COMPUTER-AIDED
DESIGN

Computer-Aided Design 34 (2002) 337-345

www.elsevier.com/locate/cad

Short Communication

The conversion of a dynamic B-spline curve into piecewise polynomials
in power form

D.-S. Kim**, J. Ryu®, H.C. Lee®, H. Shin®

“Department of Industrial Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul, 133-791, South Korea
bDepartment of Industrial Engineering, Hongik University, Seoul, South Korea
‘Department of Industrial Engineering, KAIST (Korea Advanced Institute of Science and Technology), Taejon, South Korea

Received 21 March 2000; revised 12 January 2001; accepted 22 January 2001

Abstract

The evaluation of points and the computations of inflection points or cusps on a curve are often necessary in CAGD applications. When a
curve is represented in a B-spline form, such computations can be made easier once it is transformed into a set of piecewise polynomial
curves in power form. The usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in power form is
done either by a knot refinement followed by basis conversions, or by applying a Taylor expansion on each knot span of a B-spline curve.

Presented in this paper is a new algorithm to convert a B-spline curve into a set of piecewise polynomial curves in power form. Experiment
shows that the proposed algorithm significantly outperforms the conventional approach when one or more control points of a B-spline curve

are continuously moving. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Dynamic curve; B-spline; Polynomial; Power form; Basis conversion; Taylor expansion

1. Introduction

In computer graphics and the applications of geometric
modeling, it is often necessary to manipulate B-spline
curves or surfaces by converting the B-spline representation
into a set of piecewise polynomial curves or surfaces in
power form. Once a curve is represented in power form, a
point evaluation can be made faster due to Horner’s rule
even though the issue of stability remains [1]. It is also
known that faster computation of the characteristic points
on a curve, such as inflection points and cusps, can be
facilitated by the conversion of a B-spline curve into a set
of piecewise polynomial curves in power form. Note that the
subdivision of a parametric curve at these characteristic
points facilitates the fast computation of intersection points
between curves [2]. In addition, this form of curve is
supported by IGES as an entity type 112 [3].

Due to the relative advantages of implicit representation
of curves or surfaces over parametric one in some geometric
calculations such as a point inclusion problem, it is some-
times necessary that a parametric form be converted into an
implicit form [4]. The implicitization process, which uses a
resultant, usually requires the geometry to be represented in

* Corresponding author. Tel.: +82-2-2290-0472; fax: +82-2-2292-0472.
E-mail address: dskim@hangyang.ac.kr (D.-S. Kim).

power form [5]. Since this operation is computationally
demanding, the reduction of computation should not be
ignored.

Discussed in this paper is the transformation of a B-spline
curve into a set of piecewise polynomials in power form,
which is known to be a tedious task [6]. Two types of curves
are considered for the problem: static and dynamic curves.
In this paper, a curve is called dynamic when one or more of
the control points of the curve are moving. Otherwise, a
curve is called static.

There are a few existing approaches to this problem on
static cases. Since a static B-spline curve can be converted
into a set of piecewise Bézier curves by a knot refinement
[7—11], applying a basis conversion operation to each piece
will produce a set of piecewise polynomials in power form.
This approach is called the KR-approach in this paper. The
same problem can also be solved by applying Taylor expan-
sion of the B-spline curve at the beginning of each knot span
with the appropriate number of terms depending on the
degree of the curve [12], which is denoted by the TE-
approach in this paper.

In this paper, however, we propose a different approach
using the properties of basis functions. Note that a power
form of B-spline curve can be easily obtained if the basis
functions are maintained in power form. When one or more
control points are moving, the multiplication of the

0010-4485/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(01)00090-2

338 D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345
I |
Nos N . NS
,—-NL..L B 1 o N -—-«.\% -] —~— . -
/« _\\ /,/ A"“l_\/ 7 \\'xf/ .. (}&’_‘ “__\ /./'J ~.

