the parallel-identical-machine scheduling problem, an optimal schedule in which the jobs on each machine are in weighted
shortest processing time (WSPT) order. The proposed approach incorporates two fitness functions, and a population trained by a local
improvement search based on tabu search with a candidate list strategy into CGA. Simulation results are compared with those of the
column generation (CG) approach to demonstrate the effectiveness of the proposed hybrid approach. In particular, the CG approach
has been applied successfully to solve various parallel machine scheduling problems, and yields high-quality solutions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Pinedo (2002) described that a proportionate flow shop
problem (PFS), the processing times of each job j on
machines are the same and equal to pj. In such a shop,
any number of stages has a single machine at each stage.
A proportionate flexible flow shop (PFFS) is a machine
environment with a number of stages in series, with each
stage having several identical machines in parallel. To the
best of our knowledge, there is no published paper for deal-
ing with the PFFS problem for minimizing total weighted
completion time (WCT). Pinedo (2002) also observed the
PFS problems in a number of cases similar to their single
machine counterparts. Such cases include minimizing total
completion time, maximum lateness, total number of tardy
jobs and total tardiness. Unfortunately, minimizing the
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WCT in a PFS problem with equal machine speeds signif-
icantly differs from the single-machine scheduling problem
with the same objective, i.e., an optimal permutation sche-
dule in a PFS problem is obtained by executing the jobs not
only by adopting the rule imposed by the weighted shortest
processing time (WSPT) order (Smith, 1956), but also by
scheduling the jobs based on the shortest processing time
(SPT) rule. This study extends the PFS problem developed
by Shakhlevich, Hoogeveen, and Pinedo (1998) to a PFFS
problem with the criterion to minimize the WCT.

Genetic algorithms (GAs) have been intensively studied
and applied in the production scheduling problems. Tradi-
tional GAs start with an initial set of random solutions
called population. Each individual in the population is
called a structure (chromosome), representing a solution
to the problem. During each generation, the structures
are evaluated applying some measures of fitness. A selec-
tion operator works together with the crossover operator
to generate new structures and mutation operator to mod-
ify a structure, which provides the opportunity to escape
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from local optimal. Holland (1992) presented the ‘‘building
block’’ hypothesis (schema formation and conservation) as
a theoretical basis for the GA mechanism. From his per-
spective, preventing disruption of a good schema is the
basis for the good behavior of a GA. However, a major
problem with building blocks is that the schemata are mea-
sured indirectly by evaluating of their instances (struc-
tures). Goldberg, Korb, and Deb (1989), Goldberg, Deb,
Kargupta, and Harik (1993) have addressed the problem
of schemata evaluation and introduced the messy-GA that
allows variable length strings and looks for the construc-
tion and preservation of good building blocks. An alterna-
tive to the traditional GA, named constructive genetic
algorithm (CGA), has been proposed by de Oliveira and
Lorena (2002), Lorena and Furtado (2001), Ribeiro and
Lorena (2001) for evaluating schemata directly.

To the best of our knowledge, no published work deals
with the parallel machine scheduling problem using the
CGA approach, and applying the approach in different
areas of problems is a challenge. This study proposes a
hybrid CGA (HCGA) for PFFS scheduling with the
WCT criterion. The CGA has some unique features over
those of a traditional genetic algorithm, and in particular,
incorporates two novel fitness functions on a structure into
the evolution process. The first fitness function reflects the
total cost (total weighted completion time) of a given sche-
dule, while the second function drives the evolutionary pro-
cess to a population trained by a local improvement search
based on tabu search (TS) heuristic. Thus, the entire
population of convergence moves faster and in a more
appropriate direction than in traditional genetic algorithms
based on a single fitness function. The proposed HCGA
applies the CGA-based evolutionary process to effectively
perform exploration for promising solutions. Moreover,
The HCGA utilizes TS simultaneously to perform exploita-
tion for solution improvement, where a candidate list strat-
egy is designed to save time and improve the performance
on a given iteration. Some effective hybrid heuristics have
been shown to achieve better quality, time performance,
and robustness than pure heuristic methods in flow shop
problems (Liu, Wang, & Jin, in press; Noorul Hag, Ravin-
dran, Aruna, & Nithiya, 2004; Wang & Zheng, 2003).
Futhermore, Funda and Ulusoy (1999) and Chang et al.
(2005) concluded that if the local search was included in
GA, the solution quality can be improved. Kim and Han
(2003) also proposed a hybrid genetic algorithm and neural
network approach in activity-based costing. The CGA also
evolves a population initially formed only by schemata,
and controlled by recombination, to a dynamic population
of well-adapted structures and schemata, which replaces
the old structures or schemata with new ones to increase
the diversity of solution pool. A comparative study is per-
formed to test the performance of HCGA with that of the
column generation (CG) approach to demonstrate the
effectiveness of HCGA, since CG has been applied success-
fully to various parallel machine scheduling problems, and
yields solutions of superior quality (Chen & Powell, 1999;
Lee & Chen, 2000; Van den Akker, Hoogeveen, & Van
de Velde, 1999).