N\ e g TN N N AN
AN D N N ZANA
/X < ~L > 4 R
/ /.f’/ \.\'\-.._a—-""‘f - T — T -~ \\"'—»_____ f_ﬂ—/{ﬂ \""-__ ____*"f’/ \-‘"’—u__ = g _ }
ti=ti=t:=t; t ts te t: ty=to=ti=tu
(a)

“(‘30.3 Toyf
!
' 3 - 5
B s Bl Tl el o Ta /
\ re . o P S, — . // ./
A Toa < = A< P g 7
/ =N e \\\ N N 7 NTsa
,"/ \}) /r T - - . ,”/ \\\ 7 T "~ - \\‘. | N\
P 33 4 ’Cl 4 T _'_\:3 :\ N3 T.-_ S T -{ 2 f\,{(}f’ \.\T 7 'x\\‘
'./ .r-"/ _:—'—“:——;// \'R‘\-_‘:f _FJA fc‘:;:"‘* f"’f &(\ — ‘x‘_é_’_{/_/ \.__ \
tu:tlzt:: ts 1 ts te t: ts=tv=ti=tn
(b)

Fig. 1. An example of basis splines and truncated basis functions (p =3, m=11).

displacement of control points with the corresponding basis
functions only need to be calculated for updating the curve.
Since the basis functions of a B-spline curve are spline
curves themselves, it is necessary to maintain a set of
power form polynomial curves for a basis function con-
veniently. One way to obtain the power form of a basis
function is applying Taylor expansion of the basis function
at the beginning of each knot span appropriately. Note that
the convenient form of the derivatives of basis functions is
readily available [1,11]. In this paper, we present a different,
yet more efficient, approach for this problem as well.

The main idea of the proposed algorithm, called a direct
expansion (DE) algorithm, is as follows: after locating the
coefficients of all linear terms that make up the basis func-
tions in a knot span, the algorithm directly obtains the power
form representation of basis functions in the knot span by
expanding the summation of products of appropriate linear
terms. Then, the polynomial curves in power form in the
knot span can easily be obtained by summing up the multi-
plications of the basis functions in power form with corre-
sponding control points. Repeating this operation for each
knot span, all of the polynomials of a B-spline curve are
transformed into a set of piecewise polynomials in power
form.

Through experiments, it has been observed that the
proposed DE algorithm significantly outperforms the exist-
ing approaches for the case of dynamic curves. Hence, the

proposed algorithm can be very useful for the curve and
surface implicitization as well as the computation of inter-
sections when the curves or surfaces are dynamically
changing.

This paper is organized as follows: Section 2 provides the
basic introduction to basis functions of the B-spline curve
and introduces the key concepts to develop the algorithm. In
Sections 3 and 4, the computations of the power form poly-
nomial curve segments of static and dynamic B-spline
curves are discussed. In Section 5, the experiment results
for the dynamic curve are presented.

2. Representation of basis functions

A B-spline curve of degree p with (m + 1) knots is
defined by

m—p—1

Cty= > PN,n for 0=1=1
i=0

ey

where P; and N,,() are control points and B-spline
basis functions of degree p on a knot vector U=
{0,....0t) 115 . st—p—1,1,... 1}, i = 1,1y, respectively [11]. In
Eq. (1), the basis function N;,(t) is defined as the following
recurrence formula.

D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345 339

l+p+1 -t

t— 1
Ni,p(t) = T lp l(t) + Ni+1,p7](t)
ti+p - tt+p+1 it
. (2)
1 if ti =< ti+l
Nio(t) = ,
0 otherwise

where i =0,1,..., m — p — 1. It is known that Eq. (2) forms
a triangular scheme [11]. For the convenience of discussion,
we will use N, instead of N, (7).

Definition 1. A truncated basis function, 7;,(t), i =w —
pw—p+1l...w,w=pp+1,...m—p—1,is an active
polynomial segment of N;,, in [f,,t,,+1).

Fig. 1(a) shows cubic B-spline basis function with
m = 11, and Fig. 1(b) illustrates the corresponding truncated
basis functions in each knot span.

Note that there are p + 1 truncated basis functions in
[#;,t;+1) for a B-spline curve of degree p. If we collect all
the truncated basis functions with same i-value, then we can
obtain a B-spline basis function. Thus, B-spline basis func-

tion N;, can be represented by the following equation.
i+p
Nip =D TN, 3)

w=i

Let Eq. (2) be rewritten as follows

Ni,p = hi,p(t)Ni,pfl + Vi,p(t)NiJrl,p*l (4)
where
- livp+1 — 1
hip(1) = 41, Vip(t) = —F——)
t; t; -1
1+p i i+p+1 i+1

In the triangular scheme, a directed edge from N;; to N is
called a horizontal edge and has an edge value of h;j, (f) if
k=1 and [=j + 1. Similarly, a directed edge is called a
vertical edge and has an edge value of v;— ;) if
k=i—1landl=j+ 1.