The rest of this paper is organized as follows. In Sections
2 and 3, a survey of literature and the PFFS problem are
discussed, respectively. In Section 4, the HCGA is intro-
duced for dealing with the PFFS problem to minimize
the WCT. In Section 5, results and analysis are made.
Finally, some conclusions follow in Section 6.

2. Literature review

The proportionate flow shop (PFS) scheduling problem
was first addressed by Ow (1985) and Pinedo (1985).
Unlike the flow shop scheduling problem under certain
constraints that has attracted considerable attention, the
PFS problem has received less attention, with such studies
including those of Adenso-Dı́az (1992), Allahverdi (1996),
Edwin Cheng and Shakhlevich (1999) and Hou and Hoo-
geveen (2003). The problem of minimizing the total com-
pletion time in a two-machine flow shop is NP-hard in
the strong sense (Garey, Johnson, & Sethi, 1976). Shakhle-
vich et al. (1998) proved that the PFS problem of minimiz-
ing the total weighted completion time (WCT) in an n-job,
m-machine can be solved optimally in O(n2). Choi, Yoon,
and Chung (2006) also provided a tight lower bound to
an optimal objective value in a two-machine PFS problem
with different machine speeds. The objective was to mini-
mize the WCT.

Flexible flow shop (FFS) or hybrid flow shop (HFS)
scheduling problems are widely used in process industries.
Moursli and Pochet (2000) presented a branch-and-bound
algorithm to minimize the objective of the makespan (MS).
Oğuz, Ercan, Edwin Cheng, and Fung (2003) developed
nine heuristic algorithms for solving the two-stage HFS
problem of minimizing MS. Gupta, Hariri, and Potts
(1997) also proposed heuristics to minimize MS in a two-
stage HFS with parallel identical machines at the first
stage.

Recently, a genetic algorithm (GA) has been developed
for HFS problem, with such studies including those of
S�erifoğlu and Ulusoy (2004) and Oğuz and Ercan (2005).
The objective was also to minimize MS. Chang, Chen,
and Lin (2005) introduced a two-phase sub population
GA to solve the parallel machine-scheduling problem with
multiple objectives (MS and total tardiness). Moreover,
Chiang, Chang, and Huang (2006) proposed a novel evolu-
tionary approach, named particle swarm optimization
(PSO), for solving multi-processor scheduling problem.

However, efforts to minimize the WCT objective are
scarce in previous literature. Tozkapan, Kirca, and Chung
(2003) considered a two-stage assembly flowshop problem
to minimize the WCT and developed a branch-and-bound
algorithm capable of handling problems with the number
of jobs 620. Recently, Tang, Xuan, and Liu (2006) pro-
posed a new Lagrangian relaxation algorithm based on
stage decomposition for HFS problems to minimize the
WCT.
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3. Formulation of the PFFS problem

The PFFS scheduling problem considered in this study
is described as follows. There are n jobs, N = {1,2, . . . ,n},
to be processed through s stages in series, S = {1,
2, . . . , s}. Each stage i 2 S has m parallel identical machines
with the property that all jobs have to be processed
through all the stages on the same order, M = {1,2, . . . ,
m}. Each job j 2 N consists of s sequential operations Oij

(i 2 S; j 2 N) and each operation requires a processing time
pij = pj on any one of the machines at stage i, and has a
positive weight wj (or priority).

3.1. Objective function

The objective is to find a feasible schedule that mini-
mizes the total weighted completion time (WCT). Minimiz-
ing the WCT of the PFFS problems is referred to as
FFcjpij ¼ pjj

Pn
j¼1WjCj, where Cj = Csj is the completion

time of job j at stage s and can be calculated as follows:

Cj ¼
Xj

i¼1

pi þ ðs� 1Þmaxfp1; . . . ; pjg ð1Þ

Then, a partial schedule consists of a subset of jobs of
N,{1, 2, . . . ,h}, on a machine at each stage, and the total
weighted completion time is computed:

Xh

j¼1

wjCj ¼
Xh

j¼1

Xj

i¼1

wjpi þ ðs� 1Þ
Xh

j¼1

wj maxfp1; . . . ; pjg

ð2Þ
Eq. (2) illustrates that the first term is minimized by sched-
uling the jobs on a single machine according to the
weighted shortest processing time (WSPT) order. The sec-
ond term is minimized by scheduling the jobs according
to the shortest processing time (SPT) rule.

3.2. Assumptions

(1) All N jobs to schedule are independent and available
for processing at time zero.
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(2) Each machine can handle at most one job at a time
while a job can be processed on at most one machine
at any time.

(3) Preemption is not allowed: a job, once started on a
machine, it is processed to completion without in-
terruption.