It turns out that the truncated basis function is composed
of the summation of the products of /;,(¢)’s and v; ,(£)’s. The
proposed algorithm collects all £, ,()’s and v;,(#)’s of each
truncated basis function of a knot span, and efficiently
performs the necessary summations of multiplications
between appropriate £;,(f)’s and v;,(#)’s so that the result
should be the desired truncated basis functions arranged in
power form in the knot span. Then, the B-spline curve in the
knot span can easily be transformed into a polynomial curve
in power form by the summation of the multiplications
between appropriate control points and truncated basis func-
tions. Thus, a B-spline curve can be transformed into a set of
piecewise polynomial curves in power form by repeating the
above-mentioned operation for each knot span.

Therefore, the fundamental question is how to efficiently
extract all the truncated basis functions in the power form of
each knot span. The a priori knowledge of each constituent
h; ,(t) and v; ,(7) of a truncated basis function would enable us to

exploit the repeated form for calculating a truncated basis
function. Let us focus our interest on one knot span for the
time being. Fig. 2(a) is the directed graph, which illustrates a
subset of triangular scheme in a knot span [#3,¢4) and shows the
necessary computations for four truncated basis functions in a
knot span [t3,5). Arrows in the figure should be interpreted as
appropriate linear polynomials, which are defined by Eq. (5)
and eventually comprise four truncated basis functions in
[#3,24). The root and four leaf nodes correspond to a knot
span and four truncated basis functions, respectively.

Definition 2. A path 7 from N;; to Ny, is the set of
directed edges consisting of a path from N;; to Ny, and a
path set Il = {m,,a=1,2,...,n} where n is the number of
possible paths.

Definition 3. Given N,y, N;,, and I1, a graph primitive is

U

a

The union operation in the previous definition implies the
superposition of all paths so that the result should yield a
topologically merged graph. It turns out that a truncated
basis function corresponds to a graph primitive such as
Fig. 2(b). In [#3,t4), for example, there are four truncated
basis functions: 7(3(t), 713(¢), T23(f), and 73 3(¢). Each trun-
cated basis function, 7;5(¢), i = 0,1,2, and 3, corresponds to
the summation of the product of all the linear polynomials in
paths from N;, to N;; (i=0,1,2,3), respectively. In Fig.
2(b), for example, there are three possible paths 7;,7, and
a3 from N3 to N, 3, and therefore the truncated basis func-
tion 7;3(f) can be obtained as follows

T 3() = vo 1 (O 2(Dh 3(8) + v 1 (Dhy (O 3(8) + hs 1 (Vo (Dvy 3(2)

(6)
Theorem 1. Tiw(0), i=w—pw—p+1,..,w
w=p,p+1,...m—p— 1,for[t,t,+) can be represented as

mm—ﬂ@mmﬂ 2o (D

L=1

Ti(®) = > Py(0)
k=1

Fig. 2. A graph primitive corresponding to 7 3(f).

340 D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345

where 7, is the number of all the possible paths from N, to
Ny, i=w — p,...,w.n,and n, are the number of horizontal and
vertical directed edges in each path, respectively, and /; and [,
are arbitrary indices. Note thatn;, + n, = p,and p;, p,, qs, and g,
are appropriate integers needed to define horizontal and verti-
cal directed edges in each knot span.

Note that n, = m and the number of graph
primitives in a knot span for a curve of degree p is
(»p + 1). In Fig. 3, four graph primitives for Fig. 2 are
presented. Fig. 3(a)—(d) correspond to truncated basis func-
tions 70,3(1‘), 71,3(1‘), 723([) and 73’3(1‘) in [f3,l4), respectively.

According to the theorem, if all the possible paths in
each graph primitive of a knot span can be enumerated,
then each truncated basis function of the knot span can be
obtained by summing up the products of the linear poly-
nomials for each path. Furthermore, once the degree of
curve is fixed, these paths are identical for all the knot
spans. Therefore, the algorithm requires the path enumera-
tion step only once.

The problem that enumerates all the possible paths in
each graph primitive can be formulated as the enumeration
of all the possible sequences of size p, which consist of
fixed numbers of 0’s and 1’s. The numbers of 0’s and
1’s are those of grids of graph primitive horizontally and
vertically, respectively. If there is a kK numbers of 1s, then
there are () numbers of paths, which can be obtained by
enumerating lexicographically ordered positions of 1s.
Hence, the number of all paths in a knot span for a curve

(2) (b)

() (@

Fig. 3. Four graph primitives for Fig. 2.

of degree p is

w 4]7
,WZ,,w J)'(P w+ j)! Zk'(p k! ,;)(k)_

®)

3. Direct expansion and experiments for static curves

Once all of the truncated basis functions are obtained in
power form, the power form polynomial B-spline curve for
[#:,t;41) is given as
C(H= > 70P ©)

Jj=i—p

where 7;,(7) is a truncated basis function and P; is the corre-
sponding control point. Thus, if the previous operation is
performed for each knot span, then a B-spline curve can be
transformed into a set of piecewise polynomial curves in
power form which can be formulated like the following.

m—p—1

CH= > CiON; (10)

i=p

Experiments are performed to compare the performance
of the proposed DE algorithm with KR and TE-approaches.
Ilustrated in Fig. 4 is degree vs computation time with a
fixed knot vector size of 50. It turns out that TE-approach is
most efficient regardless of degree, and DE algorithm is
superior to KR for degrees less than 7. Note that DE
algorithm deteriorates quite rapidly compared to KR-
approach. It is observed that DE shows a quadratic-like
increase whereas KR and TE show only linear-like increases
w.r.t. degrees. This is due to the fact that there are 2
numbers of paths for calculating (p + 1) truncated basis
functions in a knot span, when the degree of the curve is
p. Thus, the computation time of truncated basis functions
for each knot span doubles as the degree of curve increases.
Fig. 5 shows that DE algorithm is comparable to TE-
approach for degrees of three or four.

Computation time(knot vector size:50)

——KR
—-—TE

degree

Fig. 4. Time vs degrees (knot vector size: 50).

D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345

4. Direct expansion of a dynamic curve

Definition 4. A dynamic B-spline curve, Cy(?) is a B-spline
curve with more than one control points moving. Thus, Cy(?)
can be represented by the following equation.

Cd(t) = ZNi,pPi + Z]VJPPJ

i€l j€J

an

where I and J are the index sets of fixed control points P;
and moving control points P;, respectively. N, is the basis
function.

A brute force approach to transform Cy(f) to piecewise
polynomials in power form could be to recalculate the curve
segment in every knot span whenever some control points are
moving. This method is obviously unsatisfactory since it
wastes computing time for the knot spans with unchanged
curve shape. Therefore, by locating knot spans of curve
segments whose shapes are changed, the transformation can
be done more efficiently. In the case of KR-approach, a knot
refinement and a basis conversion are performed for all knot
spans of curve segments whose shapes are changed by moving
control points. Similarly, TE-approach can recalculate the
coefficients of polynomial curves for the knot spans of curve
segments whose shapes are changed. The derivative informa-
tion and factorial evaluation are needed for each coefficient of
the polynomial.

However, the computational behaviour of DE-algorithm
is different. Regardless of whether a control point is moving
or not, the truncated basis functions are fixed. It turns out
that the computational gain of DE algorithm for a dynamic
curve is more significant than that of others. Assume that a
static curve, C(?), is provided as Eq. (10) through DE algo-
rithm, as a pre-processing tool for a dynamic curve. Let
C4(r) be a dynamic curve counterpart of C(r). Cy() can be
now rewritten as the following equation using difference
vectors, starting at old control points and ending at new

Computation time(degree:3)

30

—=KR
—=TE
=&=DE

time(msec)

20 30 40 50 60 70 80
knot vector size

(a) degree: 3

time(msec)

341

control points.