(4) Jobs are allowed to wait between two stages.
4. HCGA for PFFS problem

4.1. Representation of structure and schema

The most important issue in applying CGA to the prob-
lem FFcjpij ¼ pjj

Pn
j¼1WjCj is to define an encoding scheme

that allows one-to-one mapping between solutions and
structures (chromosomes). Additionally, a representation
decoder (assignment heuristic) is designed to convert a
structure to a solution, which can thus be evaluated. A
structure can be represented by s = (s1,s2, . . . ,sn) where
si 2 {0,1,#}. Each s is partitioned into three sets, the seed
set J1(s), the non-seed set J0(s) and the set J#(s). Consider
an example of 10 jobs to be processed through three stages,
and each stage has three identical machines (see Fig. 1),
J1(s) = {1,4,8} is the seed set; J0(s) = {2,3,5,7,9} is the
non-seed set; and J#(s) = {6,10}. Jobs 1, 4 and 8 form
the seed, and every other job is assigned to one seed. The
CGA works directly with schemata. The three-machine
schema for the example can be s = (1,0,0,1,0,#,0,1,0,#),
where each position sj in s, receiving labels 1, 0 or #, repre-
sents that job j 2 N belongs to J1(s), J0(s) or J#(s), respec-
tively. The label # is indicated to express indetermination
on schemata (# – do not care); i.e., a non-seed job not yet
assigned to a machine. Moreover, s is a schema since it con-
tains #s. By contrast, the structure s = (1,0,0,1,0,0,0,
1,0,0) without # is a feasible solution.

After m seed jobs are identified, a proposed assignment
heuristic (AH) is employed to assign non-seed jobs to
machines. Each seed job is assigned to one machine at
the beginning of the assignment procedure. Subsequently,
the unscheduled jobs in non-seed are attracted to join on
each machine.
3
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Relevant previous work on PFS problem of the mini-
mizing WCT began with Shakhlevich et al. (1998), who
showed that the problem can be solved optimally in
O(n2) time, and that the jobs can be scheduled in WSPT–

SPT order. The WSPT–SPT order implies that the jobs
are sequenced by Shakhlevich’s WSPT-MCI algorithm,
which is given as follows:

(1) Reindex the jobs in WSPT order, settling ties accord-
ing to non-decreasing processing times. Let r1 be the
sequence consisting of job 1; set j := 2.

(2) Derive rj from rj�1 such that the cost increase is min-
imum; if there are several possibilities, then choose
the one in which job j is inserted lasted. Set j := j + 1.

(3) If j 6 n, then go to step 2.
(4) Determine an optimal permutation schedule by

scheduling the jobs in order of occurrence in rn.

That is, the optimal schedule for an assignment of the
jobs to machines preserves the WSPT-SPT order of jobs
on each machine. Therefore, reindex all jobs in WSPT-

SPT order before applying AH. Let H be the set of all
structures and schemata, for i 2M, j 2 N, s 2 S and
s 2 H, then

di,s ith machine schedule in s,
Ci,s completion time of ith machine schedule in s,
ttj total execution time of job j; ttj = p1j + p2j + � � � +

psj = spj.

Thus, a total schedule for s can be expressed as a set
Ps = {d1,s, d2,s, . . .,dm,s} after performing AH, where dm,s

is the job schedule on machine i, di,s consists of a subset
of jobs of N, {1,2, . . . ,ni}, that preserves the WSPT–SPT

order on a machine at each stage, where ni denotes the
number of jobs on machine i. The following AH is applied
to assign non-seed jobs to machine schedules for each s.

Step 1: Read s from the current population.
Step 2: Initialize the completion time Ci,s of each machine

schedule di,s, i = 1,2, . . . ,m, to zero.
Step 3: Assign the seed jobs with label 1 to the seed set and

the remaining ones with label 0 to the non-seed set
for s. Discard any job with label #. The order of
the jobs in non-seed must preserve the WSPT–

SPT order.
Step 4: For each seed job k (k 2 N) in the seed set, assign

to one machine schedule di,s and add the total exe-
cution time ttk of job k to the Ci,s.

Step 5: Assign the first job j in the non-seed set to the cho-
sen machine schedule di,s that has the minimum
completion time Ci,s among all m machine sched-
ules; if two machine schedules have the same min-
imum Ci,s value, choose one arbitrarily.

Step 6: Add the total execution time ttj of job j to the com-
pletion time Ci,s of the chosen machine schedule
di,s, that is, set Ci,s := Ci,s + ttj.
Step 7: Remove job j from the non-seed set list.
Step 8: Repeat Steps 5 to 7 until the non-seed set job list is

empty.

Exactly m machine schedules are created after applying
AH for each s. For example in Fig. 1, Ps={d1,s,d2,s,
d3,s},d1,s={1,3}, d2,s = {4,7,2} and d3,s = {8,9,5}, corre-
sponding to the seed set J1(s) = {1,4,8}. Notably, the seed
job k in di,s may not be scheduled if the position that it
occupies does not satisfy the WSPT-SPT order after per-
forming AH. Hence, an order in which the insertion should
be applied has to be specified.

4.2. CGA modeling

The problem FFcjpij ¼ pjj
Pn

j¼1WjCj is modeled as the
following bi-objective optimization problem (BOP):

Min fGðsÞ � F ðsÞg
Max GðsÞ
Subject to GðsÞP F ðsÞ; 8s 2 H

ð3Þ

Functions G and F are defined as the double fitness evalu-
ation of a structure or schema s, which can be obtained
using a specific representation. Both G and F are the key
support functions guiding the evolution process to find
the best structures, and must be properly identified in the
problem FFcjpij ¼ pjj

Pn
j¼1WjCj. Function G reflects the to-

tal cost (total weighted completion time) of a total schedule
Ps after the application of AH. Let L(Ps) be the objective
value of a schedule Ps, and function G is defined by
G(s) = L(Ps).