Cy(n) = Z NPy + ZNj,ij
kEK =

12)

where K = I|JJ. That is, P;,k € K, is all control points of
C(®),and D; = (l3j — P;) corresponds to the displacement of
the moving control point. Thus, Eq. (12) means that C() can
be obtained by the summation of original curve C(f) and
difference vectors multiplied by the corresponding basis
functions.

On the other hand, C4(r) can also be divided into two
groups: the first group is the set of curve segments whose
shapes are fixed, and the second is the set of curve segments
whose shapes are changed by moving control points. Hence
the following equation holds.

Ci)= D Cu®ON,o+ > C,(N,o

meM nenN

13)

where M and N are index sets for knot spans of curve
segments whose shapes are fixed and changed by moving
control points, respectively. In addition, C, () can be again
rewritten by using truncated basis functions as follows since
C, () may also have both fixed and moving control points.

C.) =D 1,,(OP, + > 7,,0)P, (14)
q€0 reR

where Q and R are index sets for fixed and moving control

points of C,(#), respectively. Therefore,

C.() =D 7,0P, + > 7.,0)P, —P)
SES r€R

where S=QUR and |S| =p+ 1. P,sES, is all the

control points of C,(f) before they move. Thus, Eq. (15)

can be rewritten as Eq. (16) using difference vector and

truncated basis function.

C.()=C,() + > 7,,(OD,

r€R

15)

(16)

where D, = P, — P, is a difference vector whose value is
the displacement of the moving control point. Thus, for a
particular knot span, a changed curve segment in power

Computation time(degree:4)

20 30 40 50 60 70 80
knot vector size

(b) degree: 4

Fig. 5. Time vs different knot vector sizes.

342 D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345

form, C,(f), can be obtained by summing the original poly-
nomial curve C,(f) in the form of Eq. (9) and difference
vector multiplied by the corresponding truncated basis func-
tion. Performing the operation in Eq. (16) for the entire knot
spans whose curve segments are changed by the moving
control points completes the desired transformation for
Cq().

5. Experiments for dynamic curves

Transformation of a dynamic curve into a set of piecewise
polynomial curves in power form through DE algorithm
consists of two steps: (i) pre-processing, and (ii) the opera-
tion of Eq. (16) for all the knot spans with changed curve
segments.

Suppose one control point of B-spline curve of degree p
has been moved. Then, the curve shape will be changed over
(p + 1) contiguous knot spans. Since (p + 1) truncated basis
functions for each knot span are fixed, the new power form
polynomial curve can be obtained by (i) multiplying the
difference vector, starting at the old control point and ending
at the new control point, with corresponding truncated basis
function, and (ii) adding the previous result, which is a
polynomial in power form, to the old power form polyno-
mial in the knot span. Repeating this operation for (p + 1)
knot spans will produce (p + 1) pieces of new polynomials
in power form. Note that this process is simple to program
but very efficient in speed. There are (p + 1) knot spans for
the calculation, and each knot span takes only (p + 1) multi-
plications and (p + 1) additions. Therefore, only O(p?)
operations are needed to get all the new polynomial curves
since the calculation of difference vector takes only O(7).

If KR is used, all of (p + 1) curve segments, which will
change their shapes, have to be recalculated. In other words,
knot refinement for (p + 1) knot spans and basis con-
versions for (p + 1) coefficients for each knot span should
be performed. Needless to say, this approach will take much
more time than DE.

A similar observation can be made for TE. For each of
(p + 1) knot spans, new polynomial curves should be
computed completely again. For a knot span, there are
(p + 1) numbers of coefficients to compute, and each coef-
ficient needs the calculation of factorial function as well as
derivative information. Usually, a derivative for a B-spline
curve is calculated by evaluating the hodograph counterpart
at an appropriate parameter value, which is again an opera-
tion for O(p) if the evaluation is done based on Horner’s
rule. Otherwise, it is also O(p?) operation. Factorial function
evaluation also takes O(p) operation. Therefore, TE
approach is either O(p?) or O(p*). However, to have O(p*)
time behaviour, the hodograph itself should be a polynomial
in power form, again.