LðPsÞ ¼
Xm

i¼1

T i;s ð4Þ

where T i;s ¼
P

j2di;s

Pj
k¼1wjpk þ ðs� 1Þ

P
j2di;swj max

fp1; . . . ; pjg is the total weighted completion time of the
machine schedule di,s 2 Ps.

The other fitness function F is defined to play a role in a
population trained by using a heuristic during the evolu-
tionary process. The chosen heuristic is the tabu search,
which is incorporated in CGA to propose the HCGA,
and can be described in the next subsection.

4.2.1. Tabu search

As discussed in (Barnes & Laguna, 1993), tabu search
(TS) is a kind of neighborhood search technique. The basic
TS based on insert and swap moves for generating a neigh-
borhood from the current schedule PCs. An insert move
removes a job from one machine and inserts it into
another. A swap move chooses a pair of jobs and switches
their machine assignment. During the local search for the
best move, only those moves that preserve the WSPT–

SPT order in every machine are considered. After that
the best neighborhood schedule PBs is selected, the neigh-
borhood generation scheme is then applied again, starting
from PBs. This procedure is iterated until a PBs that satis-
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fies a user-defined termination condition is obtained. More-
over, schedule Ps is an initial schedule for TS, and the ini-
tial solution often influenes the quality of the final solution
(Kim & Shin, 2003). Thus, function F can be obtained by

F ðsÞ ¼ LðPBsÞ ð5Þ

Clearly G(s) P F(s) for all s 2 H. Furthermore, the exe-
cution of swap moves does not result in a change in the
number of jobs on machines. A swap move generally has
a smaller move distance (the change in current solution
caused by the execution of a given move) than insert
moves. To avoid that the computational effort increases,
we present an efficiency of the scheme for generating neigh-
borhood schedules from the current schedule. Thus, a can-
didate list strategy is designed and based on (Bilge, Kiraç,
Kurtulan, & Pekgün, 2004) to restrict the number of solu-
tions examined on a given iteration for insert moves. This
strategy is described as follows:

• Calculate the total weighted completion time of each
machine schedule di,s 2 PCs described in Eq. (4).

• Choose the machine schedule dr,s with highest total
weighted completion time.

• Consider every job in machine schedule dr,s for an inser-
tion on any other machine schedule dq,s, r 5 q. Note
that an insert move can be determined in constant time
if it preserves the WSPT–SPT order on the receiving
machine schedule.

The first objective on BOP is conducted by the interval
minimization G–F, which occurs on structures near to a
local tabu search minimum. Significantly, a direct objective
of the problem FFcjpij ¼ pjj

Pn
j¼1WjCj is indirectly repro-

duced at the (G–F) minimization. The second objective
guides the evolution process to constructive schemata in
structures.

4.3. The evolution process

The evolution process proceeds with an adaptive rejec-
tion threshold, which considers the objectives (interval
minimization and G maximization) of BOP. The evolution
process is guided by a variable c P 0, the following expres-
sion presents a condition for elimination of a structure or
schema s from the current population.

GðsÞ � F ðsÞP d � Gupper � c � d½Gupper � GðsÞ� ð6Þ

Two expected values are given at the beginning of the pro-
cess. The first value is a non-negative real number Gupper >
maxs2HG(s), which is an upper bound on the objective
value obtained by generating a structure using a heuristic,
ensuring that Gupper receives the G evaluation for that
structure. The other expected value is the interval length
d Æ Gupper obtained from Gupper where d is a real number
0 < d 6 1.

As initially good schemata must be preserved for recom-
bination, parameter c starts at zero and increases slowly
from generation to generation. The population at evolution
time c, denoted by Cc, is dynamic in size according to the
value of the parameter c. The population can shrink to zero
during the evolution process. Rearranging Eq. (6), a struc-
ture or schema s should be discarded from current popula-
tion if it satisfies

uðsÞ ¼ d � Gupper � ½GðsÞ � F ðsÞ�
d½Gupper � GðsÞ� 6 c ð7Þ

structures or schemata are given their corresponding rank
u(s) when they are created. If an offspring resulting from
recombination or mutation with a higher rank value is
found, then that structure or schema has a higher probabil-
ity of surviving for recombination in the next generation.

4.3.1. Initial population
The initial population is composed exclusively of sche-

mata, such that for each schema, some random positions
are labeled 0 and m (number of machines at each stage)
random positions are labeled 1, and the remaining posi-
tions are labeled #. For a sequence of generations, the pop-
ulation can increase by adding new offspring generated
through recombination or mutation.

4.3.2. Selection and recombination operators

According to Eq. (6), structures or schemata with small
gap [G(s) � F(s)] and/or higher G(s) values have more
chance of surviving for recombination or mutation. The
structures and schemata in population Cc are non-decreas-
ing ordered using the following key:

DðsÞ ¼ 1þ dðsÞ
g

ð8Þ

where d(s) = [G(s) � F(s)]/G(s), g is the number of labels
different from # in s. Thus, structures or schemata with
small number of labels # and/or presenting small d(s) are
considered better and appear in first order positions.

Two structures and/or schemata are selected for
recombination. The first is called the base (sbase) and is
randomly selected out of the first positions in Cc. The
second one is called the guide (sguide) and is randomly
selected out of the total population. Let snew be the new
structure or schema (offspring) that preserves the number
of seeds (number of machines at each stage) after perform-
ing recombination. The operations of recombination are
described as follows (to be executed in this order).

Recombination
For each j 2 {1, . . . ,n} if sbase j = sguidej then

set snew j = sbase j

For each j 2 {1, . . . ,n}if sguide j = # then

set snew j = sbase j

For each j 2 {1, . . . ,n} if sbase j = # and sguide j = 0 then

set snew j = 0
For each j 2 {1, . . . ,n} if sbase j = # or 0 and sguide j = 1
then

set snew j = 1 and set snew i = 0 for some snew i = 1
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For each j 2 {1, . . . ,n} if sbase j = 1 and sguide j = 0 then

set snew j = 0 and set snew i = 1 for some snew i = 0
4.3.3. Mutation operator

Mutation process can enhance the diversity and provide
the opportunity to escape from local optima. If the selected
base is a schema, then it is combined with a guide individ-
ual (schema or structure) to generate a new offspring;
otherwise, a mutation operator is applied and is compared
to the best structure found so far. At each generation, n

new individuals (structures and/or schemata) are created,
and their ranks are computed and compared with c,
which determines whether they are included in the new
population.

Mutation
For each positionj with label 1 do

For eachposition k with label 0 do

Interchange the labels on position j and k generat-
ing an offspring snew; (offspring generation)
Given Gupper and d

Population initialization and set γ = 
0.05 

Evaluate initial population : determine
and perform TS for F(τ), then cal
rank value ϕ(τ) for all τ ∈Γγ

Stopping criterion 
is  satisfied ? 

Recombine base and guide 

Evaluate new offspring generated 
from recombination or mutation 

Perform TS and Compute rank 
value for all new generated 
off spring in Γγ

No

Eliminate τ from Γγ satisfying γ >ϕ

Set γ = γ + ε

Select base and guide from Γγ

Fig. 2. Framework o
Interchange the labels on position j and k; (return to

the original s)
End_for

End_for
4.4. The algorithm

Based on the proposed assignment heuristic, tabu search
heuristic, population initialization and CGA operators, the
HCGA approach begins with recombination procedure
(over schemata only) and the constructive process builds
structure (full individuals) progressively at each generation.
Additionally, the structure can be generated to fill the
sbase substituting the # labels for 0 labels before the
recombination.

The HCGA framework is proposed as illustrated in
Fig. 2. It can be seen that HCGA not only applies the
CGA-based evolutionary process to effectively perform
exploration for promising solutions, but it also adopts TS
simultaneously to perform exploitation for solution
0, ε = 

 G(τ), 
culate 

Output the best 
solution based on the 
TS result 

Yes

(τ)

f HCGA.
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improvement. Two stopping conditions are considered:
stop when the population is empty, or at a predefined num-
ber of generations.

5. Computational results

5.1. Experimental setup

The HCGA approach described in Section 4 was imple-
mented in C and tested on a Pentium 4 (1.80 GHz). Since
no sample problems that could be adopted as benchmarks
for measuring the HCGA approach were found in the liter-
ature, the test problems were randomly generated to com-
pare with the column generation (CG) approach proposed
by Van den Akker et al. (1999) in solving parallel machine
scheduling problem. However, the problem FFcjpij ¼
pjj
Pn

j¼1WjCj significantly differs from the parallel-identi-
cal-machine scheduling problem with the same objective.
Thus, some algorithms in (Van den Akker et al., 1999) need
to be redesigned and modified according to the character-
istic of a PFS problem in (Shakhlevich et al., 1998) for solv-
ing the problem FFcjpij ¼ pjj

Pn
j¼1WjCj, and called CG-

PFFS. For completeness, CG-PFFS is explained in detail
in the Appendix. LINGO 8.0 solver was used to solve the
linear programming involved in CG-PFFS. Some HCGA
parameters were adjusted for all results presented in Tables
2 and 3. The c increase interval was set to 0.05 for
0 6 c 6 1, and 0.025 for c > 1, where d = 0.1. These param-
eters avoid the premature termination with an empty pop-
ulation. For each schema in the initial population, 20% of
Table 1
Computational results from CG-PFFS

Problem structures n · s · m Solved at root node Number of

20 · 3 · 3 20 0
20 · 3 · 4 19 2
20 · 3 · 5 20 0
30 · 3 · 3 13 1.2
30 · 3 · 4 10 1.8
30 · 3 · 5 15 2.5
40 · 3 · 3 5 8.5
40 · 3 · 4 2 11.5
40 · 3 · 5 8 8.2
50 · 3 · 3 1 13.1
50 · 3 · 4 1 12.3
50 · 3 · 5 2 5.3
60 · 3 · 8 5 18.5
60 · 3 · 12 6 10.5
60 · 3 · 16 8 5.3
60 · 3 · 20 15 2.5
80 · 3 · 8 0 31.8
80 · 3 · 12 0 25.4
80 · 3 · 16 2 18.3
80 · 3 · 20 4 11.5
100 · 3 · 8 0 50.3
100 · 3 · 12 0 31.5
100 · 3 · 16 0 24.1
100 · 3 · 20 0 19.8