Fig. 6 illustrates experiment results for the degree of 3, 4,
5, and 6. The x-axis is the number of control points with
changed coordinate values. The y-axis is the computation

time taken by the re-calculation of new polynomial
segments due to the moved control points. Brief descrip-
tions of implementation for two approaches are as follows:
for KR-approach, after locating the knot spans whose curve
segments are changed by the moving control points, knot
refinement is performed on each knot span and is followed
by matrix multiplication for power basis conversion. The
first stage of TE-approach is to get p hodographs of the
new B-spline curve to calculate coefficients of polynomial
terms. Then, after locating the knot spans whose curve
segments are changed by the moving control points, piece-
wise polynomials in power form can be obtained through
evaluating the hodograph at a particular point of each knot
span. For each approach, we believe that only the minimum
necessary arithmetic is performed in our experiment, even
though we do not ignore the possible variations due to the
implementation details.

What is shown in the figure is surprising. The time
taken by the proposed DE algorithm is ignorable
compared to the conventional KR and TE-approaches.
For a fixed degree, the computational gain of DE algo-
rithm gets more significant as the number of moved
control points gets higher. As the degree of the curve
increases, the gain increases, as was pointed earlier.
Note that the scales of the y-axis are different in the
figures. Since the time taken by DE algorithm is negli-
gible compared to KR and TE-approaches, we provide
Fig. 7 that shows the time behaviour of DE algorithm
itself for dynamic curves. Note that it increases linearly
as the number of moving control points increases.

As was discussed in Section 1, there is another way
to come up with the truncated basis functions using the
derivative formula of B-spline basis function. In this
approach, the coefficients of a truncated basis function
are computed by the Taylor expansion of the derivatives
of appropriate degree. In Fig. 8, the result of an experi-
ment is provided for degrees of 3, 4, 5, and 6, to
compare the performances of both approaches. In the
figure, x- and y-axes represent the knot vector size
and the computation time, respectively. In the figure,
it is shown that the proposed approach is much faster,
for all degrees, than the approach using the derivative
of B-spline basis functions. The figure also shows that
the computational gain increases as the degree and the
size of knot vector increase.

6. Conclusions

In computer graphics and CAGD, it is often necessary
to manipulate B-spline curves or surfaces by converting
the B-spline representation into a set of piecewise poly-
nomial curves or surfaces in power form. In this paper, a
new algorithm for converting a B-spline curve into piece-
wise polynomial curves in power form is presented. By
defining several new concepts such as truncated basis

D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345 343

Computation time(degree:3)

w
o

w
o

N
3

n
o

—=KR |
—=TE |
~8—DE

time(msec)

o

1 2 3 4 5 6 7 8 9 10
of moving control points

(a) degree: 3

Computation time(degree:5)

60

time(msec)

of moving control points

(c) degree: 5

Computation time(degree:4)

of moving control points

(b) degree: 4

Computation time(degree:6)

60

50 o

ol —
5 (==

—=TE
=-&=DE

time(msec)

of moving control points

(d). degree: 6

Fig. 6. Computation time vs the number of moved control points (the number of all control points of given B-spline curve is 10).

Computation time

02500 degres
= 02000 —3
E’é 01500 ——
T 0.1000 —4—5
E -6
= 00500

0.0000

6 7 8 9 10

of moving control points

Fig. 7. Computation time vs the number of moving control points for degree 3, 4, 5 and 6.

functions, directed edges, and so on, the theoretical basis
is provided.

When a curve is dynamically changing its shape, the
speed of computation becomes rather important. In this
case, the theoretical analysis and experiment results
show that DE algorithm is computationally very effi-
cient compared to the existing approaches. It is our
expectation that a similar idea can be easily extended

to B-spline surfaces, and our approach will show more
significant computational properties for the problem.

Acknowledgements

This work was supported in part by the Korea Science and
Engineering Foundation (KOSEF) through the Ceramic

344 D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345

Computation time(degree 3)

60

50

wofp—
£ ol —e—ot
E —#—BD

20

10 Z*:

0
20 30 40 50 60 70 80
Size of knot vector
(a) degree: 3
Computation time(degree 5)

60

50 /

40 S _—
£ o B L —e—ot
.g —#—BD

20 /./

) M’?"