Max LP–IP gap = the maximum gap in percentage between the solution value o
(IP) based on 20 problems for each combination of n and m, computed as [(I
the n (n 2 N) random positions received Label 0, and 10–
20% of better individuals in the population were considered
for the selection of the individuals base. The number of
individuals initially generated was proportional to the
problem length. In addition, the TS is only applied to a
population training and the solution improvement. Thus,
the search iteration number of TS was fixed at 20, and
not too great a computational effort will be consumed. Ide-
ally the situation would be to use greater iteration number;
however, this would turn the algorithm very slow. Four
other parameters are chosen as follows:

(1) Number of machines m 2 {3,4,5,8,12,16,20}.
(2) Number of jobs n 2 {20,30,40,50,60,80,100}.
(3) The processing time pjdrawn from the uniform distri-

bution [1, 20].
(4) The weights are randomly generated from a uniform

distribution [1, 100].
5.2. Results from CG-PFFS

Twenty test problems are randomly generated for each
combination of n and m. Furthermore, for a fixed m and
n, the number of stages is increased without significantly
increasing the time complexity. Therefore, the experiments
do not differentiate between the number of stages for the
fixed n and m. For simplicity, all other entries shown in
Table 1 represent the average performance value based
on 20 problems with the number of stages fixed to three
for each combination of n and m.
nodes searched Max LP–IP gap (%) Avg CPU time (s)

0.000 2.21
0.008 1.81
0.000 1.18
0.001 6.34
0.001 5.35
0.000 2.81
0.001 53.34
0.008 15.21
0.003 9.09
0.001 289.21
0.002 81.32
0.002 28.11
0.003 61.45
0.001 22.18
0.000 9.31
0.000 3.74
0.005 496.33
0.005 132.27
0.001 61.34
0.000 26.28
0.017 1596.35
0.010 503.61
0.004 305.02
0.000 112.15

f linear relaxation solved at root node (LP) and the integral solution value
P–LP)/IP]100%.



Table 2
Comparisons of HCGA, CG-PFFS and PTS for problems with n = 20, 30,
40, and 50

n · s · m aCG-PFFS %Dev Avg CPU time (s)

HCGA PTS CG-PFFS HCGA PTS

20 · 3 · 3 41,129 0.000 0.000 2.4 2.7 2.2
20 · 3 · 4 34,534 0.000 0.000 1.7 5.2 3.1
20 · 3 · 5 29,678 0.000 0.000 1.5 7.5 3.9
30 · 3 · 3 69,179 0.000 0.000 6.7 6.4 3.8
30 · 3 · 4 55,008 0.000 0.000 5.2 9.3 5.2
30 · 3 · 5 46,543 0.000 0.000 2.7 13.2 6.9
40 · 3 · 3 196,381 0.000 0.000 51.2 8.4 5.8
40 · 3 · 4 152,822 0.000 0.137 14.3 13.6 8.5
40 · 3 · 5 126,676 0.000 0.159 10.1 18.5 12.3
50 · 3 · 3 191,723 0.000 0.000 293.5 13.7 8.2
50 · 3 · 4 148,945 0.000 0.184 78.3 19.6 13.3
50 · 3 · 5 123,295 0.000 0.493 26.7 26.2 20.6
Average 0.000 0.081 41.2 12.0 7.8

%Dev = the deviation in percentage between the CG-PFFS and the
HCGA/PTS best objective value found, computed as [(HCGA/PTS best
objective value – aCG-PFFS) · 100]/(HCGA/PTS best objective value).

a CG-PFFS = the best objective value found by CG-PFFS.
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Table 1 demonstrates the resulting performance for the
PFFS problems of smaller size and larger size. For the
problems of smaller size, the numbers of jobs are 20, 30,
40 and 50. It can be seen that the problems are solved at
the root node of the linear relaxation problem without
branching for 116 problems out of 240. Particularly, the
integral solutions of linear relaxation programming are
often obtained at the root node with n 6 30. Additionally,
the maximum gap between the LP and IP is lower than
0.01%, which is extremely small. Furthermore, 85% of
the 240 test problems occur in which the integral solution
value and lower bound concur in our experiments. For
the problems of larger size, the numbers of jobs are
extended to 60, 80 and 100, and the numbers of machines
are increased to 8, 12, 16 and 20. Clearly, branching is
involved more than 80% of these large problems. More-
over, the lower bound value remains tight for most of the
test problems; the maximum gap between the LP and IP
is also lower than 0.05%.

It has been observed from Table 1 that CG-PFFS yields
solutions of superior quality and performs very well when
the number of jobs to number of machines is fairly small.
However, for a fixed n, given a smaller number of machines
m, an ideal machine schedule on a single machine should
contain more jobs. Additionally, more columns may have
to be produced by the column generation procedure, slow-
ing the algorithm. This finding is consistent with the results
obtained by Van den Akker et al. (1999), Chen and Powell
(1999) and Lee and Chen (2000) for solving other parallel
machine scheduling problems using the CG approach.

5.3. Comparison of CG-PFFS and HCGA

This study has already shown that CG-PFFS produces
excellent quality solutions. This subsection demonstrates
that the HCGA approach can also obtain solutions as
good as those of CG-PFFS, but with less computation
Table 3
Comparisons of HCGA, CG-PFFS and PTS for problems with n = 60, 80, 10

n · s · m aCG-PFFS % Dev

HCGA P

60 · 3 · 4 227,014 0.000 0
60 · 3 · 8 126,958 0.000 0
60 · 3 · 12 94,058 0.325 0
60 · 3 · 16 77,708 0.543 0
80 · 3 · 4 319,033 0.000 0
80 · 3 · 8 174,642 0.000 0
80 · 3 · 12 126,958 0.378 0
80 · 3 · 16 103,373 0.451 1
80 · 3 · 20 89,474 0.745 1
100 · 3 · 8 337,979 0.233 0
100 · 3 · 12 240,223 0.365 1
100 · 3 · 16 191,549 0.627 1
100 · 3 · 20 162,707 1.045 2
Average 0.362 0

%Dev = the deviation in percentage between the CG-PFFS and the HCGA/P
value – aCG-PFFS) · 100]/(HCGA/PTS best objective value).

a CG-PFFS = the best objective value found by CG-PFFS.
time. To test the performance of the proposed HCGA,
each combination of n and m was run ten times with the
same processing time and weight. Each run was stopped
when the best solution of CG-PFFS was reached, or when
the population is empty. The average CPU times shown in
Tables 2 and 3 represent the average of performance mea-
sures for ten runs of the corresponding problem.

Table 2 demonstrates that the deviation between the
CG-PFFS and the HCGA best objective values found are
equal to 0%. The result of the large-size problem presented
in Table 3 shows that the deviation between the CG-PFFS
and the HCGA best objective values found are also equal
to 0% when m 6 8. These results indicate that incorporat-
ing the proposed TS into HCGA not only demonstrates
the effective utilization in a population training, driving
0

Avg CPU time(sec)

TS CG-PFFS HCGA PTS

.088 585.1 27.5 21.4

.588 63.7 40.1 29.1

.649 23.2 65.5 41.5

.767 11.4 95.4 53.3

.236 1761.5 36.4 32.2

.419 506.3 65.3 48.8

.928 138.5 92.8 67.4

.121 60.9 122.6 90.4

.583 28.8 238.8 121.3

.413 1611.3 79.3 73.9

.075 515.5 155.8 112.3

.642 312.9 247.6 174.2

.226 125.8 498.8 244.8

.903 441.9 135.8 85.4

TS best objective value found, computed as [(HCGA/PTS best objective
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the evolutionary process in an appropriate direction and
the fast convergence, but it also performs exploitation for
solution improvement. This can be explained that the
new offspring generated by recombination or mutation
were considered as good structures or schemata and also
good quality of the initial schedules for TS during the evo-
lution process. In general, the performance of TS is largely
affected not only by the efficiency of the scheme for gener-
ating neighborhood schedules from the current schedule,
but also by the quality of the initial schedule (Kim & Shin,
2003).

Significantly, the average CPU time consumed by
HCGA is much lower than that of CG-PFFS and does
not increase greatly as the problem size increases, especially
when the ratio of number of jobs to number of machines is
fairly high. Notably, the gap result of HCGA is slightly
worse than that of CG-PFFS when m P 12. However,
the maximum %Dev in Table 3 is 1.045%, and is very close
to the solution of CG-PFFS.

5.4. Comparison of HCGA and pure tabu search

To further demonstrate the effectiveness of HCGA, an
additional simulation is carried out to compare the HCGA
with a pure tabu search (PTS) algorithm proposed by
Barnes and Laguna (1993). We terminate the algorithm if
there is no improvement to the best solution obtained after
100 iterations or if the maximum number of iterations
reaches at 1000. To generate an initial schedule for PTS,
a simple heuristic is applied by assigning the jobs that pre-
serve the WSPT–SPT order randomly to the machines,
where an earlier available machine has a higher probability
of getting the next job on the list, until all jobs are
scheduled.

Tables 2 and 3 demonstrate that the both algorithms
obtained the same objective values when n 6 30. However,
the %Dev values from HCGA are much better than those
obtained by PTS when n P 40, which show the effective-
ness of incorporating the TS into CGA.

6. Conclusions

This study has investigated the HCGA approach for
minimizing total weighted completion time in a propor-
tionate flexible flow shop problem. To the best of our
knowledge, this is the first attempt to deal with the parallel
machine scheduling problems using the CGA approach.
The proposed HCGA applied the evolutionary searching
mechanism of CGA characterized by population training
to effectively perform exploration. Moreover, HCGA
adopted the TS to perform exploitation for solution
improvement. Additionally, the proposed candidate list
strategy for TS not only increases the speed of the search,
but also improves the solution quality. The experimental
results demonstrate the robustness of the proposed HCGA
in terms of solution quality and the average computation
time. In particular, HCGA seems to be superior when the
ratio of number of jobs to number of machines is fairly
high. Accordingly, HCGA can be considered as another
effective approach for other parallel machine scheduling
problems to minimize makespan, tardiness, maximum
completion time or maximum lateness. Moreover, the
CGA concepts and properties are independent on the
representation and decoders used, i.e., different representa-
tions of the CGA application can be designed for various
machine scheduling problems. Further research encourages
the extension of CGA incorporating other local search
methods for job shop and multi-objective scheduling
problems.