0

20 30 40 50 60 70 80
Size of knot vector

(c) degree: 5

Computation time(degree 4)

60

50

40 - S —

time(ms)

20 30 40 50 60 70 80
Size of knot vector

(b) degree: 4

Computation time(degree 6)

time(ms)

20 30 40 50 60 70 80
Size of knot vector

(d) degree: 6

Fig. 8. Computation time of truncated basis functions for degree 3, 4, 5 and 6.

Processing Research Center (CPRC) at Hanyang University.
The first author also thanks to A. Fischer, Technion-Israle
Institute of Technology, for suggesting the possibility of
applying the idea to dynamic B-spline curves and surfaces.

References

[1] Farin G. Curves and surfaces for computer-aided geometric design.
3rd ed. Academic Press, 1997.

[2] Kim D-S, Lee S-W, Shin H. A cocktail algorithm for planar Bezier
curve intersections. Computer Aided Design 1998;30(13):1047-51.

[3] The Initial Graphics Exchange Specification (IGES), Version 5.2,
ANSI Y14.26M, 1993.

[4] Bloomenthal J. Introduction to implicit surfaces. Morgan Kaufmann
Publishers, Inc, 1997.

[5] Sederberg TW. Implicit and parametric curves and surfaces for com-
puter aided geometric design, PhD Thesis, Purdue University, 1983.

[6] Lee K. Principles of CAD/CAM/CAE systems. Addison-Wesley, 1999.

[7] Boehm W, Prautzsch H. The insertion algorithm. Computer-Aided
Design 1985;12(4):58-9.

[8] Boehm W. On the efficiency of knot insertion algorithms. Computer
Aided Geometric Design 1985;2(1-3):141-3.

[9] Cohen E, Lyche T, Riesenfeld R. Discrete B-splines and subdivision
techniques in computer-aided geometric design and computer graphics.
Computer Graphics and Image Processing 1980;14(2):87—111.

[10] Goldman RN. Blossomming and knot insertion algorithm for B-spline
curves. Computer Aided Geometric Design 1990;7:69-81.

[11] Piegl L, Tiller W. The NURBS book. Springer, 1995.
[12] Lasser D, Hoschek J. Fundamentals of computer aided geometric
design. A. K. Peters, 1993.

Deok-Soo Kim is an associate professor in the
Department of Industrial Engineering, Hanyang
University, Korea. Before he joined the univer-
sity in 1995, he worked at Applicon, USA, and
Samsung Advanced Institute of Technology,
Korea. He received a B.S. from Hanyang Univer-
sity, Korea, an ML.S. from the New Jersey Institute
of Technology, USA, and a Ph.D. from The
University of Michigan, USA, in 1982, 1985
and 1990, respectively. His current research
interests are in the streaming of 3D shapes on
Internet, computational geometry, and geometric
modeling and its applications.

Joonghyun Ryu received both BS and MS from
the Department of Industrial Engineering,
Hanyang University, Korea in 1997 and 1999,
respectively. He is currently enrolled in PhD
program. His research interests are in geometric
modeling, computational geometry, and optimi-
zation.

D.-S. Kim et al. / Computer-Aided Design 34 (2002) 337-345

Hyun Chan Lee received a BS degree from
Seoul National University in 1978, an MS
degree from KAIST in 1980, and the PhD
degree in Industrial and Operations Engineer-
ing from the University of Michigan in 1988.
Before he joined the University of Michigan,
he worked for the Pusan Steel Pipe Inc. In
1988, he joined the Korea Electronics and
Telecommunications Research Institute as a
head of design automation section. He is now
an associate professor of Hongik University,
Seoul, Korea, in the department of Information
and Industrial Engineering. His research inter-
ests include CAD/CAM, surface modeling, computer graphics, computa-
tional geometry, engineering database, and product information
management.

Hayong Shin is an assistant professor in the Department of Industrial
Engineering at KAIST (Korea Advanced Institute of Science and Technol-
ogy). Before joining KAIST, he worked for DaimlerChrysler Corp., Cubic-
Tek Co. and LG Electronics, developing commercial and in-house CAD/
CAM software. He received a BS from Seoul National University in 1985,
an MS and a PhD from KAIST in 1987 and 1991, all in industrial engineer-
ing. His main research interests are in the area of geometric modeling, tool
path generation, process planning, and computational geometry. He can be
reached at hyshin@mail kaist.ac.kr

345