Appendix. Modifications in (Van den Akker et al., 1999) for
solving the problem FFcjpij ¼ pjj+

n

j¼1
WjCj

This appendix describes some modifications to be made
in (Van den Akker et al., 1999) for solving the problem
FFcjpij ¼ pjj

Pn
j¼1WjCj, based on ideas provided by Shak-

hlevich et al. (1998). The following lemma describes the
property associated with an optimal schedule of the PFS
problem to minimize WCT in (Shakhlevich et al., 1998).
The lemma is adopted later to restrict the search
space for finding the optimum schedule of the problem
FFcjpij ¼ pjj

Pn
j¼1WjCj by using the column generation

approach.

Lemma. There exists an optimal schedule, if for two jobs j

and k both wj/pj P wk/pk and pj 6 pk, then job jprecedes job k

on the same machine.

According to the proof of the Lemma, an interchange
argument (IA) is applied to obtain a schedule that satisfies
the rule described in Lemma. The IA is stated as follows:

Step 1: First reindex all jobs (1, 2, . . . ,n) in the WSPT
order.

Step 2: Let job j be the job with the smallest processing
time, but it is not scheduled according to its posi-
tion in the shortest processing time (SPT) order;
assume job k occupies that position in the current
sequence.

Step 3: Move job j immediately in front of job k, but after
all jobs that precede job j in the SPT order.

Step 4: Proceed steps 2 and 3, and eventually produce a
sequence that satisfies the Lemma.

After the execution of IA, let P ¼
Pn

j¼1pj þ ðs� 1Þ
maxfp1; . . . ; png denote the total processing time of the
jobs. Thus the dynamic programming (DP) is designed
for solving a single machine subproblem, and the DP
described by (Van den Akker et al., 1999) can be modified
as follows:

Let r represent any machine schedule on a single
machine and Fj(t) denote the minimum reduced cost of a
machine schedule consisting of a subset of jobs {1,
2, . . . , j} that satisfies the Lemma, where job j is the current
last job and is completed at timet at stage s. For machine
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schedule that realizes Fj(t), there are two possibilities: either
job j is not part of it, or the machine schedule contains job
j. The first possibility is that the machine schedule with the
first j � 1 jobs completed at time t is selected; the value of
this solution can be determined by Fj�1(t). The second
possibility is then to include job j in the machine schedule
for the first j � 1 jobs that completes at time t � spj +
(s � 1)pj�1; the value of this solution then can be
determined by Fj�1(t � spj + (s � 1)pj�1) + wjt � kj. Ini-
tialization

F jðtÞ ¼
�k0; if j ¼ 0 and t ¼ 0

1; otherwise

�

Recurrence relation
For j = 1, . . . ,n, t = 0, . . . ,P,
Fj(t) = min{Fj�1(t),Fj�1(t � spj + (s � 1)pj�1) + wjt � kj},

s 2 S

The value is determined by solving:

min06t6P F nðtÞ

The next modification describes the branch-and-bound
algorithm applied when a fractional solution is obtained.
The following theorem, described by (Van den Akker
et al., 1999), converts a fractional linear relaxation pro-
gramming solution into an integral solution with the same
objective solution. Let Cj(r) denote the completion time of
job j in r.

Theorem. If Cj(r) = Cj for each job j(j = 1, . . . , n) and for

each r with x�r >0, then the schedule obtained by processing

job j in the time interval [Cj � pj,Cj] is feasible and has

minimum cost.

As shown above, the jobs have been indexed to satisfy the
Lemma in each machine schedule r generated by performing
the dynamic programming algorithm for solving a subprob-
lem. Thus, the completion time of job j in r equals the
starting time on that machine at the first stage plus spj.
Therefore, the time interval [Cj � pj,Cj] described in Theo-
rem can be modified and be rewritten as [Cj � spj,Cj].

If the optimal solution to the linear relaxation program-
ming neither is integral nor satisfies the conditions of the
modified Theorem, then a branch and bound algorithm is
applied to find an integral solution. Moreover, according
to the description in (Van den Akker et al., 1999), two
descendant nodes are created such a job j a fractional job:
one for the condition that Cj 6 minfCjðrÞjx�r > 0g and
other one for the condition that CjPminfCjðrÞjx�r > 0g þ 1.
The first constraint is that the job j must be completed at
deadline dj at stage s 2 S. The second constraint specifies a
release date rj ¼ minfCjðrÞjx�r > 0g þ 1� spj. Both con-
straints can be easily incorporated into the dynamic
programming algorithm. Therefore, the recurrence relation
described in above can be rewritten as follows:

F jðtÞ¼
minfFj�1ðtÞ;Fj�1ðt� spjþðs�1Þpj�1Þþwjt�kjg; if rjþ spj6 t6 dj;

Fj�1ðtÞ; otherwise

�

Finally, after an integral solution has been determined,
let X is the set containing mmachine schedules r, and
reconstruct the jobs in each r 2 X to form the WSPT–

SPT order using Shakhlevich’s WSPT-MCI algorithm
described in Section 4.1.
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